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Abstract: Spectrally derived bathymetry (SDB) algorithms are rapidly gaining in acceptance and
widespread use for nearshore bathymetric mapping. In the past, refraction correction could generally
be ignored in SDB, due to the relatively small fields of view (FOVs) of satellite sensors, and the fact
that such corrections were typically small in relation to the uncertainties in the output bathymetry.
However, the validity of ignoring refraction correction in SDB is now called into question, due to the
ever-improving accuracies of SDB, the desire to use the data in nautical charting workflows, and the
application of SDB algorithms to airborne cameras with wide FOVs. This study tests the hypothesis
that refraction correction leads to a statistically significant improvement in the accuracy of SDB using
uncrewed aircraft system (UAS) imagery. A straightforward procedure for SDB refraction correction,
implemented as a modification to the well-known Stumpf algorithm, is presented and applied to
imagery collected from a commercially available UAS in two study sites in the Florida Keys, U.S.A.
The results show that the refraction correction produces a statistically significant improvement in
accuracy, with a reduction in bias of 46–75%, a reduction in RMSE of 3–11 cm, and error distributions
closer to Gaussian.

Keywords: SDB; bathymetry; UAS; refraction

1. Introduction

Photogrammetric and optical remote sensing methods have long been of interest for
mapping bathymetry in nearshore coastal areas [1–5]. Although these methods typically
do not meet the same accuracies as boat-based sonar, they can be invaluable for filling in
nearshore data voids in areas that are remote, inaccessible, and/or dangerous. Additionally,
optical remote sensing methods of bathymetry retrieval can be highly efficient and cost-
effective. Important uses of these methods include mapping of coral reefs and other
ecologically important benthic habitats [6–8], seafloor morphologic change analysis [9,10],
and support of hydrographic surveying [11–13], among others.

The primary active remote sensing technology for bathymetric mapping is bathymetric
lidar [14]. Meanwhile, methods based on passive, optical imaging fall into three categories,
which can trace their origins back to the 1940s [1,5]. The first category, often referred to
as “photobathymetry” in early studies, is based on stereophotogrammetry and has seen a
recent surge in interest using—structure from motion (SfM) photogrammetry, e.g., [15]. We
refer to these methods as stereobathymetry. The second main category of approach, which
we mention for completeness but is outside the scope of this study, is based on surface
wave kinematics (i.e., the decrease in celerity and wavelength and increase in amplitude
with decreasing depth in areas in which waves can “sense” the seafloor), using multiple
images collected at precisely known time intervals [16,17]. The third main type of approach,
spectrally derived bathymetry (SDB), retrieves bathymetry from spectral image bands,
based on the spectral attenuation of light with depth [3,18–22] and references therein. It
should be noted that most authors who use the term SDB define it as an acronym for
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satellite-derived bathymetry. However, following the convention of [23], we take the “S” in
SDB to refer to “spectral”, rather than “satellite”, as it is more descriptive of the approach,
rather than the type of platform used to acquire the data. In fact, SDB algorithms can equally
well be applied to airborne imagery, including imagery from uncrewed aircraft systems
(UAS), as in this study. Within SDB, there are various broad categories of approaches, some
more analytical and others more empirical, but all are based on the spectral attenuation of
irradiance with depth, which can be modeled using the Beer–Lambert Law.

Both bathymetric lidar and stereobathymetry, which can be formulated mathematically as
ray-tracing procedures, require refraction correction to account for the change in the direction
and corresponding change in the speed of light at the air–water interface, e.g., [24–26]. Refraction
correction moves the elevations of (uncorrected) bathymetric points up in bathymetric
lidar and down in stereobathymetry. This is because lidar is based on time-of-flight
calculations, which are a function of speed of light, which decreases when light enters
the water column. In contrast, stereobathymetry is based on the geometric intersection
of rays from overlapping images, with the point of intersection being too shallow, if
refraction is ignored. Neglecting refraction correction would lead to errors of ~25% of
the uncorrected depth in bathymetric lidar [25] and ~33% of the uncorrected depth in
stereophotogrammetry, depending on the image locations of a specific bathymetric point in
the overlapping images, and the base–height ratio [2–15].

In contrast to bathymetric lidar and stereobathymetry, refraction correction in SDB
has received relatively little attention, although a small number of studies, e.g., [23,27],
have explicitly considered the variable slant range of light rays through the water column.
As a note on terminology, what we refer to as SDB refraction correction could equally
well be termed “slant–range correction” or “off-nadir geometric correction” or “radial
geometric correction”. Specifically, we define SDB refraction correction as the correction for
the variable slant range of light reflected from the seafloor to the imaging sensor within the
imaging sensor’s field of view (Figure 1).
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Figure 1. Concept of SDB refraction correction. The difference between slant range and depth
increases with increasing off-nadir angle, θ, and, correspondingly, with increasing image radial
distance, r.

The SDB refraction correction is a function of incidence angle, the refractive index
of the water, and depth. It is likely that the main reasons this correction has received
relatively little attention in the published literature to date are that (a) with small FOV
sensors, such as the Operational Land Imager (OLI) onboard Landsat 8 and 9 and the
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Multispectral Instrument (MSI) on Sentinel-2A and -2B, the refraction correction is relatively
small (Figure 2 and Table 1), and (b) SDB uncertainties have generally been large enough
that refraction correction could reasonably be neglected. However, both of these facts
are currently called into question. First, with SDB algorithms currently being applied to
imagery acquired from airborne platforms, both planes and UAS [28], the assumption
of a small FOV is no longer valid. Second, accuracies of SDB are improving due to new
algorithms and procedures, and the desire to be able to use SDB for nautical charting
purposes, e.g., [11,13,29].
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Figure 2. Greater variation in off-nadir angles with wide-FOV camera on UAS (A) than on narrow-
FOV satellite sensors (B). Assuming the seafloor is uniformly illuminated within the image footprint,
and that the reflection from the seafloor is Lambertian, it suffices to consider only the upwelling
radiance of light reflected from the seafloor.

Table 1. Comparison of estimated relative depth errors resulting from ignoring refraction correction
for satellite imagery and a large FOV UAS camera.

Sensor Platform Field of View
Max Relative Depth Error from
Ignoring Refraction Correction

(Assuming Vertical Image)

Mean Relative Depth Error from
Ignoring Refraction Correction

(Assuming Vertical Image)

Operational Land
Imager (OLI)

Landsat 8–9
satellites 15◦ 0.5% 0.2%

Multispectral
Instrument (MSI)

Sentinel-2A and
-2B satellites 21◦ 0.9% 0.3%

DJI Phantom 4
Pro integrated
camera

UAS 84◦ 13.3% 5.4%

Based on the above considerations, the goals of this study are to (1) test the hypothesis
that refraction correction leads to a statistically significant improvement in SDB accuracy
when applied to images from a commercially available and widely used UAS and (2) de-
velop and test a model that is straightforward to implement, using only readily available
parameters as input.
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2. Methods

SDB algorithms predict the water depth of a pixel based on relative changes in band
values (or logarithms of band values) with depth, due to spectral attenuation with path
length through the water column. Off-nadir, the path through the water column traversed
by a ray of light from the seafloor to the camera lens is greater than the actual depth. The
geometry is illustrated graphically in Figure 3. Here, f is the focal length, r is image radial
distance (i.e., the distance in image space from the principal point to the image point in
question), θi is the incidence angle, θr is the angle of refraction at the air–water interface, n1
is the refractive index of air, n2 is the refractive index of water, d is the uncorrected depth
(slant range of light ray reflected diffusely by the seafloor, traveling through the water
column, refracted at the air-water interface, and incident on the camera lens), and D is the
corrected depth.
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In order to derive an easy-to-implement refraction correction procedure, we start with
the simplifying assumption that the image is vertical, meaning the optical axis is aligned
with a vertical line (plumb line), as depicted in Figure 3. This is a reasonable assumption
for aerial imagery which is intended to be vertical, since, in this case, image tilt is typically
<1◦ and almost always <3◦ [30]. However, the impacts of this assumption will be addressed
later. The second simplification underlying our refraction correction procedure is that we
consider only the one-way travel path of a light ray from the seafloor to the camera lens,
rather than the entire path from the sun to the seafloor to the camera lens. In turn, this
assumes a uniformly illuminated seafloor and Lambertian reflection of visible light from
the seafloor. Starting with these assumptions and the geometry depicted in Figure 3, we
derive a refraction correction (specifically, a correction to d), as a function of radial image
distance, r. Using Snell’s law,

n1sin θi =n2sin θr (1)

we define the refraction correction, δ, as the ratio of the corrected to uncorrected depth, and
calculate it as follows:

δ ≡ D
d

= cos θr = cos
[

sin−1
(

n1sin θi
n2

)]
(2)

Importantly, the refraction correction of Equation (2) can be expressed as a function of radial
image distance, which is a straightforward parameter to compute, making use of the fact that
θi = tan−1(r/ f ). We measure the radial distance from the principal point, which we take to be
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the center of the image sensor. For the purposes of this study, it is entirely reasonable to assume
that principal point offsets can be safely ignored, as they are generally <1 pixel. Rather than using
an absolute radial distance (with physical units, such as millimeters), we define a radial distance
ratio, ρ, as the radial distance of each pixel divided by the maximum radial distance (i.e., the
distance from the center to the camera chip to the corners). The relationship between ρ and δ
is plotted graphically in Figure 4 for one particular camera and an assumed seawater refractive
index of 1.3422 (wavelength = 500 nm, temperature = 28 ◦C, and salinity = 35‰).
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The δ vs. ρ curve shown in Figure 4 can be fit with a cubic polynomial with an R2

of 1.00. However, we seek a parsimonious model that will tend to avoid overfitting and
requires only a small number of parameters for which we will need to solve. We note that
a linear function can also represent this relationship sufficiently, with an R2 of 0.979. The
form of the linear relationship is:

δ(ρ) = αρ + β (3)

where α and β are constants. Equation (3) could be used to compute the refraction corrected
depth directly, i.e.,

D(ρ) = αρd + βd (4)

The coefficients (α, β) in Equation (4) are a function of the refractive index of the
water in the scene (which, in turn, depends on wavelength, temperature, and salinity)
and the parameters of the camera (FOV, focal length, and physical chip size). Because
these parameters may not be precisely known in practice, rather than solving for them
analytically, we use a data-driven approach in which the parameters are automatically
computed as part of the refraction-corrected SDB procedure. Our refraction-corrected SDB
model is an extension of the well-known Stumpf SDB algorithm, in which SDB is computed
as [19,20]:

d = m0·pSDB + m1 (5)

where d is depth and pSDB is relative bathymetry, computed as ln(n Rb)

ln(n Rg)
, where Rb and Rg are

the blue and green band reflectances, n is a constant chosen to ensure positive logarithms
and linear response (set to 1000 in our work, following, e.g., [31]), and m0 and m1 are
coefficients of a linear transformation obtained by regressing reference depths on pSDB.
The reference depths can be from an existing nautical chart, ICESat-2 bathymetry [25,31], or
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any other existing source of bathymetry. The Stumpf algorithm is widely used [31–36], and,
importantly for our research group, it is used in the National Oceanic and Atmospheric
Administration (NOAA) SatBathy software tool [37,38]. Based on the form of Equation (4),
we present a modified version of the Stumpf equation, which incorporates refraction
correction via the radial distance ratio, ρ, as follows:

DE = m0ρ(pSDB) + m1(pSDB) + m2ρ + m3 (6)

It should be noted that, in comparison to the original Stumpf algorithm (Equation (5)),
our refraction corrected version (Equation (6)) has four parameters (m0, m1, m2, and m3),
rather than the original two. However, if there are at least four reference soundings, it is
possible to solve for the unique values of the four parameters, and, if there are more than
four reference soundings, a least squares solution is possible.

To achieve the highest accuracy, applying radial lens distortion corrections before
the refraction correction is important, since (a) the refraction correction is computed as a
function of radial distance and (b) the non-metric cameras used on UAS tend to have large
amounts of lens distortion, compared to the large-format, film-based metric mapping aerial
cameras of past decades. Symmetric radial lens distortion can be modeled mathematically
in multiple ways, but often as a polynomial in radial distance, r, with the coefficients {ki}
determined through an appropriate lens calibration procedure [30].

3. Experiment

The data for this study were collected from 19–25 June 2022, at two sites in the Florida
Keys, referred to as Eastern Dry Rocks (EDR) and Site C. Both are coral restoration sites
managed by the Mote Marine Laboratory, and the collection was performed as part of a
broader project investigating the ability to map and monitor coral reef change over time,
a collaborative effort of the NOAA, the University of New Hampshire (UNH) Center for
Coastal and Ocean Mapping (CCOM) Joint Hydrographic Center (JHC), the Mote Marine
Laboratory, and Oregon State University. We selected two sites to be representative of
different bottom types found in the Florida Reef Tract. EDR contains a spur-and-groove
reef structure extending from the shallow backreef out to depths of ~4–6 m. Further
offshore is a forereef terrace with a combination of hardbottom and remnant spur-and-
groove providing high relief. In contrast, Site C is a high-relief ledge comprised with high
vegetation diversity, concentrated within 5–10 m of the sand/reef margin, transitioning
rapidly to barren hardbottom with considerably lower complexity [39].

The imagery was collected with a DJI Phantom 4 Pro RTK (Figure 5). The remote
aircraft has multi-frequency, multi-constellation, carrier-phase recording GNSS, which
supports real-time kinematic (RTK) and post-processed kinematic (PPK) GNSS. For the
purposes of this study, the remote aircraft trajectory was post-processed in the open-source
GNSS software library, RTKLib [40]. The aircraft is equipped with a gimbal-mounted 20 MP
(5472 × 3648 pixel) RGB camera. The focal length of the camera lens (actual, not 35 mm
equivalent) is 8.6 mm, and the aperture is adjustable between f/2.8 and f/11. Due to the
distance of the sites offshore (Figure 6), takeoff and landing were performed from a 7.6 m
(25 ft) Parker dive boat owned and operated by the Mote Marine Laboratory. All flights
were conducted at a flying height of 73 m above the water surface, resulting in a 2.0 cm
ground sample distance (GSD) on the water surface.
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It should be noted that there are several environmental and acquisition parameters
that must be carefully selected to acquire good-quality UAS imagery of the seafloor. Spe-
cific challenges include sun glint, surface waves, and wind. These can be addressed, to
some extent, through selection of suitable conditions (e.g., sun angle, water clarity) and
acquisition parameters and procedures (e.g., use of a circular polarizing filter, orienting
flightlines into and out of the sun). Rigorous testing of these parameters was beyond the
scope of this study, but, to the extent possible, we adhered to recommendations published
by our research group from a previous study [41]. Specific environmental parameters for
the data acquisition are shown in Table 2.
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Table 2. Environmental parameters during data acquisition. The wave height, wind, humidity, and
temperature data were obtained from the National Data Buoy Center, using the closest buoy. The Kd(490)
and SPM data were obtained from the NOAA STAR Ocean Color viewer (OCView) web portal and
computed from Visible Infrared Imaging Radiometer Suite (VIIRS) data. Only the 24 June 2022 data were
used from OCView, because the sites were cloud covered at the specific time of the satellite overpass on
25 June. The solar altitude and azimuth were obtained from an online solar calculator.

Parameter EDR Site C

Solar altitude 38◦–43◦ 38◦–43◦

Solar azimuth 78◦–80◦ 78◦–80◦

Kd(490) (diffuse attenuation coefficient of
downwelling irradiance at 490 nm)

0.106 m−1 (Note: based on
data from previous day) 0.110 m−1

SPM (suspended particulate matter)
0.363 mg/L (Note: based

on data from previous
day)

0.456 mg/L

Significant wave height 0.20 m 0.18–0.19 m
Wind speed 1.6 m/s 1.4 m/s

Atmospheric pressure 1017.2 hPa 1015.6 hPa
Humidity 68% 66%

Temperature 27.9 ◦C 27.5 ◦C

One image for each of the two sites was chosen for performing SDB. The selection
of appropriate images was nontrivial, and, in fact, turned out to be one of the most
challenging practical aspects of this study. We sought images that would reflect different
seafloor characteristics from one another. Additional considerations included (1) a wide
enough range of depths to provide a robust test, (2) somewhat uniform water column
and seafloor composition, such that the Stumpf algorithm would provide good results,
(3) little sediment or plankton in the water column or on the water surface, (4) minimal sun
glint, and (5) enough texture for structure-from-motion (SfM) photogrammetry software
to be able to create georeferenced orthoimages from the raw images (such that our SDB
was inherently georeferenced and the images were corrected for lens distortion). After
manually analyzing dozens of images for two that would meet these (somewhat conflicting)
criteria, the two images selected were EDR-47 and SiteC-75, both containing some reef
(albeit different reef structures), sand, generally sloping bathymetry, and depth ranges of
~17 m. EDR-47 was acquired on 25 June 2022, while SiteC-75 was acquired one day earlier,
on 24 June 2022.

These two images were processed in Agisoft Metashape SfM software [42] to produce
individual orthoimages (Figure 7), which served as the input to the SDB algorithm. It is
important to note that the SfM step is, in general, unnecessary; the only requirements to use
the SDB refraction correction procedure developed in this work are (a) the imagery needs
to be georeferenced, and (b) it must be possible to compute radial image distances. The
purpose of the SfM step in this study was simply to ensure good quality georeferencing and
lens distortion correction to minimize sources of error unrelated to the refraction correction
procedure. For a description of the general steps in an SfM workflow, interested readers
are referred to [43,44].

The reference data for this site are derived from the “2018–2019 NOAA NGS Topo-
bathy Lidar DEM” collected after Hurricane Irma and obtained from NOAA’s Digital Coast.
This dataset is referenced to NAD 83(2011) with UTM Zone 17N coordinates and NAVD88
(GEOID 12B) heights, in units of meters. The resolution of the DEM is 1 m. The data were
acquired with a Riegl VQ-880-G+. The published vertical accuracy at a 95% confidence in-
terval for the bathymetric lidar data was 11 cm, based on an accuracy assessment conducted
by the service provider, Quantum Spatial (now NV5), in the shallow-water portions of the
collection area. For the deeper portions of the site, the metadata states that the data were
collected to meet Quality Level 2B of the National Coastal Mapping Strategy. Importantly,
these data meet the ASPRS Positional Accuracy Standards for Digital Geospatial Data, 2nd Ed.
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requirement that reference data must be three times more accurate than the data being
evaluated [45], A 20/80 training/testing split was used (i.e., 20% training, 80% testing).
The locations of the training and testing samples for the two sites are shown in Figure 8.
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Figure 7. Orthoimages generated for the two UAS images: (a) EDR-47, and (b) SiteC-75. Blank white
areas of the orthoimages are where the SfM reconstruction failed, due to floating algae or lack of
sufficient seafloor texture. Both sites contain a mixture of reef (darker green) and sand (lighter) areas.
The bowed edges of the orthoimages are a result of lens distortion, and the lower-intensity values
near the image corners are a result of vignetting.
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Figure 8. Locations of testing samples (yellow circles) and training samples (red triangles) randomly
drawn from the 2018–2019 NOAA NGS topobathymetric lidar dataset for the EDR site (a) and Site C
(b). Although both training and testing samples were drawn from the same reference dataset, they
were kept entirely separate from one another until the final analysis step of comparing the standard
and refraction-corrected versions of the model.

There are two aspects of the reference data that merit discussion, as they may have
had some impact on the SDB and assessed SDB accuracies. The first is that the training and
testing samples were drawn from the same lidar dataset, although care was taken to ensure
each consisted of an entirely separate set of points from the other. The second is that the
spatial resolution of the lidar-derived DEM (1-m GSD) was much coarser than the UAS
imagery. However, it is important to note that the goal of this study is not to evaluate the
accuracy of SDB, but, rather, to assess the accuracy improvement enabled by incorporating
refraction correction. Because both factors would tend to affect the un-refraction-corrected
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and refraction-corrected versions of the model equally, they should be of little consequence
for evaluating the impacts of the refraction correction.

Both EDR-47 and SiteC-75 were processed using both the standard Stumpf algorithm
and our modified version, incorporating the refraction correction terms. Both the stan-
dard Stumpf model and our refraction-corrected version were implemented in MATLAB
(R2021a), with the multiple linear regression to solve for the parameters (m0 and m1 in
the standard model, and m0–m4 in our version) performed using the MATLAB Curve
Fitting Toolbox (Figure 9 and Table 3). As expected, the additional parameter improves
the model fit. It is interesting to note the difference in the regression surfaces between the
two photos, in which EDR is near-linear but Site C has a greater curvature. The potential
overfitting at Site C, likely absorbing some other systematic error, has implications on the
resulting model that becomes apparent during analysis (Figures 10 and 11). The parameters
generated from the regressions were then applied to the pSDBg and radial distance ratio
raster datasets using ArcGIS, Raster Calculator. The outputs from each version of the model
were compared to the reference data subset from the NOAA NGS airborne topobathymetric
lidar dataset.
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Table 3. Fit statistics of the regression lines from the standard Stumpf models and the regression
surfaces from the refraction-corrected models.

EDR
(Standard)

EDR
(Corrected)

Site C
(Standard)

Site C
(Corrected)

SSE (m) 196.9 172.4 242 165.7
R2 0.79 0.81 0.75 0.83

RMSE (m) 0.640 0.600 0.718 0.596
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Figure 10. Reference data and SDB without and with refraction-correction for the two sites: (a) lidar
reference data for EDR (clipped to orthoimage area); (b) standard Stumpf model SDB for EDR;
(c) refraction-correction model SDB for EDR; (d) lidar reference data for Site C (clipped to orthoimage
area); (e) standard Stumpf model SDB for Site C; and (f) refraction-corrected SDB for Site C.
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Figure 11. Errors (model minus reference data) for both sites: (a) standard Stumpf model error
for EDR; (b) refraction-corrected model error for EDR; (c) differences in errors between standard
and refraction-corrected models for EDR; (d) standard Stumpf model error for Site C; (e) refraction-
corrected model error for Site C; (f) differences in errors between standard and refraction-corrected
models for Site C.

4. Results

The results of comparing the output SDB bathymetric grids generated using both the
standard Stumpf model and our refraction-corrected version are depicted in Figures 10–12.
Figure 10 shows in the top row the lidar-derived DEMs with overlaid contour lines for the
two sites: EDR on the left, and Site C on the right. Below these are the bathymetric grids
generated using both the standard Stumpf model (middle row) and our refraction-corrected
version (bottom row), both also with contour lines overlaid. The errors (differences from
reference data) from the two versions of the model are shown in Figure 11, with the
top row of figures corresponding to the standard Stumpf model and the middle row
corresponding to our refraction-corrected version. The bottom row depicts differences in
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errors between standard and refraction-corrected models for both sites. Figure 12 shows
the error histograms for the two sites using both versions of the model.
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The accuracy assessment statistics are summarized in Table 4. For both sites, the
difference in MSE between the two datasets was found to be statistically significant at
a significance level of α = 0.05, based on a one-sample t-test. Note that the t-test was
performed on MSE, rather than RMSE, since the former is linear in squared error. Since
the presence of systematic errors often manifests as a non-normal error distribution, a
Lilliefors test for normality [46] was applied to the errors from the standard version of the
Stumpf model and our refraction-corrected version. This test is applied to evaluate the null
hypothesis that the data are drawn from a normal distribution when the mean and standard
deviation are unknown, which is the typical case in assessing error distributions from an
empirical accuracy assessment. We implemented the Lilliefors test using the MATLAB
“lillietest” function.

Table 4. Results from standard Stumpf algorithm and our version, incorporating the refraction-
correction terms.

Standard Model:
EDR-47

Refraction-Corrected
Model: EDR-47

Standard Model:
SiteC-75

Refraction-Corrected
Model: SiteC-75

Number of samples, N 1947 1947 2963 2963
RMSE (m) 0.694 0.663 0.735 0.629
Bias, µ (m) 0.069 0.017 0.024 −0.013

Standard deviation, σ
(m) 0.561 0.538 0.734 0.629

Mean squared error
(MSE) (m2) 0.481 0.440 0.540 0.396

Skewness of error
distribution −0.534 −0.135 −0.562 −0.252

Error distribution
passes normality test

(Y/N)
No Yes No No

Difference in MSE is
statistically significant

(Y/N)
Yes Yes
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5. Discussion

The results illustrate that the refraction-corrected version of the Stumpf algorithm led
to improved results. For both images, the MSE was smaller using the refraction-corrected
version of the model, with the difference in MSE being statistically significant, based on
the results of the t-test. The reduction in bias (absolute value) was 75% for EDR and 46%
for Site C, and the improvement in RMSE was 3 cm for EDR and 11 cm for Site C. In
the case of EDR, the errors (differences from the reference data) fail the normality test
(Lilliefors test) before the refraction correction and pass after the refraction correction. For
Site C, both sets of errors fail the normality test, but visually, the error distribution for
the refraction-corrected model is much closer to normal, and the skewness of the error
distribution is reduced from −0.562 to −0.252. The importance of this finding lies in the
fact that the presence of large systematic errors (such as those we would expect due to
ignoring refraction correction) often manifests as non-normal error distributions [47,48].
A final indication that our refraction-corrected model is performing as expected is that
the differences in errors (standard model minus refraction-corrected model), shown in
Figure 11c,f display the expected radial pattern, because the refraction correction increases
with the off-nadir angle, and, hence, with the radial image distance. Comparing 11c and 11f,
one noticeable difference is that the EDR site appears to have more random errors, manifest
in the speckled appearance of 11c as compared to 11f, which is smoother. The relative
lack of symmetry in Figure 11f compared to Figure 11c indicates the presence of another
systematic error, related to the location of the principal point and image tilt as well as the
uneven brightness across the Site C image. While the cause of the greater random noise
in the EDR SDB is unknown, it is important to note that the imagery for the two different
sites were collected one day and ~37 km apart and under slightly different illumination,
wind, wave, and water conditions. From Figure 7, it can be seen that the Site C image has a
slightly smoother appearance, consistent with less random noise in the resultant SDB.

Returning to the simplifying assumptions underlying the refraction-corrected model,
one that merits further discussion is the assumption that there is no image tilt. Even
imagery intended to be vertical is typically not perfectly so, and, hence, the validity of this
assumption could be called into question. Figure 13 shows the error bars on the refraction
correction δ, if the image is assumed vertical when there is 3◦ of tilt. Even for this relatively
large amount of tilt (for an image intended to be vertical), the maximum depth correction
error at the outermost edges of the image is approximately ±1.5%, and the average error is
approximately ±1.1%. For a more typical 1◦ tilt [30], the maximum depth correction error
is approximately ±0.5%, and the average error is approximately ±0.4%. For reference, as
reported by Agisoft Metashape [42], the tilts of EDR-47 and SiteC-75 were 0.957◦ and 0.738◦,
respectively. For the particular camera used in this study, roll would have the greatest error
influence, since the rotation around the y-axis will either dip or raise the image along the
longer dimension of the image.

The spatial distribution of the remaining errors in Figure 11b,e are best explained by
factors unrelated to the refraction correction. Visually, the greatest remaining source of
error with UAS bathymetry is the highly variable reflectance of the seafloor and cover. In
general, areas of vegetation in the UAS SDB have a deep bias, while areas of sandy bottom
have a shallow bias. The coral reef appears equally low in blue and green reflectance than
the brighter areas of sand and therefore the low reflectance conditions are erroneously
computed as deeper water.

It is also worth revisiting the requirements for the input to our refraction-corrected
SDB model. Again, the SfM step is not required and was only applied in this study to
improve the spatial accuracy and ensure that camera calibration was applied (and, hence,
limit the influence of these nuisance parameters on the results). It is, however, necessary
for the input imagery to be georeferenced in order to obtain georeferenced bathymetry
as the output. With or without refraction correction, the spatial accuracy of the output
bathymetry will be limited by the accuracy of the georeferencing. The other important
requirement for the input to our procedure is that it must be possible to calculate radial
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image distances from the principal point. This is straightforward for an individual image,
but it is extremely difficult in an orthomosaic generated from multiple, overlapping images.
Hence, if orthorectification is performed on the input imagery, the input to the refraction-
corrected SDB model should consist of individual orthoimages, rather than orthomosaics.
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6. Conclusions

This study investigated refraction correction for SDB using imagery acquired using
a small, commercially available UAS. The primary contributions of the study include
(a) equations were developed for SDB refraction correction; (b) a simple-to-implement
refraction correction procedure that consists of a modification of the well-known, widely
used Stumpf algorithm was developed; and (c) the improvement achieved using the
procedure was quantified. The difference in mean square error between the results of
the standard model and our refraction-corrected version was found to be statistically
significant at a significance level of α = 0.05. Additionally, the refraction correction reduced
the bias in both study sites. For one of the sites, the errors failed a normality test before
the refraction correction and passed the normality test after the correction, and for both
sites, the error distribution was visually more normally distributed in the output, including
the refraction correction terms. These findings support the conclusion that the refraction
correction achieves the intended objective of reducing systematic errors in SDB, due to
variable slant range through the water column. Equally importantly, it does so via a
straightforward procedure that requires only the imagery and radial image distances as
input. Our MATLAB code and data have been made available as Supplemental Materials,
such that others can implement and assess the procedure.

Although the correction was tested on UAS imagery, there is no reason it could not
be applied to SDB derived from imagery from other platforms, including conventional
aircrafts and satellites. However, for satellite imagery, the corrections will be smaller, due to
the smaller FOVs of the sensors. In terms of future work, an enhancement to the refraction
correction developed in this study would be to further explore the cubic correction, rather
than linear and radial image distance. Additionally, it would be interesting to evaluate the
general method of refraction correction (i.e., inclusion of additional terms that are functions
of radial image distance) with other SDB algorithms than the Stumpf algorithm.

A final recommendation for future work is to extend this study to include investigation
of SDB from imagery that is not intended to be vertical. Most aerial imagery, including
imagery acquired from both UAS and conventional aircraft, is intended to be vertical, and,
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hence, it was deemed appropriate to purposefully limit this scope of this study to vertical
imagery. Furthermore, it was demonstrated that, for imagery intended to be vertical,
typical image tilts of ~1◦ up to ~3◦ would introduce relatively small errors in the refraction
correction. However, some high-resolution commercial satellite sensors acquire imagery
with intentionally large off-pointing angles (e.g., 30◦–45◦). Although outside the scope of
this study, further modifications to the model to support such oblique imagery should, in
theory, be feasible.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs15143635/s1. The data presented in this study are available
in Supplementary Materials, including original photos (Figures S1 and S2), orthoimages (Figures
S3 and S4), radial distance ratio orthoimages (Figures S5 and S6), test data points (Table S1), error
values (Table S2), and MATLAB scripts ‘radialDist_slant_correction.m’ used to generate the analytical
models, ‘RadialRatio_Image.m’ for generating the radial ratio image, and ‘lillie_normalitytest.m’ for
error analysis.
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