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Abstract: Highway agencies monitor the condition of thousands of bridge decks every year. Even
though Ground Penetrating Radar (GPR) has been used in bridge-deck evaluation, Step-Frequency
GPR (SF-GPR) provides advanced condition assessment yet requires extensive and complex post-
processing analysis. An SF-GPR analysis system was recently developed and used for monitoring
the condition of all the bridge decks in the state of Maryland. The objective of this study was to
develop a bridge deck condition rating approach using fuzzy sets modeling on the SF-GPR data and
analysis. The fuzzy sets membership functions needed to reflect rating score categories similar to
those considered in the National Bridge Inventory (NBI) database for uniformity. Thus, the fuzzy
sets modeling was built considering nine condition membership functions. The overall bridge deck
condition score leading to each of the nine condition states was based on both physical and condition-
related bridge deck parameters as obtained from the SF-GPR analysis. The modeling approach is
presented herein, along with two bridge deck examples. The proposed novel fuzzy sets modeling can
be considered for possible adoption elsewhere where similar GPR systems are used.
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1. Introduction

There are approximately 615,000 bridges in the United States, with an approximate
average age of 51 years. The current estimate for bridge maintenance and rehabilitation
of bridges in poor condition in the US is of the order of more than 33 trillion dollars.
This represents approximately 68% of the replacement cost [1]. Several billion dollars
are spent annually for bridge deck repair and replacement. Concrete bridge decks are
designed to provide the necessary structural capacity and surface characteristics with
proper friction for safety and smoothness for ride quality. It is the role of infrastructure
managers at the national, state, and local levels to maintain bridge decks. A number of
non-destructive methods (NDT) have been proposed and used over the years for assessing
the condition of concrete bridge decks. These include the simplest methods, such as chain
drag, half-cell potential, and visual surveys, to the more advanced methods, including,
among others, Ultrasonic and Impact Echo (IE), Thermography (IR), and pulse GPR single
antenna or antenna arrays [2–8]. The advantages and limitations of these NDT in terms of
speed, accuracy, cost, and required training for the operation and interpretation of data are
well documented in the literature [9,10]. In particular, the national study SHRP 2 R06-A,
which included a thorough review of NDT methods used for identifying concrete bridge
deck deterioration, reached the following important conclusions [11]: a number of NDT
technologies can provide detailed and accurate information only about a certain type of de-
terioration or defect; comprehensive condition assessment of bridge decks can be achieved
only through a complementary use of multiple technologies; speed has been a major limi-
tation for most of the technologies, and has been the main obstacle for wide adoption by
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transportation agencies; and, most of these NDT requires a significant level of training and
expertise, especially in data analysis and interpretation. Recent work with ground-coupled
impulse GPR for concrete bridge deck condition assessment is documented in various
studies [2,3,7,12–14]. Follow-up studies have addressed specific aspects of condition as-
sessment [15–21]. In GPR, short pulses of electromagnetic energy are transmitted into the
structure. The reflected waves are received by the antennas and analyzed based on the
electromagnetic wave propagation theory [11,13]. Depending on the GPR unit, different
frequencies may be used, with low frequencies for higher depth exploration and higher
frequencies for shallow depths but higher accuracy [7,14]. For bridge decks, both low
and high frequencies are typically needed due to several elements within the bridge deck
structure (i.e., cover depth, rebars, below rebar concrete quality, and deck back wall). More
recently, GPR data have been analyzed using neural networks for complex infrastructure
condition assessment. Examples include pavement crack detection using multiscale feature
fusion deep neural networks [22] and convolutional neural networks (R-CNN) for detecting
internal small cracks in asphalt pavements at the pixel level [23]. Also, the development of
bridge deck rating systems using fuzzy sets analysis has been looked at [24].

Due to the requirements for higher accuracy data for complex structures like bridge
decks, the need for SF-GPR has been identified [25,26]. This wideband system versus
a traditional single or dual-frequency GPR system is advantageous since it provides an
extended series of bandwidth range frequencies covering both the depth and accuracy of
complex structures like bridge decks. However, it requires significant and more complex
post-processing analysis to deal with the volume of data pertinent to the wide range of
reflected signals received from the various frequencies. This often requires the development
of specialized algorithms to capture most of the information and accuracy from the reflected
signal [27]. Thus, the development and potential use of Step-Frequency Ground Penetrating
Radar, SF- GPR, in bridge deck evaluation addresses the limitations of single and/or dual
frequency systems [28].

1.1. SF-GPR System & Post-Processing Analysis

Recently an SF-GPR system combined with advanced post-processing algorithms was
developed for the state of Maryland and presented previously [28,29]. In the developed
system, a 3D-Radar DXG1820 antenna array was used in near-ground conditions. While
the 3d Examiner software was available, proprietary software was used since it provided
better post-processing data analysis capabilities as defined next [30]. The 1.8 m wideband
antenna array has a frequency ranging between 200 MHz–3 GHz, maximizing thus the
resolution at each depth level, and with an array of transmitter and receiver antennas,
Figure 1, and a scan width of 1.5 m.
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While the principles of wave propagation and GPR signal interpretation have been
widely reported in pertinent GPR references [18–21,25–27], the development of the more
than 200 proprietary post-processing algorithms used in the analysis of this system has
been presented in past references by the authors [28–30]. The effort required to record, pro-
cess, analyze, present, and interpret large datasets has been automated with an integrated
processing pipeline [29]. The analysis reports are either in tabulated and/or graphical
format, as well as GeoTIFF mapping images using GIS. Data collection is assisted with
software that provides real-time visual feedback to the field operators about the current
coverage and completeness with integrated aerial images. The path of the vehicle using
GPS for each data collection pass across the width of the bridge deck is also monitored
in real-time. During the development of the automated SF-GPR post-processing analysis,
the signal interpretation algorithms were developed for evaluating each one of the key
bridge conditions and physical parameters identified and briefly described in a follow-up
section. Further details have been presented in past references by the authors [29,30]. To
be mentioned that the primary standards currently in place for measuring bridge deck
deterioration/delamination are ASTM D 6087-08, “Standard Test Method for Evaluating
Asphalt-Covered Bridge Decks Using Ground Penetrating Radar” (also applicable to con-
crete overlaid decks and concrete decks), and ASTM D4580/D4580M-12 “Standard Practice
for Measuring Delamination in Concrete Bridge Decks by Sounding”. The developed
system satisfies or exceeds the requirements of both ASTM standards in terms of data col-
lection. Moisture effects on EM signal are accounted for with short-time Fourier transform
processing, STFT [27]. There are currently 5200 bridges statewide in Maryland, of which
approximately 2500 are under the jurisdiction of MD DOT. While further details of the
SF-GPR data acquisition system are reported elsewhere [27,28], the speed of data acquisi-
tion varies between 12.8 and 72.4 km/h, depending on the selected testing protocol. An
optimum speed of acquisition for the proposed system is 16 km/h in order to optimize the
data resolution required for each analysis and to minimize loss of accuracy due to surface
roughness [30]. An example B-scan for a typical bridge deck profile with three spans and
asphalt overlay is shown in Figure 2, while details on the interpretation techniques used in
regard to the GPR signal for detecting the bridge deck conditions have been included in a
follow-up section.
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The objective of this study was the development of the bridge deck condition rating
methodology for the SF-GPR analysis results using fuzzy sets modeling. The fuzzy sets
membership functions were defined to reflect the rating score categories considered in
the National Bridge Inventory, NBI, database. Thus, the fuzzy sets modeling was built
on nine-condition membership functions similar to those NBI rating scale categories. The
overall bridge deck condition score leading to each of the nine condition states was based
on both bridge deck physical and condition-related parameters obtained from the SF-GPR
analysis. Details on the fuzzy set modeling, along with two bridge deck examples, are
provided herein.

1.2. Key Bridge Deck Condition Elements from SF-GPR Analysis

The SF-GPR theoretical foundation for signal interpretation algorithms has been
developed over the years under Federal Highway Administration (FHWA) sponsored
research and included extensive validation and accuracy in relation to “ground true”
conditions [25,26]. As indicated earlier, in recent years, the need of the Maryland De-
partment of Transportation, MD DOT, to survey thousands of bridge decks in a very short
period of time identified the necessity for developing and implementing the processing
analysis pipeline system. This need was the result of the federal requirements in report-
ing and storing every two years the condition of bridge decks in each state in regard to
the National Bridge Inventory system [27,28]. This required further development and
fine-tuning of hundreds of interpretation and analysis algorithms for transitioning from
development to implementation [29,30]. Furthermore, recognizing that the condition rating
scores reported in the NBI database are based primarily (i) on subjective and visual ratings
of state inspectors and (ii) often reflecting a single or multiple state inspector(s) training
and judgment over time, emphasized further the value of NDT-based objective assessment
of bridge decks and need to develop a bridge deck rating system to go along such NDT
data and analysis. The need for the new rating system has also been reinforced by the
feedback of inspectors and bridge engineers reporting that the NBI deck condition values
can be within two levels of the scale from the actual condition of the deck [27].

The requirements for higher accuracy data without compromising the speed of data
collection identified the need to use a wideband SF-GPR antenna array in near-ground-
coupled configuration [29,30]. This also helped to address the agency’s requirements of
limiting the number of costly lane closures and their safety concerns for both workers and
the traveling public and prevented significant travel delays. Such action is necessary when
objective measurements are needed from field exploration (i.e., involving coring, chain
drag, half-cell potential, and other testing) to: (i) either verify inspector subjective rating or
(ii) obtain more accurate condition data.

During the development of the automated SF-GPR post-processing analysis, the
signal interpretation algorithms were developed for evaluating each one of the key bridge
conditions and physical parameters, presented in Figure 3 and explained next. In contrast,
Figure 4 presents the steps of the analysis for achieving the overall condition score fuzzy
membership presented in a later section. The key bridge condition assessment elements
included: (I) bridge deck “Surface Condition” as a function of surface elevation and concrete
surface dielectric, and when applicable, overlay condition; (II) “Rebar Condition” as a
function of top rebar cover, dielectric at top of the rebar and signal strength, as well a
rebar detection index using rebar presence detection and spacing, and, (III) “Below Rebar
Concrete” condition; Both of these last two condition elements constitute an assessment
of the bridge deck’s “Structural Condition”. Based on the above condition elements, the
“Overall Score” for the bridge deck condition is obtained (i.e., based on both surface and
structural bridge deck condition), Figure 3. These bridge condition assessment elements
were assessed based on the following:

• Concrete Surface Condition (SC): It is determined based on the variance in material
consistency near the surface of the deck using the near-surface dielectric permittivity
measured by the GPR sensor. The surface condition is measured using estimates of
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near-surface dielectric permittivity. It is a function of the amplitude of the first surface
reflection in the GPR data and the reference amplitude of the first surface reflection
over a metal plate.

• Surface Elevation (SE): It is determined based on the vertical deviation from the surface
of the deck in centimeters. Depressions (e.g., potholes, cracks) have negative surface
elevations, and protrusions (e.g., bumps, overfilled patches) are positive. The vertical
distance between the GPR antenna and the surface of the deck is estimated using
the first surface reflection. The estimates are calibrated using the common-mid-point
method. The surface elevation is computed as a reference height of the GPR antenna
with respect to the surface of the deck minus the calibrated vertical distances.

• Overlay Thickness (OT): When an HMA or concrete overlay is detected during the
pre-processing of the GPR data, its thickness is estimated between the surface and
the overlay/concrete-deck interface feature in the GPR measurement. The overlay
thickness is reported in centimeters. The thickness of the overlay is estimated as the
vertical distance between the surface and the overlay/concrete-deck interface. The
estimates of thickness are calibrated using the common-mid-point (CMP) method
based on geometric triangulation. Figure 5 shows an example of five lateral offsets
of five different transmitter-receiver pairs. Note that all five lines cross at a common
midpoint. The distance D2 is estimated using the five measurements, knowing the
five lateral offsets. The thickness of the overlay is D2-D1, where D1 is estimated using
a similar triangulation.

• Overlay Condition (OC): When there is an HMA or concrete overlay detected during
the pre-processing of the GPR data, its condition is estimated using the dielectric
permittivity near the overlay/concrete-deck interface feature in the GPR measurement
and the signal strength of the GPR reflection at the interface. The overlay condition
is a dimensionless parameter ranging from 1 (best) to 10 (worst). The condition
of the overlay is determined using an estimate of the dielectric permittivity and
signal strength of the GPR reflection at/near the overlay/concrete-deck interface. The
estimates are computed and calibrated using the common-mid-point method.
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• Top Steel Cover (TC): It is determined between the surface and the top steel mat fea-
tures in the GPR measurement. The top steel cover is reported in centimeters and is
estimated as the vertical distance between the surface and the top-steel mat interfaces.
The estimates are computed and calibrated using the common-mid-point method.

• Above Steel Condition (TSC): It is determined using the dielectric permittivity near the
top steel mat interface feature in the GPR measurement and the signal strength of the
GPR reflection at the interface. It is a dimensionless parameter ranging from 1 (best)
to 10 (worst). The condition of the top steel mat is determined using an estimate of the
dielectric permittivity and signal strength of the GPR reflection at/near the top-steel
mat interface, at and between the rebars. The estimates are computed and calibrated
using the common-mid-point method.

• Top Steel Condition (ASC): It is estimated using the dielectric permittivity at the top
steel mat interface feature in the GPR measurement and the signal strength of the
GPR reflection at the interface. The top steel condition is a dimensionless parameter
ranging from 1 (best) to 10 (worst). The estimates are computed and calibrated using
the common-mid-point method.

• Below Steel Condition (BSC): This is estimated using the dielectric permittivity near the
bottom steel mat interface feature in the GPR measurement and the signal strength
of the GPR reflection at the interface. The bottom steel condition is a dimensionless
parameter ranging from 1 (best) to 10 (worst). The estimates are computed and
calibrated using the common-mid-point method.

• Deck Thickness (DT): It is determined between the surface and the bottom of the deck
interface feature in the GPR measurement. The thickness is reported in centimeters.
The estimates are calibrated using the common-mid-point method.

• Bottom Steel Cover (BC): It is determined as the vertical distance between the bottom of
the deck and the bottom steel mat interface in the GPR measurement. The estimates
are computed and calibrated using the common-mid-point method.

2. Fuzzy Sets Condition Rating Modeling

While the “project level” analyses are related to an assessment of each individual
condition parameter shown in Figure 3 with details for each bridge deck span, it is the
“network-level” analysis that identifies the need for an overall condition score for a bridge
deck, as is the case of the NBI rating score, Table 1. Thus, the “network-level results are a
synthesis of all detailed information into a master list with overall average scores of such
condition parameters for all the spans of a bridge structure. The condition assessment for
each bridge deck structure can be computed using the breakdown of each scale into fuzzy
sets and the statistics of each distribution. While statistical analysis deal with randomness,
fuzzy models attempt to capture and quantify nonrandom imprecision [31]. Thus, the first
method to investigate the characteristics of a condition parameter across all structures is
to look at the histogram of all structures overlaid onto a single combined histogram plot.
Figure 6 shows the combined histogram for Surface Elevation Deviation as an example.
The reference histogram was identified from all the available data, shown in bold (red
color) in Figure 6a,b. With the reference distribution, the range is represented by the two
vertical bold lines at two standard deviations. The process of establishing a reference
histogram is repeated for each condition parameter of Figure 3. With the reference range,
the next step is to compute the percent area “abnormal” that provides a quantitative
measure of the variance for a bridge deck with uniform conditions. Figure 6b shows a
sample structure’s Surface Elevation Distribution (blue) and Reference Distribution (red)
plus the two standard deviation-based Reference Ranges. The resulting “Area Abnormal”
outside the Reference Range is shown as a cross-hatched area. This evaluation parameter is
computed for structures and for individual spans. The percent area abnormal is equal to:

Percent Area Abnormal = (Area Abnormal × Percent Sampling)/Total Area (1)
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A second parameter, variability, is computed using a sigmoidal function with an output
range of one to five for each structure and for individual spans to quantify the distribution
of condition components’ localized defects. The input value to the sigmoidal function is
a consistency index that is estimated based on the percentage of spans with distribution
spread that are significantly different from the overall one. Variability is an indication
of the spatial distribution of the pattern on the deck. High variability indicates multiple
concentrations of percent area abnormal on the bridge deck that may indicate localized
defects and deterioration. Low variability may indicate a pattern spread throughout
the bridge deck. This information may be used to select the most effective remediation
strategy. For individual spans, the consistency index is directly proportional to the percent
abnormal area.
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Figure 6. Distribution of surface elevation deviation: (a) superimposed over the distribution of all
bridge decks; (b) Range and Distribution (red) histogram for one bridge deck (blue).

Table 1. NBI Condition Rating Scale (adapted from 32).

Rating Definition Comments

9 excellent condition

8 very good condition no problems noted;

7 good condition some minor problems;

6 satisfactory condition structural elements show some minor deterioration;

5 fair condition all primary structural elements are sound but may have
minor section loss, cracking, spalling, or scour;

4 poor condition advanced section loss, deterioration, spalling, or scour;

3 serious condition
loss of section, deterioration of primary structural
elements. Fatigue cracks in steel or shear cracks in

concrete may be present;

2 critical condition

advanced deterioration of primary structural elements.
Fatigue cracks in steel or shear cracks in concrete may be

present, or scouring may have removed substructure
support. Unless closely monitored, it may be necessary to

close the bridge until corrective action is taken;
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Table 1. Cont.

Rating Definition Comments

1 “imminent” failure
condition

major deterioration or section loss present in critical
structural components or obvious vertical or horizontal

movement affecting structure stability. The bridge is
closed to traffic, but corrective action may put it back in

light service; and

0 failed condition out of service and beyond corrective action.

2.1. Fuzzy Sets Architecture

The architecture of fuzzy sets modeling considers the groups of condition parameters
that are physically related to the intermediary outputs. For example, the intermediary out-
put “Surface Condition” is a function of “Surface Elevation,” “Concrete Surface Dielectric,”
and, when applicable, “Overlay Condition”. Figure 3 shows the case that comprises five
components in this fuzzy modeling to produce an overall score and variability: surface
condition, rebar condition, below rebar condition, structural condition, and overall score
and variability. The parameters of the fuzzy sets establish the contribution of each condition
parameter and intermediary output. Each input and output parameter considered in this
fuzzy modeling is represented by membership functions, each of which corresponds to
a qualitative description of a quantitative level. The analysis process is automated, as
presented in Figure 4.

2.2. Fuzzy Sets and NBI Condition Rating Scale

The following case shows how data element #58 [32,33], the “Deck” condition rating
of the national bridge inventory (NBI) system, was modeled as a fuzzy set. The “Con-
dition” ratings of the bridge “Deck” provides details of the nature and severity of the
defect(s) and are estimated based on inspection reports and analysis of cores. The following
codes described in Table 1 provide the definition of the NBI condition ratings scales for
data element #58 “Deck” and were used for relating to the nine membership functions
(i.e., 1 to 9) in this fuzzy sets modeling.

A fuzzy set comprises three components: the fuzzy function of the fuzzy set and
the fuzzy associative memory that relates the data elements to the condition ratings—the
output fuzzy set, and if more details are needed, the defuzzification function of the output
fuzzy set. For the fuzzy set, i, of each GPR condition element, Ai*, there are m membership
functions. In this case, a triangular function was used, Figure 7, to define each membership
function i:

µAj(xij) =

{
1− |αj−xij|

cj
, αj − cj ≤ xij ≤ αj + cj

0, otherwise
(2)

where aj and cj are the center and half-width of the triangular function, respectively.
For the “Deck” condition rating function, nine membership functions are defined, in

Figure 4, as in the case of the nine condition categories in the NBI database scale, Table 1.
The centers are 1 through 9, with a half-width of one or less. Figure 7 is a membership
function centered at 5 with a width of 1.5. Each membership function is assigned a reference
name and a brief description, Table 2 and Figure 8, and are the same as the 9 NBI rating
scores of Table 1. In addition to their centers and widths, a label and description parameters
are assigned to each membership function. The values in Table 2 are the parameters for the
nine membership functions. For example, RE indicates a rating score of 9 for the “excellent”
condition, while RF represents a condition score of 5 for the “fair” condition, and so on,
for the output deck condition ratings. Figure 8 is a plot of the nine membership functions
superimposed. For the edge membership function, the end conditions are set to a constant
maximum value of one.
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Table 2. Parameters for membership functions of output fuzzy set OVERALL SCORE.

Function RI RC RS RP RF RO RG RV RE

Center 1 2 3 4 5 6 7 8 9

Width 2 2 2 2 1.5 1.5 1.5 1.5 2

Description Imminent Failure Critical Serious Poor Fair Satisfactory Good Very Good Excellent
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3. Example Results and Discussion

In order to demonstrate the proposed fuzzy set modeling developed in this study,
a case example of fuzzy computations is presented herein. In this example, two-input
(SURFACE CONDITION, SURFACE ELEVATION) and one-output (SURFACE) fuzzy sets
are considered, and the results are presented next in Tables 3–7 and Figures 9–11. In detail,
Table 3 and Figure 9 present the five membership functions for the SURFACE CONDITION
with center values and width for each one. Similarly, Table 4 and Figure 10 present the
membership function values for the SURFACE ELEVATION.

The fuzzy associative memory function establishes the correspondence between com-
binations of input fuzzy sets for the GPR condition parameters and the output fuzzy set,
with the SURFACE value equal to:

µout(X, y) =


k = FAM(X)

µA(X) = Min
i

[ µ A ∗ (xi)]

Min [ µ A(X), 1− |αk−y|
cj

]
αk − ck ≤ y ≤ αk + ck

(3)
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where k is the membership function output by the fuzzy associative memory for the input
values X and k corresponding to a condition rating; if there are multiple combinations due
to overlap, the final solution is the union of the output fuzzy sets for each combination
instead of using the minimum value. The case listed in Table 6 relates the input SURFACE
CONDITION and SURFACE ELEVATION DEVIATION to the output fuzzy-set SURFACE.
The corresponding membership functions for the output fuzzy-set SURFACE are presented
in Table 5 and Figure 11.

The final output value is computed as the centroid of the output fuzzy set:

yc =

∫
y µout(X, y) dy∫

y dy
(4)

The condition rating can be reported as the centroid value yc, or as the rating corre-
sponding to the membership function with the largest value at yc

Table 3. Parameters for membership functions of fuzzy set SURFACE CONDITION.

Function SCV SCG SCA SCM SCP

Center 5 12 20 34 45

Width 11 12 17 19 17

Description Very Good Good Acceptable Marginal Poor
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Table 5. Parameters for membership functions of output fuzzy set SURFACE.

Function SP SF SO SG SE

Center 1 3 5 7 9

Width 4 4 4 3 3

Description Poor Surface Fair Surface Satisfactory
Surface Good Surface Excellent

Surface
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Table 6. Fuzzy Associative Memory, input SURFACE CONDITION and SURFACE ELEVATION
DEVIATION, and output SURFACE.

SEV SEG SEA SEM SEP

SCV SE SG SO SO SF

SCG SE SG SO SO SF

SCA SG SG SO SF SP

SCM SG SO SO SF SP

SCP SO SO SF SP SP
Note: colors reflect membership functions of Figure 8.

In the numerical example included herein, the input condition parameters are pre-
sented using such membership functions and fuzzy associative memory. Given an input
of 13.5% for SURFACE CONDITION, the two non-zero membership values of 0.75 and
0.235 are computed using Equation (2) for function SCG and SCA, respectively, as shown
in Figure 12. This result shows that the input level is mixed between good and acceptable.
With 24.5% for SURFACE ELEVATION DEVIATION, the only non-zero membership value
of 0.643 is computed using equation 2 for function SEM, as shown in Figure 13. This input
level is marginal.

With the example fuzzy associative memory, two input fuzzy-set pairs are presented
(SCG/0.75, SEM/0.643) and (SCA/0.235, SEM/0.643), and the output fuzzy-set values are
SO/0.643 and SF/0.235, respectively, based on Equation (3) and as shown in Table 7. The
yellow highlighted cells of Table 7 represent the results of these two input fuzzy-set pairs
(i.e., Case 1 and 2), along with the output from Equation (3) function. Finally, the condition
rating is estimated using the defuzzification function in Equation (4). The final defuzzified
value for output SURFACE is 4.595 for this case example of one component of the fuzzy
model in Figure 14.
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Table 7. Estimation of SURFACE using input values and Equation (3).

Case 1: (SCG, SEM) SEV SEG SEA SEM/0.643 SEP
SCV SE SG SO SO SF

SCG/0.75 SE SG SO SO/0.643 SF
SCA SG SG SO SF SP
SCM SG SO SO SF SP
SCP SO SO SF SP SP

Case 2: (SCA, SEM) SEV SEG SEA SEM/0.643 SEP
SCV SE SG SO SO SF
SCG SE SG SO SO SF

SCA/0.235 SG SG SO SF/0.235 SP
SCM SG SO SO SF SP
SCP SO SO SF SP SP

Note: colors reflect membership functions of Figure 8; yellow highlighted cells represent results of the two input
fuzzy-set pairs (i.e., Case 1 and 2), along with the output from Equation (3) function.
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The analyses of the database are automated, as shown in Figure 4, and are summarized
in a master list. Each structure has one record that includes results for all spans and
individual spans. The overall score and variability estimated with the fuzzy model and
the percentage area abnormal and variability computed for each selected GPR condition
parameter are included in the record. Table 8 shows a subset sample of the master list for
two of the condition parameters and the overall score. Note that the color coding of each
entry provides a quick visual reference of the scores and levels of each parameter. Red
is worse; green is better. Colors in-between are indicative of a gradual change from such
conditions. A discussion section on how this information can be used follows.

Table 8. Master list with overall scores and variability, percent area abnormal and variability, for two
condition parameters.

Description Span
Number

Overall
Score

Overall
Variability

CSC
Surface Condition

SED
Surface Elevation Deviation

% Area Abnormal Variability % Area Abnormal Variability
Structure 1 0 4.374 2.437 3.016 4.969 31.864 1.031

Structure 1 Span 1 4.371 1.516 7.987 4.210 32.242 1.132
Structure 1 Span 2 4.000 1.181 2.980 1.027 35.908 1.049
Structure 1 Span 3 4.345 1.122 0.897 1.027 32.151 1.027
Structure 1 Span 4 5.000 1.091 1.749 1.300 24.135 1.048

Structure 2 0 3.000 2.156 31.768 3.000 38.892 1.031
Structure 2 Span 1 3.000 1.187 28.409 1.027 37.235 1.027
Structure 2 Span 2 3.000 1.053 30.888 1.027 39.395 1.048
Structure 2 Span 3 3.000 1.568 28.696 4.380 38.431 1.027
Structure 2 Span 4 3.000 1.200 44.706 1.027 41.407 1.048

Note: color variations are indicative of gradual change between the worst (red color) and better (green) conditions.
Yellow, orange, light green represent gradual variation in conditions between worst (red color) and better
(green) conditions.

While the key components of the fuzzy set analysis were presented with bridge deck
case examples, summary results for a select subset group of 169 bridges are summarized
next. First, the overall scores for these structures are plotted on a bar chart and in a
histogram in Figure 15. The bar chart, Figure 15b, shows the relative variance of the
overall score among the structures and individual spans. The histogram shows the relative
distribution of the overall scores. In this sample, the dominant score is 5, which describes
the condition as “fair.” Less than ten percent of the bridges are in “serious” condition.

Second, the information in the master database of all structures can be used to compare
individual structures. Table 9 lists the overall scores for two structures and some of the
parameters used in the fuzzy-set modeling to estimate them. In this case study, the magni-
tudes reported for all spans and each individual span are consistent. Also, the variability
for this example showed no significant localized inconsistency. Thus, the comparison
focused on the magnitudes of each selected condition parameter. In the last column labeled
“Global Median”, the median values for all structures and spans show that one structure
is close to the average condition and the other is lower, confirmed by the overall scores.
Such analyses can eventually assist highway engineers in the interpretation of the overall
condition assessment of the bridges in the state. When repeated measurements are taken
every few years apart, the rate of deterioration and, thus, the impact of maintenance and
rehabilitation actions can be analyzed and reported based on such analysis.

While the NBI condition rating categories were used for defining this fuzzy sets
modeling, comparison between the two rating scores was not considered since (i) the
condition data obtained from the SF-GPR surveys are based on objective evaluation and
with EA signal response measurements throughout the bridge deck thickness. As reported
previously [27], such measurements are very accurate in relation to the “ground true”
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conditions since they are based on enhanced data collection protocols and extended post-
processing analysis algorithms developed and implemented in SF-GPR, while (ii) the
condition scores reported in the NBI database are primarily based on subjective and visual
ratings, often reflecting a single or multiple state inspector(s) training and judgment over
time; and lastly, (iii) lag in timing between the SF-GPR and state inspector’s surveys on
the same bridges was in some cases as far as 2.5 to 5 years. As indicated earlier, based on
feedback from inspectors and bridge engineers, it is well-accepted that the reported NBI
deck condition values can be within two levels of the scale from the actual condition of the
deck [30]. For this reason, there is a need for objective measurements (i.e., based on SF-GPR
in this case) coupled with a condition rating approach (i.e., in this case, the proposed fuzzy
set modeling presented herein). Consequently, such condition rating scores better reflect
the actual “ground true” field conditions since they are based on analysis from objective
measurements that have already been compared to the ground true conditions [28,29].
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Table 9. Sample of network-level information from master list for two structures.

Structure Example 1 Example 2 Global

Span All 1 2 3 All 1 2 3 Median

Overall Score 5.00 5.00 5.00 5.00 3.00 3.00 3.00 3.00 5.00

Surface Condition 7.4 5.4 8.4 7.0 28.9 34.4 26.5 28.1 14.6

Surface Elevation Deviation 21.2 19.5 19.9 25.5 36.1 38.5 34.8 36.2 15.5

Concrete Cover
Deviation 13.0 10.2 16.4 8.2 18.9 13.1 20.7 21.1 17.6

Bottom Surface
Deviation 21.1 17.2 21.8 23.0 10.6 10.3 10.9 10.3 28.4

Condition at Top Rebar 23.9 19.6 26.0 22.8 9.4 10.2 9.4 8.8 31.4

Condition Above Top Rebar 26.2 24.1 27.6 25.0 7.2 7.5 7.2 6.8 26.0

Condition Between Rebar 6.4 6.2 6.6 6.1 13.3 12.6 13.2 14.1 9.6

4. Summary and Conclusions

SF-GPR provides significant enhancement of bridge deck condition analysis, yet it
involves higher complexity in post-processing in regard to other GPR alternatives. Recently
an SF-GPR-based system was implemented in Maryland with advanced post-processing
algorithms. This system is currently adopted for routine bridge deck surveys. This study
explored the development of the bridge deck condition rating methodology using fuzzy
sets modeling. The proposed approach defines the condition state from the SF-GPR data
using bridge deck physical and condition parameters characterizing “surface condition,”
“structural condition,” and the combined “overall bridge deck score.” The proposed novel
approach of using fuzzy sets modeling for defining bridge deck condition state was based
on nine membership functions reflecting the rating scores reported in NBI. In the proposed
fuzzy sets modeling, a second parameter, variability, was introduced to quantify the
distribution of the condition parameters in regard to localized defects within a bridge
deck or a bridge deck span. In other words, such modeling provides the opportunity
to incorporate the spatial distribution of condition patterns within a bridge deck. The
definition and interworks of the fuzzy set modeling developed in this study were presented
with actual case studies from the database of bridges in the state. These fuzzy sets analyses
were integrated into the analysis pipeline of the SF-GPR system in order to provide the
current condition assessment rating of individual bridge deck spans, as well as the overall
condition rating of the bridge deck structure. The proposed rating approach was developed
and implemented for bridge structures in the state.

The developed novel fuzzy sets condition rating approach is able to provide a condi-
tion rating of each structure and/or span, as well as comparatively among all surveyed
structures in the state. When combined with other sources of information, such as envi-
ronmental data (annual temperature ranges, freeze cycles, annual rainfall, and snowfall
precipitation), traffic volume, and cumulative Equivalent Single Axle Load (ESAL) history,
the highway agency can use the analysis to study the factors associated with faster dete-
rioration for some bridge decks. Deck materials and designs may be included as well to
investigate their actual performance under a set of given/expected conditions. Prediction
models for repair, remediation, or replacement of a bridge deck may be based on the
analysis of all bridge decks to improve the criteria for prioritizing, scheduling, or selecting a
structure that may need to be more closely monitored because it is likely to deteriorate at a
faster rate. Thus, the developed condition rating modeling approach has great promise for
multiple purposes in the future and as more bridge SF-GPR surveys are added to the master
database for the state. The transferability of this modeling can be explored and validated in
other regions where similar bridge deck condition survey practices are considered.
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