
Citation: Wang, Y.; Li, J.; Zhao, W.;

Han, Z.; Zhao, H.; Wang, L.; He, X.

N-STGAT: Spatio-Temporal Graph

Neural Network Based Network

Intrusion Detection for Near-Earth

Remote Sensing. Remote Sens. 2023,

15, 3611. https://doi.org/10.3390/

rs15143611

Academic Editors: Beril

Kallfelz Sirmacek and Ning Li

Received: 11 May 2023

Revised: 13 July 2023

Accepted: 17 July 2023

Published: 20 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing

Article

N-STGAT: Spatio-Temporal Graph Neural Network Based
Network Intrusion Detection for Near-Earth Remote Sensing
Yalu Wang 1 , Jie Li 2, Wei Zhao 3,*, Zhijie Han 4, Hang Zhao 5, Lei Wang 6 and Xin He 4

1 School of Computer and Information Engineering, Henan University, Kaifeng 475004, China;
104752200075@henu.edu.cn

2 School of Intelligent Engineering, Zhengzhou University of Aeronautics, Zhengzhou 450046, China;
jsjt9@henu.edu.cn

3 Miami College, Henan University, Kaifeng 475004, China
4 School of Software, Henan University, Kaifeng 475004, China; hanzj@henu.edu.cn (Z.H.);

hexin@henu.edu.cn (X.H.)
5 State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng 475004, China;

hannie.zhao@vip.henu.edu.cn
6 College of Agriculture, Henan University, Kaifeng 475004, China; wl_mail@henu.edu.cn
* Correspondence: henuzhao@vip.henu.edu.cn

Abstract: With the rapid development of the Internet of Things (IoT)-based near-Earth remote
sensing technology, the problem of network intrusion for near-Earth remote sensing systems has
become more complex and large-scale. Therefore, seeking an intelligent, automated, and robust
network intrusion detection method is essential. Many researchers have researched network intrusion
detection methods, such as traditional feature-based and machine learning methods. In recent years,
network intrusion detection methods based on graph neural networks (GNNs) have been proposed.
However, there are still some practical issues with these methods. For example, they have not taken
into consideration the characteristics of near-Earth remote sensing systems, the state of the nodes,
and the temporal features. Therefore, this article analyzes the factors of existing near-Earth remote
sensing systems and proposes a spatio-temporal graph attention network (N-STGAT) that considers
the state of nodes and applies them to the network intrusion detection of near-Earth remote sensing
systems. Finally, the proposed method in this article is validated using the latest flow-based datasets
NF-BoT-IoT-v2 and NF-ToN-IoT-v2. The results demonstrate that the binary classification accuracy
for network intrusion detection exceeds 99%, while the multi-classification accuracy exceeds 93%.
These findings provide substantial evidence that the proposed method outperforms existing intrusion
detection techniques.

Keywords: near-Earth remote sensing; network intrusion; temporal features; spatio-temporal graph
attention network

1. Introduction

Remote sensing technology has undergone rapid development in recent years. High-
resolution satellite remote sensing technology has provided convenience for meteorology,
terrain surveying, military, agriculture, and other fields [1,2]. However, due to distance and
equipment constraints, satellite remote sensing is restricted in some remote sensing fields
that necessitate ultra-high precision and multimodal information [3]. To address these
issues, the development of the Internet of Things (IoT)-based near-Earth remote sensing
technology has made significant progress. Near-Earth remote sensing technology plays
a crucial role in agriculture analysis, mining, water monitoring [4], and other fields. The
near-Earth remote sensing technology consists of a vertical structure, as shown in Figure 1,
which includes a large number of IoT devices [5], such as weather balloons, airplanes,
drones, and sensors. These devices are connected to the base station via an IoT network and

Remote Sens. 2023, 15, 3611. https://doi.org/10.3390/rs15143611 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15143611
https://doi.org/10.3390/rs15143611
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-3823-6230
https://doi.org/10.3390/rs15143611
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15143611?type=check_update&version=2

Remote Sens. 2023, 15, 3611 2 of 20

collect various remote sensing information, providing hardware support for subsequent
data analysis. Figure 2 shows the deployment of near-Earth remote sensing devices for
monitoring crops in farmland.

Remote Sens. 2023, 15, x FOR PEER REVIEW 2 of 20

network and collect various remote sensing information, providing hardware support for
subsequent data analysis. Figure 2 shows the deployment of near-Earth remote sensing
devices for monitoring crops in farmland.

Figure 1. Schematic diagram of near-ground remote sensing system based on the Internet of Things.

The deployment of a large number of Internet of Things (IoT) devices is required for
the near-ground remote sensing system, and most of these devices are outdoors, exposed
to the elements, and unsupervised, which makes them vulnerable to physical or network-
based intrusions. Once a remote sensing device is compromised, it may send incorrect
data or attack other devices, causing problems for the near-Earth remote sensing system.
Therefore, it is essential to deploy a network intrusion detection system designed explic-
itly for the near-ground remote sensing system.

Figure 2. Example of near-ground remote sensing technology for agriculture.

A network intrusion detection system is a system that can quickly respond when an
IoT device is invaded, and at the core, there is a network intrusion detection method.
There are mainly two network intrusion detection methods: feature-based and machine
learning-based [6,7]. Feature-based detection methods require pre-set attack features, and

high altitude

low altitude

groundbase station

Figure 1. Schematic diagram of near-ground remote sensing system based on the Internet of Things.

The deployment of a large number of Internet of Things (IoT) devices is required for
the near-ground remote sensing system, and most of these devices are outdoors, exposed
to the elements, and unsupervised, which makes them vulnerable to physical or network-
based intrusions. Once a remote sensing device is compromised, it may send incorrect
data or attack other devices, causing problems for the near-Earth remote sensing system.
Therefore, it is essential to deploy a network intrusion detection system designed explicitly
for the near-ground remote sensing system.

Remote Sens. 2023, 15, x FOR PEER REVIEW 2 of 20

network and collect various remote sensing information, providing hardware support for
subsequent data analysis. Figure 2 shows the deployment of near-Earth remote sensing
devices for monitoring crops in farmland.

Figure 1. Schematic diagram of near-ground remote sensing system based on the Internet of Things.

The deployment of a large number of Internet of Things (IoT) devices is required for
the near-ground remote sensing system, and most of these devices are outdoors, exposed
to the elements, and unsupervised, which makes them vulnerable to physical or network-
based intrusions. Once a remote sensing device is compromised, it may send incorrect
data or attack other devices, causing problems for the near-Earth remote sensing system.
Therefore, it is essential to deploy a network intrusion detection system designed explic-
itly for the near-ground remote sensing system.

Figure 2. Example of near-ground remote sensing technology for agriculture.

A network intrusion detection system is a system that can quickly respond when an
IoT device is invaded, and at the core, there is a network intrusion detection method.
There are mainly two network intrusion detection methods: feature-based and machine
learning-based [6,7]. Feature-based detection methods require pre-set attack features, and

high altitude

low altitude

groundbase station

Figure 2. Example of near-ground remote sensing technology for agriculture.

A network intrusion detection system is a system that can quickly respond when
an IoT device is invaded, and at the core, there is a network intrusion detection method.
There are mainly two network intrusion detection methods: feature-based and machine

Remote Sens. 2023, 15, 3611 3 of 20

learning-based [6,7]. Feature-based detection methods require pre-set attack features, and
the captured data packets are compared with those features. The accuracy of this detection
method depends entirely on the set of features, and this method does not/will not respond
well to new attacks. Machine learning-based detection methods have been enhanced
with the development and application of machine learning in recent years. However,
these methods directly use data flow information for identification [8–12]. Although these
methods can effectively solve the problem of feature dependence and are good at detecting
new attacks, the identification accuracy is not high, and they are challenging to apply to
practical networks. Recently, researchers have studied the unique subfield of machine
learning, graph neural networks (GNNs), and proposed intrusion detection methods based
on GNNs [7,13,14]. However, these methods have low identification accuracy in multi-
classification tasks and cannot be effectively applied to near-Earth remote sensing systems.

Network intrusion behaviors exhibit several characteristics. When a node engages in
an attack, its various parameters become abnormal. For example, during a DOS attack, the
node’s network connections and memory usage may significantly increase. Additionally,
there is a temporal correlation in the node’s attack behavior, meaning that if the current
data flow of a node is an attack, there is a high likelihood that subsequent data flows will
also be attacks. Moreover, when two nodes have similar parameter values, their data flow
behaviors may be similar. Based on these observations, this article takes into account node
states, the temporal relationships of data flow, and the similarity between data flows among
nodes in the intrusion detection process.

Additionally, devices such as weather balloons, airplanes, and drones have their
operating systems and a near-Earth sensing system composed of these devices so they
can provide additional information. Therefore, this article considers the characteristics
of the near-Earth remote sensing system and proposes a spatio-temporal graph attention
network (N-STGAT) that considers the node status, applying spatio-temporal graph neural
networks (STGNN) [15] to network intrusion detection in the near-Earth remote sensing
system. To the best of our knowledge, this is the first time that spatio-temporal graph
neural networks have been applied to network intrusion detection in the near-Earth remote
sensing system.

The contributions of this article are as follows:

• Expanding the latest IoT network intrusion detection dataset by incorporating the
status of the node, which better reflects the situation of the near-Earth remote sensing
system and enables better evaluation of the proposed method.

• This article proposes for the first time the application of spatio-temporal graph neural
networks to network intrusion detection in near-Earth remote sensing systems and
further improves the method to better align with the characteristics of near-Earth
remote sensing systems, providing a new solution for network intrusion detection.

• The proposed method is validated by the extended dataset and compared with some
recently effective IoT network intrusion detection methods. The results show that the
proposed method outperforms other methods.

The other chapters of this article are as follows: Section 2 introduces the research
from various scholars in the field of network intrusion detection methods. Section 3 briefly
introduces some information about GNN, LSTM and STGNN and then explains how to
extend the latest network intrusion detection dataset. The proposed network intrusion
detection system is described in great depth in Section 4. The experimental procedures and
findings are presented in Section 5. The last Section sums up everything.

2. Related Work

In recent years, many researchers have developed machine learning-based methods
for network intrusion detection. However, most of these methods directly use data flow
information for identification.

Casas et al. [16]. proposed an unsupervised network intrusion detection system named
UNIDS, which employs a subspace clustering-based and multi-evidence accumulation-

Remote Sens. 2023, 15, 3611 4 of 20

based unsupervised outlier detection method to detect unknown network attacks. It does
not require using any features, labeled traffic, or training to detect various types of network
attacks, such as DoS/DDoS, probing attacks, worm propagation, buffer overflow, illegal
access to network resources, etc. The proposed method’s effectiveness was demonstrated
through experiments using KDD99 and actual traffic data from two operational networks.
However, the KDD99 dataset is quite old and may not reflect the attack characteristics
present in modern IoT networks.

In [9], authors proposed a hybrid anomaly mitigation framework for IoT using fog comput-
ing to ensure faster and more accurate anomaly detection. The framework employs signature-
based and anomaly-based detection methodologies for the two modules. The BoT-IoT dataset
was used for experimentation, and the effectiveness of the proposed method was ultimately
validated. Results showed an accuracy of 99% in binary and multi-class classification problems,
with at least 97% average recall, average precision, and average F1 score.

In [17], authors proposed a federated learning-based intrusion detection system,
named FELIDS, for securing agricultural-IoT infrastructures. The FELIDS system employs
three deep learning classifiers: deep neural networks, convolutional neural networks, and
recurrent neural networks. Furthermore, impressive classification results were achieved by
the CSE-CIC-IDS2018, MQTTset, and InSDN datasets. The method proposed in this article
performs well on the CSE-CIC-IDS2018 and InSDN datasets, but it does not perform well
on the MQTTset dataset, indicating a lack of generality in the method.

Ferrag, M.A et al. [18] analyzed the characteristics of Agriculture 4.0 and expressed
their own views on the existing device security issues associated with it. They proposed a
deep learning-based intrusion detection system for DDoS attacks based on three models:
convolutional neural networks, deep neural networks, and recurrent neural networks. Each
model’s performance is studied within two classification types (binary and multiclass)
using two new real traffic datasets, namely, the CIC-DDoS2019 dataset and the TON_IoT
dataset, which contain different types of DDoS attacks. The author’s research indicates
that the three models, namely, convolutional neural networks, deep neural networks, and
recurrent neural networks, have lower recognition rates on certain datasets, particularly for
multi-classification problems. Therefore, the three methods are not applicable to real-world
applications based on the findings presented in this article.

In [19], the researchers analyzed the relevant characteristics of the agricultural IoT and
developed a framework for detecting and classifying network intrusions in agricultural IoT.
In this framework, the NSL KDD data set is used as an input data set. In preprocessing the
NSL-KDD data set, all symbolic features are first converted to numeric features. Feature
extraction is performed using principal component analysis. Then, machine learning
algorithms such as support vector machine, linear regression, and random forest are used
to classify preprocessed datasets. The final results indicated that some traditional machine
learning algorithms achieved an accuracy of only 78%. Therefore, these methods are not
applicable in practical scenarios.

The five methods mentioned above use traditional machine learning techniques for
network intrusion detection, such as decision trees, MDAE, LSTM, random forests, and
XGBoost. These methods directly train on the dataset without considering the graph
topology information, resulting in each training data being relatively singular and unable
to fully explore the information in each data. Therefore, these methods have limited
capability in detecting complex network attacks, such as Botnet attacks [20], distributed
port scans [21], or DNS amplification attacks [22], which require a more global network
view and traffic.

Leichtnam et al. [23] introduced a unique graph representation called security objects’
graphs that linked events of different kinds and allowed for a detailed description of the
analyzed activities. They proposed an unsupervised learning approach based on auto-
encoders to detect anomalies in these graphs. The authors hypothesized that auto-encoders
could build a relevant model of the usual situation based on the rich vision provided by
security objects’ graphs. To validate their approach, they applied it to the CICIDS2017

Remote Sens. 2023, 15, 3611 5 of 20

dataset and showed that their unsupervised method performed as well as, or even better
than, many supervised approaches.

Due to the excellent performance of GNN on graph-structured data and the fact that a
network is a natural graph, in recent years, some scholars have applied GNN to intrusion
detection systems.

Wai Weng Lo et al. [6] proposed the E-GraphSAGE architecture based on GraphSAGE,
which allows for capturing the edge features and topology information of the graph for
network intrusion detection in the Internet of Things. Experiments on the four latest
NIDS benchmark datasets show that the method has achieved perfect results for binary
classification problems but not multi-classification problems. When constructing the graph,
this method uses the IP address and port of the network flow as nodes and the network
flow as edges. When this method uses GraphSAGE for neighborhood aggregation, it may
cause some neighborhoods to be aggregated multiple times and the whole neighborhood
to be aggregated, which will affect the identification accuracy.

Cheng Q et al. [13] proposed an Alert-GCN framework that uses graph convolutional
networks (GCN) to associate alerts coming from the same attack for the prediction of
the alert system. Then, the DARPA99 data set was adopted for experiments, achieving
good results in the experiment. However, this method used a custom similarity method to
define the edges in the graph when constructing an alarm-related graph, which will cause
the neighbors of any node in the graph to be highly similar to themselves. This article
recognizes that a graph constructed by this method will cause overfitting in the graph
neural network.

Evan Caville et al. [14] proposed an intrusion and anomaly detection method called
Anomal-E, based on E-GraphSAGE, which utilized edge features and graph topology in a
self-supervised process. Then, they validated the proposed method using the NF-UNSW-
NB15-v2 and NF-CSE-CIC-IDS2018-v2 datasets. Ultimately, they achieved results with at least
97.5% accuracy and at least 92% F1-Score. Additionally, the article was the first to apply a
self-supervised graph neural network solution to network intrusion detection. Although this
method applies graph neural networks to network intrusion detection, it does not consider
the characteristics of the remote sensing system, node status, and temporal information.

Due to the similarities between network flow prediction considering time and space
and traffic flow prediction, this article has drawn significant inspiration from the relevant
work in traffic flow prediction.

In [24], the authors proposed a new deep spatio-temporal neural network called
DHSTNet to overcome the challenges posed by spatial relationships between regions and
the dynamic temporal relationships between periods. DHSTNet was explicitly designed to
predict the traffic volume of pedestrian flow. After extensive experiments on two real-world
datasets, they demonstrated the advantage of this proposed model over the compared
baseline methods. Moreover, to verify the generalization of the proposed model, the
authors applied the proposed attention-based mechanism with a previously proposed
model, resulting in a hybrid approach known as AttDHSTNet, to forecast short-term crowd
flows. The experimental results also confirmed improved performance.

Ali A et al. [25] proposed a unified dynamic deep spatio-temporal neural network model
based on convolutional neural networks and long short-term memory, termed “DHSTNet” to
predict crowd flows in every city region simultaneously. Moreover, to verify the generalization
and scalability of the proposed model, the authors applied a Graph Convolutional Network
(GCN) based on Long Short Term Memory (LSTM) with the previously published model,
termed GCN-DHSTNet. The GCN-DHSTNet model not only depicted the spatio-temporal
dependencies but also revealed the influence of different time granularity, which were recent,
daily, weekly periodicity, and external properties, respectively. Finally, a fully connected
neural network was utilized to fuse the spatio-temporal features and external properties
together. Using two different real-world traffic datasets, the evaluation suggests that the
proposed GCN-DHSTNet method is approximately 7.9–27.2% and 11.2–11.9% better than the
AAtt-DHSTNet method in terms of RMSE and MAPE metrics, respectively.

Remote Sens. 2023, 15, 3611 6 of 20

The two articles mentioned above addressed the complex combination of time and
space in traffic flow prediction. They provided significant inspiration for us in tackling the
task of network flow recognition. Therefore, this article combines GAT and LSTM to better
utilize the spatial information of the graph and the temporal information of the data flow,
increasing the reliability of network intrusion detection.

3. Background

This article argues that when identifying data flows, the state of the nodes should be
considered simultaneously. When a network attack occurs, the state of the attacking node
is significantly different from that of a normal node. Therefore, considering the state of the
nodes is very beneficial for identifying attacks. In addition, identifying attacks should also
consider the topological relationship between data flows and the temporal information of
data flows.

Intrusion detection systems are generally deployed at the entry point in order to detect
network intrusions. However, with the development of IoT, more and more networks are
structured as shown in Figure 3, which this article refers to as an “IoT domain”. Such
IoT domains are increasingly prevalent in industrial IoT systems, such as those used by
companies such as Apple, Huawei, and Xiaomi. Most of the devices in an IoT domain are
monitored by a central server, which can obtain information about the status of the nodes.
This situation is similar to a ground-based remote sensing system based on the IoT. As
the situation, where certain nodes within a domain are controlled to attack other nodes,
becomes more and more common, intrusion detection systems need to be deployed at the
exit points of the domain to detect attacks on nodes.

Remote Sens. 2023, 15, x FOR PEER REVIEW 6 of 20

respectively. Finally, a fully connected neural network was utilized to fuse the spatio-tem-
poral features and external properties together. Using two different real-world traffic da-
tasets, the evaluation suggests that the proposed GCN-DHSTNet method is approxi-
mately 7.9–27.2% and 11.2–11.9% better than the AAtt-DHSTNet method in terms of
RMSE and MAPE metrics, respectively.

The two articles mentioned above addressed the complex combination of time and
space in traffic flow prediction. They provided significant inspiration for us in tackling the
task of network flow recognition. Therefore, this article combines GAT and LSTM to better
utilize the spatial information of the graph and the temporal information of the data flow,
increasing the reliability of network intrusion detection.

3. Background
This article argues that when identifying data flows, the state of the nodes should be

considered simultaneously. When a network attack occurs, the state of the attacking node
is significantly different from that of a normal node. Therefore, considering the state of
the nodes is very beneficial for identifying attacks. In addition, identifying attacks should
also consider the topological relationship between data flows and the temporal infor-
mation of data flows.

Intrusion detection systems are generally deployed at the entry point in order to de-
tect network intrusions. However, with the development of IoT, more and more networks
are structured as shown in Figure 3, which this article refers to as an “IoT domain”. Such
IoT domains are increasingly prevalent in industrial IoT systems, such as those used by
companies such as Apple, Huawei, and Xiaomi. Most of the devices in an IoT domain are
monitored by a central server, which can obtain information about the status of the nodes.
This situation is similar to a ground-based remote sensing system based on the IoT. As the
situation, where certain nodes within a domain are controlled to attack other nodes, be-
comes more and more common, intrusion detection systems need to be deployed at the
exit points of the domain to detect attacks on nodes.

Figure 3. Characteristics of IoT structure.

Data center

Internet of Vehicles Home IoT

Medical IoT Remote sensing IoT

Figure 3. Characteristics of IoT structure.

3.1. GNN and LSTM
3.1.1. GNN

GNNs are a new type of neural network specifically designed to handle the properties
of graphs. In recent years, GNNs have been widely applied in graph processing [26], net-
working [27], intelligent transportation [28], recommendation systems [29], and distributed
computing [30], among other fields. A key feature of GNNs is that they can process non-
Euclidean data and utilize the topological structure data through message passing. When

Remote Sens. 2023, 15, 3611 7 of 20

identifying nodes in a graph, GNNs can aggregate the data features of neighboring nodes,
allowing them to influence each other [31]. This process is called embeddings [32]. There are
many different types of GNNs, among which Graph Attention Network (GAT) [33], Graph
Convolutional Network (GCN) [34], and GraphSAGE [35] are top-rated among researchers.

GAT (Graph Attention Network) is a type of graph neural network that incorporates an
attention mechanism to aggregate neighborhood nodes by computing attention coefficients.
This enables GAT to capture the influence of different nodes within the neighborhood. GAT
has two core components: computing the attention coefficients (αij) and the hidden layer

features (
→
v
′
i) of nodes.

GAT is a type of graph neural network that incorporates an attention mechanism to ag-
gregate neighborhood nodes by computing attention coefficients. This enables GAT to capture
the influence of different nodes within the neighborhood. GAT has two core components:

computing the attention coefficients (αij) and the hidden layer features (
→
v
′
i) of nodes.

The calculation process for the attention coefficients (αij) between neighboring nodes
is shown in Figure 4a. The original GAT article mentions two types of neighborhoods:
node neighbors (nodes directly connected to the current node) and entire neighborhoods
(all nodes). In this article, we use node neighbors as the neighborhood to prevent the
aggregation of a large amount of neighborhood node information that may cause the
features to become blurry. Using node neighbors can also reduce time and space complexity.
The calculation formula is

αij =
exp(LeakyReLU(

→
a

T[
W
→
v i

∣∣∣∣∣∣W→v j

]
))

∑k∈Ni
exp(LeakyReLU(

→
a

T[
W
→
v i

∣∣∣∣∣∣W→v k

]
))

(1)

a is a single-layer feedforward neural network, which is parameterized by a weight vector
(
→
a ∈ R2F′), W ∈ R2F′×F is a shared linear transformation matrix, LeakyReLU is a nonlinear

function, and Ni is the neighbor node of node i. The equation finally uses a so f tmax
function for normalization.

Remote Sens. 2023, 15, x FOR PEER REVIEW 7 of 20

3.1. GNN and LSTM
3.1.1. GNN

GNNs are a new type of neural network specifically designed to handle the proper-
ties of graphs. In recent years, GNNs have been widely applied in graph processing [26],
networking [27], intelligent transportation [28], recommendation systems [29], and dis-
tributed computing [30], among other fields. A key feature of GNNs is that they can pro-
cess non-Euclidean data and utilize the topological structure data through message pass-
ing. When identifying nodes in a graph, GNNs can aggregate the data features of neigh-
boring nodes, allowing them to influence each other [31]. This process is called embed-
dings [32]. There are many different types of GNNs, among which Graph Attention Net-
work (GAT) [33], Graph Convolutional Network (GCN) [34], and GraphSAGE [35] are
top-rated among researchers.

GAT (Graph Attention Network) is a type of graph neural network that incorporates
an attention mechanism to aggregate neighborhood nodes by computing attention coeffi-
cients. This enables GAT to capture the influence of different nodes within the neighbor-
hood. GAT has two core components: computing the attention coefficients (𝛼) and the
hidden layer features (�⃗�) of nodes.

GAT is a type of graph neural network that incorporates an attention mechanism to
aggregate neighborhood nodes by computing attention coefficients. This enables GAT to
capture the influence of different nodes within the neighborhood. GAT has two core com-
ponents: computing the attention coefficients (𝛼) and the hidden layer features (�⃗�) of
nodes.

The calculation process for the attention coefficients (𝛼) between neighboring nodes
is shown in Figure 4a. The original GAT article mentions two types of neighborhoods:
node neighbors (nodes directly connected to the current node) and entire neighborhoods
(all nodes). In this article, we use node neighbors as the neighborhood to prevent the ag-
gregation of a large amount of neighborhood node information that may cause the fea-
tures to become blurry. Using node neighbors can also reduce time and space complexity.
The calculation formula is 𝛼 = exp (LeakyReLU �⃗� 𝑾�⃗� ||𝑾�⃗�)∑ exp (LeakyReLU(�⃗� [𝑾�⃗� ||𝑾�⃗�))∈𝒩 (1)𝑎 is a single-layer feedforward neural network, which is parameterized by a weight vector
(�⃗� ∈ ℝ), 𝑾 ∈ ℝ × is a shared linear transformation matrix, LeakyReLU is a nonlin-
ear function, and 𝒩 is the neighbor node of node 𝑖. The equation finally uses a 𝑠𝑜𝑓𝑡𝑚𝑎𝑥
function for normalization.

(a) (b)

Figure 4. (a) The calculation process of attention coefficient; (b) the calculation process of hidden
layer features.

W iv
 W jv

a

so
ftm

ax
j

𝛼𝑖𝑗

1v

2v

3v

4v

5v

6v

1v′

12α

13α

14α 15α

16
α

concat/avg

11α

Figure 4. (a) The calculation process of attention coefficient; (b) the calculation process of hidden
layer features.

The calculation process of hidden layer features (
→
v
′
i) is shown in Figure 4b. The

calculation formula is
→
v
′
i = σ(

1
K

K

∑
k=1

∑
j∈Ni

αk
ijW

k→v j) (2)

Remote Sens. 2023, 15, 3611 8 of 20

σ is a nonlinear function. Since GAT uses a multi-head attention mechanism, K represents
the number of attention heads.

3.1.2. LSTM

LSTM is a special type of recurrent neural network (RNN) architecture used for
processing and predicting sequence data [36]. It uses gate mechanisms to better capture
long-term dependencies in time series data, making it better suited for handling such data.
An LSTM network consists of a series of LSTM cells, each containing an input gate, a forget
gate, and an output gate. The input gate and forget gate are used to control the flow of
information, with the input gate determining which information should be updated in the
memory cell and the forget gate deciding which information should be discarded from the
memory cell. The output gate determines how much influence the memory cell should
have on the current output. The core cell unit of LSTM is shown in Figure 5.

Remote Sens. 2023, 15, x FOR PEER REVIEW 8 of 20

The calculation process of hidden layer features (�⃗�) is shown in Figure 4b. The cal-
culation formula is

�⃗� = 𝜎(1𝐾 𝛼 W �⃗�∈𝒩) (2)

𝜎 is a nonlinear function. Since GAT uses a multi-head attention mechanism, K represents
the number of attention heads.

3.1.2. LSTM
LSTM is a special type of recurrent neural network (RNN) architecture used for pro-

cessing and predicting sequence data [36]. It uses gate mechanisms to better capture long-
term dependencies in time series data, making it better suited for handling such data. An
LSTM network consists of a series of LSTM cells, each containing an input gate, a forget
gate, and an output gate. The input gate and forget gate are used to control the flow of
information, with the input gate determining which information should be updated in the
memory cell and the forget gate deciding which information should be discarded from
the memory cell. The output gate determines how much influence the memory cell should
have on the current output. The core cell unit of LSTM is shown in Figure 5.

tanh

Sig Sig tanh Sig

Χ +

Χ Χ

tr

tx

𝐶𝑡−1

ℎ𝑡−1

𝐶𝑡

ℎ𝑡

Figure 5. The core cell unit of LSTM.

3.1.3. STGNN
STGNN is a class of neural network models specifically designed to analyze data

with both spatial and temporal dependencies. They combine the power of GNNs with the
ability to model temporal dynamics, making them well-suited for tasks involving dy-
namic graphs or spatiotemporal data, such as behavior recognition, traffic prediction
[25,37], and human trajectory prediction [15].

Traditional GNNs operate on static graphs, treating each node and its connections
independently without considering the temporal aspect. However, in many real-world
scenarios, data evolves over time, and the relationships between entities are not fixed but
change dynamically. STGNNs address this limitation by incorporating both spatial and
temporal information, enabling them to capture the evolving dynamics in the data.

The STGAT mentioned in [15] is an actual application of STGNN. It combines the
derived form of GNN, called GAT, with LSTM for human trajectory prediction. The fusion
process is illustrated in Figure 6. The core method of combining the two is to use Graph
Attention Networks (GAT) to aggregate neighbor node information without altering the

Figure 5. The core cell unit of LSTM.

3.1.3. STGNN

STGNN is a class of neural network models specifically designed to analyze data with
both spatial and temporal dependencies. They combine the power of GNNs with the ability
to model temporal dynamics, making them well-suited for tasks involving dynamic graphs
or spatiotemporal data, such as behavior recognition, traffic prediction [25,37], and human
trajectory prediction [15].

Traditional GNNs operate on static graphs, treating each node and its connections
independently without considering the temporal aspect. However, in many real-world
scenarios, data evolves over time, and the relationships between entities are not fixed but
change dynamically. STGNNs address this limitation by incorporating both spatial and
temporal information, enabling them to capture the evolving dynamics in the data.

The STGAT mentioned in [15] is an actual application of STGNN. It combines the
derived form of GNN, called GAT, with LSTM for human trajectory prediction. The fusion
process is illustrated in Figure 6. The core method of combining the two is to use Graph
Attention Networks (GAT) to aggregate neighbor node information without altering the
temporal order. The fused information is then used as the input to the LSTM. In Figure 6,
tn can represent both the time sequence and the preceding or succeeding positions. In this
article, the improved version of STGAT is applied to training and recognition in network
intrusion detection.

Remote Sens. 2023, 15, 3611 9 of 20

Remote Sens. 2023, 15, x FOR PEER REVIEW 9 of 20

temporal order. The fused information is then used as the input to the LSTM. In Figure 6, 𝑡 can represent both the time sequence and the preceding or succeeding positions. In this
article, the improved version of STGAT is applied to training and recognition in network
intrusion detection.

Figure 6. The structure of STGAT demonstrates the fusion process of LSTM and GAT.

3.2. Datasets
In order to describe the proposed method more clearly, it is necessary to first intro-

duce the datasets used in this article. The datasets used are NF-BoT-IoT-v2 and NF-ToN-
IoT-v2 [38], and their descriptions are shown in Table 1:

Table 1. Basic information of the datasets.

Dataset Release Year No. Classes No. Features No. Data Benign Ratio
NF-BoT-IoT-v2 2021 5 43 37,763,497 0.0 to 10.0
NF-ToN-IoT-v2 2021 10 43 16,940,496 3.6 to 6.4

These two datasets are improved based on the original BoT-IoT [39] and ToN-IoT
[40], where the network data are integrated into a stream fashion to make a complete net-
work behavior.

The features in the aforementioned datasets are referred to as flow features, denoted
as FI in this article. Since this article requires the use of node status information, but the
dataset mentioned above’s feature space does not include these fields, 14 additional fea-
tures were added to these two datasets based on the original datasets, outlined below.

This article refers to the features in Table 2 as node features, denoted as NI. With the
above fields, the dataset is expanded into two parts, with a total of 57 fields.

GAT GAT GAT GAT

GAT Graph Attention Network LSTM

𝑡1 𝑡2 𝑡3 𝑡𝑛

Figure 6. The structure of STGAT demonstrates the fusion process of LSTM and GAT.

3.2. Datasets

In order to describe the proposed method more clearly, it is necessary to first introduce
the datasets used in this article. The datasets used are NF-BoT-IoT-v2 and NF-ToN-IoT-
v2 [38], and their descriptions are shown in Table 1:

Table 1. Basic information of the datasets.

Dataset Release Year No. Classes No. Features No. Data Benign Ratio

NF-BoT-IoT-v2 2021 5 43 37,763,497 0.0 to 10.0
NF-ToN-IoT-v2 2021 10 43 16,940,496 3.6 to 6.4

These two datasets are improved based on the original BoT-IoT [39] and ToN-IoT [40], where
the network data are integrated into a stream fashion to make a complete network behavior.

The features in the aforementioned datasets are referred to as flow features, denoted
as FI in this article. Since this article requires the use of node status information, but the
dataset mentioned above’s feature space does not include these fields, 14 additional features
were added to these two datasets based on the original datasets, outlined below.

This article refers to the features in Table 2 as node features, denoted as NI. With the
above fields, the dataset is expanded into two parts, with a total of 57 fields.

Here is an explanation of the specific method we used to expand these datasets. The
NF-BoT-IoT-v2 and NF-ToN-IoT-v2 datasets were obtained by processing the BoT-IoT and
ToN-IoT datasets. In addition to the traffic features, the datasets for BoT-IoT and ToN-IoT
also collected the state information of the nodes. Both the traffic features and the node
state information include timestamps, allowing us to establish the correspondence between
the traffic features and the node state information. The node state information is stored
in the form of structured strings, and batch processing programs were used to format this
information. Therefore, we expanded the datasets used in this paper by leveraging the
original datasets of BoT-IoT and ToN-IoT. Tables 3 and 4 provide some real examples of the
expanded datasets.

Remote Sens. 2023, 15, 3611 10 of 20

Table 2. Details of the newly added features.

Feature Description

TIMESTAMP The timestamp when the data flow is sent.
PROCESS_LOAD 1 min load average

PROCESS_ID Idle CPU percentage.
PROCESS_HI Hard interrupt CPU percentage
PROCESS_US User-space CPU percentage,
PROCESS_SY Kernel-space CPU percentage

MEMORY_USED Memory used ratio
MEMORY_BUFFER Memory cache ratio

MEMORY_NETWORK Memory used by network module ratio
NET_PAKAGES Number of packets sent

NET_ BANDWIDTH_OUT Network egress bandwidth
NET_TCP_CONNECTIONS Number of TCP connections

DISK_READ Disk read speed
DISK_WRITE Disk write speed

Table 3. Real example of the extended dataset NF-BoT-IoT-v2.

NI FI CLASS

TIMESTAMP PROCESS_
LOAD PROCESS_ID . . .

IPV4_SRC_
ADDR

L4_SRC_
PORT ... L7_PROTO IN_BYTES IN_PKTS ... DNS_TTL_

ANSWER FCMRC LABEL ATTACK

1556149715 0.63 0.32 ... 192.168.100.148 59,826 ... 188 56 2 ... 0 0 1 DDos

1554143041 0.72 0.49 ... 192.168.100.150 61,662 ... 7 280 2 ... 0 0 1 DoS

1556286369 0.16 0.76 ... 192.168.100.147 47,080 ... 1 13 1 ... 0 331 1 RN

1556200073 0.21 0.84 ... 192.168.100.3 43,362 ... 0 60 1 ... 0 0 1 Theft

1554130829 0.14 0.89 ... 192.168.100.3 80 ... 7 44 1 ... 0 0 0 Benign

Remote Sens. 2023, 15, 3611 11 of 20

Table 4. Real example of the extended dataset NF-ToN-IoT-v2.

NI FI CLASS

TIMESTAMP PROCESS_
LOAD PROCESS_ID ... IPV4_SRC_

ADDR
L4_SRC_

PORT ... L7_PROTO IN_BYTES IN_PKTS ... DNS_TTL_
ANSWER FCMRC LABEL ATTACK

1556292791 0.11 0.86 ... 192.168.1.193 49,228 ... 0 1600 40 ... 86,400 0 0 Benign

1555849991 0.43 0.36 ... 192.168.1.31 59,779 ... 0 50 1 ... 0 0 1 ddos

1555589471 0.54 0.53 ... 192.168.1.31 37,514 ... 0 70 1 ... 23 0 1 dos

1554955914 0.32 0.71 ... 192.168.1.31 34,165 ... 0 54 1 ... 0 0 1 injection

1555366378 0.16 0.68 ... 192.168.1.31 60,540 ... 0 50 1 ... 0 0 1 mitm

1555365718 0.19 0.76 ... 192.168.1.31 60,918 ... 7 84 2 ... 0 0 1 password

1555371958 0.22 0.64 ... 192.168.1.33 4444 ... 0 28,296 133 ... 0 0 1 rn

1555284910 0.22 0.43 ... 192.168.1.32 41,244 ... 3 44 1 ... 0 0 1 scanning

1555003930 0.24 0.91 ... 192.168.1.32 46,187 ... 0 70 1 ... 57 0 1 xss

1555029142 0.38 0.42 ... 192.168.1.79 60,766 ... 0 63 1 ... 0 0 1 backdoor

Remote Sens. 2023, 15, 3611 12 of 20

4. Method Description
4.1. Problem Definition

Suppose there are n nodes in a near-Earth sensing system, defined as N1, N2, , Nn.
The data flows sent by each node are defined in chronological order as vk

i (i ∈ [1, n], k ∈ [1, ∞)),
where k is the sequential number of the data flow. The purpose of this article is to identify the
attack type (rk

i) of the data flow (vk
i) sent by node Ni, as shown in Figure 7.

Remote Sens. 2023, 15, x FOR PEER REVIEW 11 of 20

4. Method Description
4.1. Problem Definition

Suppose there are 𝑛 nodes in a near-Earth sensing system, defined as 𝑁 , 𝑁 , … … , 𝑁 .
The data flows sent by each node are defined in chronological order as 𝑣 (𝑖[1, 𝑛 , 𝑘[1, ∞)), where 𝑘 is the sequential number of the data flow. The purpose of
this article is to identify the attack type (𝑟) of the data flow (𝑣) sent by node 𝑁 , as shown
in Figure 7.

Figure 7. Problem definition structure.

To solve the aforementioned issues, this article proposes the N-STGAT network in-
trusion detection system. As the goal of this article is to solve network intrusion detection
problems in time series, a spatiotemporal graph neural network combining GAT and
LSTM is used, which has good performance in identifying data flows with spatiotemporal
sequences.

Figure 8 illustrates the system flow of N-STGAT. First, the extended dataset is pre-
processed, and then 𝒢 , for training, and 𝒢 , for testing, are generated based on the
graph construction rules. Then, the 𝒢 is fed into the training process of N-STGAT to ob-
tain a trained model. Finally, the 𝒢 is input into the model for data flow classification.

ttΔ

𝒩𝑖𝑘

𝑣𝑖𝑘

NI FI CLASS

TIMESTAMP PROCESS_LOAD … IPV4_SRC_ADDR L4_SRC_PORT … LABEL ATTACK

1516445645 0.68 … 192.168.100.147 9732 … 1 DoS

1519124045 0.86 … 192.168.100.150 13,910 … 1 DDoS

… … … … … … … …

1519131958 0.58 … 192.168.100.149 52,249 … 1 Theft

1516885558 0.12 … 192.168.100.147 40,081 … 0 Benign

𝑁1
𝑁2
𝑁𝑖
𝑁3

A

E

B

H

F

I

C

𝒢 𝒢𝑡𝑒𝑠𝑡
A

E

B

H

F

I

C

A

E

B

H

F
I

C

t t

t

D

G

D

G

D

G
D

G

A

B

A

E

C

B

I

F

LSTM
CORE

LSTM
CORE

LSTM
CORE

GAT LSTM

N-STGAT

𝒢𝑡𝑒𝑠𝑡

A

E

B

H

F

I

C

D

G

N-STGAT

A C E G I

Attack benigin Attack benigin Attack benigin Attack benigin Attack benigin

Reconnaissance DDos Dos Backdoor Injection XSS ...

Pre-processing & Graph Construction N-STGAT Training Intrusion Detection

t

𝑣𝑖′

ℬ𝑖

Figure 8. The workflow of the proposed N-STGAT intrusion detection system. First, the dataset is
preprocessed, and a graph is constructed for training and testing based on time-axis relationships
and similarity rules (left). N-STGAT is used to train the model on the training graph, and the trained
model is output (middle). Finally, the generated testing graph is input into the trained model for
intrusion detection classification (right).

GATGATGATGAT

GAT

IoT device

Edge of IoT device

Data flow

Core of GAT

Core of LSTM

LSTM

Result

2N

Ni

1N 𝑣11 𝑣1𝑚 𝑣12𝑚 𝑣1𝑗𝑚

𝑟11 𝑟1𝑚 𝑟12𝑚 𝑟1𝑗𝑚

Figure 7. Problem definition structure.

To solve the aforementioned issues, this article proposes the N-STGAT network intrusion
detection system. As the goal of this article is to solve network intrusion detection problems
in time series, a spatiotemporal graph neural network combining GAT and LSTM is used,
which has good performance in identifying data flows with spatiotemporal sequences.

Figure 8 illustrates the system flow of N-STGAT. First, the extended dataset is prepro-
cessed, and then G, for training, and Gtest, for testing, are generated based on the graph
construction rules. Then, the G is fed into the training process of N-STGAT to obtain a
trained model. Finally, the Gtest is input into the model for data flow classification.

Remote Sens. 2023, 15, x FOR PEER REVIEW 11 of 20

4. Method Description
4.1. Problem Definition

Suppose there are 𝑛 nodes in a near-Earth sensing system, defined as 𝑁 , 𝑁 , … … , 𝑁 .
The data flows sent by each node are defined in chronological order as 𝑣 (𝑖[1, 𝑛 , 𝑘[1, ∞)), where 𝑘 is the sequential number of the data flow. The purpose of
this article is to identify the attack type (𝑟) of the data flow (𝑣) sent by node 𝑁 , as shown
in Figure 7.

Figure 7. Problem definition structure.

To solve the aforementioned issues, this article proposes the N-STGAT network in-
trusion detection system. As the goal of this article is to solve network intrusion detection
problems in time series, a spatiotemporal graph neural network combining GAT and
LSTM is used, which has good performance in identifying data flows with spatiotemporal
sequences.

Figure 8 illustrates the system flow of N-STGAT. First, the extended dataset is pre-
processed, and then 𝒢 , for training, and 𝒢 , for testing, are generated based on the
graph construction rules. Then, the 𝒢 is fed into the training process of N-STGAT to ob-
tain a trained model. Finally, the 𝒢 is input into the model for data flow classification.

ttΔ

𝒩𝑖𝑘

𝑣𝑖𝑘

NI FI CLASS

TIMESTAMP PROCESS_LOAD … IPV4_SRC_ADDR L4_SRC_PORT … LABEL ATTACK

1516445645 0.68 … 192.168.100.147 9732 … 1 DoS

1519124045 0.86 … 192.168.100.150 13,910 … 1 DDoS

… … … … … … … …

1519131958 0.58 … 192.168.100.149 52,249 … 1 Theft

1516885558 0.12 … 192.168.100.147 40,081 … 0 Benign

𝑁1
𝑁2
𝑁𝑖
𝑁3

A

E

B

H

F

I

C

𝒢 𝒢𝑡𝑒𝑠𝑡
A

E

B

H

F

I

C

A

E

B

H

F
I

C

t t

t

D

G

D

G

D

G
D

G

A

B

A

E

C

B

I

F

LSTM
CORE

LSTM
CORE

LSTM
CORE

GAT LSTM

N-STGAT

𝒢𝑡𝑒𝑠𝑡

A

E

B

H

F

I

C

D

G

N-STGAT

A C E G I

Attack benigin Attack benigin Attack benigin Attack benigin Attack benigin

Reconnaissance DDos Dos Backdoor Injection XSS ...

Pre-processing & Graph Construction N-STGAT Training Intrusion Detection

t

𝑣𝑖′

ℬ𝑖

Figure 8. The workflow of the proposed N-STGAT intrusion detection system. First, the dataset is
preprocessed, and a graph is constructed for training and testing based on time-axis relationships
and similarity rules (left). N-STGAT is used to train the model on the training graph, and the trained
model is output (middle). Finally, the generated testing graph is input into the trained model for
intrusion detection classification (right).

GATGATGATGAT

GAT

IoT device

Edge of IoT device

Data flow

Core of GAT

Core of LSTM

LSTM

Result

2N

Ni

1N 𝑣11 𝑣1𝑚 𝑣12𝑚 𝑣1𝑗𝑚

𝑟11 𝑟1𝑚 𝑟12𝑚 𝑟1𝑗𝑚

Figure 8. The workflow of the proposed N-STGAT intrusion detection system. First, the dataset is
preprocessed, and a graph is constructed for training and testing based on time-axis relationships
and similarity rules (left). N-STGAT is used to train the model on the training graph, and the trained
model is output (middle). Finally, the generated testing graph is input into the trained model for
intrusion detection classification (right).

Remote Sens. 2023, 15, 3611 13 of 20

4.2. Pre-Processing and Graph Construction

To input the training data into GAT, the dataset needs to be transformed into a graph
structure. Before constructing the graph, the dataset needs to be formatted to seamlessly
apply to GAT. The flow-based dataset is collected through network monitoring tools, which
capture and save packets that pass through nodes, switches, and routers. Then, the data
packets are aggregated into flows using analysis tools. These datasets contain a wealth of
important network information, including source and destination IP addresses, source and
destination ports, byte counts, and other useful packet information. However, there are many
data formats in the dataset that cannot be directly used for training, such as enumeration type,
null value, and invalid value. Figure 9 shows the data processing process.

Remote Sens. 2023, 15, x FOR PEER REVIEW 12 of 20

4.2. Pre-Processing and Graph Construction
To input the training data into GAT, the dataset needs to be transformed into a graph

structure. Before constructing the graph, the dataset needs to be formatted to seamlessly
apply to GAT. The flow-based dataset is collected through network monitoring tools,
which capture and save packets that pass through nodes, switches, and routers. Then, the
data packets are aggregated into flows using analysis tools. These datasets contain a
wealth of important network information, including source and destination IP addresses,
source and destination ports, byte counts, and other useful packet information. However,
there are many data formats in the dataset that cannot be directly used for training, such
as enumeration type, null value, and invalid value. Figure 9 shows the data processing
process.

Figure 9. Data preprocessing process.

The source IP address groups the dataset, and the time sequence of the data sorts
each group flows. In this way, the dataset comprises thousands of chains of data flows.
The data from time 𝑡 to (𝑡 + 7𝑡 /10) is selected as the training dataset, and the data from 𝑡 to (𝑡 + 3𝑡 /10) is selected as the testing dataset, as shown in Figure 10. Useless
features such as IP addresses and ports are removed. There are also some invalid and
empty values in the dataset, which are set to 0. Since the values of some fields in the da-
taset have an extensive range, quantification is needed. Finally, the remaining fields are
normalized using L2 normalization.

Figure 10. Random selection of datasets. The blue circle represents the dataset used for training, the
green represents the validation set, and the yellow represents the test set.

Randomly select the data
set by time Remove useless features

Null and invalid values
are set to 0Quantizationnormalization

Set partitioning

t

𝑁1

𝑁2

𝑁𝑖

𝑁3

𝑁4

𝑁5

𝑁6

𝑡𝑡𝑒𝑠𝑡 𝑡𝑡𝑒𝑠𝑡 + 3𝑡𝑠/10 𝑡 𝑡 + 7𝑡𝑠/10

Training sets Test sets

Figure 9. Data preprocessing process.

The source IP address groups the dataset, and the time sequence of the data sorts each
group flows. In this way, the dataset comprises thousands of chains of data flows. The
data from time t to (t + 7ts/10) is selected as the training dataset, and the data from ttest
to (ttest + 3ts/10) is selected as the testing dataset, as shown in Figure 10. Useless features
such as IP addresses and ports are removed. There are also some invalid and empty values
in the dataset, which are set to 0. Since the values of some fields in the dataset have an
extensive range, quantification is needed. Finally, the remaining fields are normalized
using L2 normalization.

Remote Sens. 2023, 15, x FOR PEER REVIEW 12 of 20

4.2. Pre-Processing and Graph Construction
To input the training data into GAT, the dataset needs to be transformed into a graph

structure. Before constructing the graph, the dataset needs to be formatted to seamlessly
apply to GAT. The flow-based dataset is collected through network monitoring tools,
which capture and save packets that pass through nodes, switches, and routers. Then, the
data packets are aggregated into flows using analysis tools. These datasets contain a
wealth of important network information, including source and destination IP addresses,
source and destination ports, byte counts, and other useful packet information. However,
there are many data formats in the dataset that cannot be directly used for training, such
as enumeration type, null value, and invalid value. Figure 9 shows the data processing
process.

Figure 9. Data preprocessing process.

The source IP address groups the dataset, and the time sequence of the data sorts
each group flows. In this way, the dataset comprises thousands of chains of data flows.
The data from time 𝑡 to (𝑡 + 7𝑡 /10) is selected as the training dataset, and the data from 𝑡 to (𝑡 + 3𝑡 /10) is selected as the testing dataset, as shown in Figure 10. Useless
features such as IP addresses and ports are removed. There are also some invalid and
empty values in the dataset, which are set to 0. Since the values of some fields in the da-
taset have an extensive range, quantification is needed. Finally, the remaining fields are
normalized using L2 normalization.

Figure 10. Random selection of datasets. The blue circle represents the dataset used for training, the
green represents the validation set, and the yellow represents the test set.

Randomly select the data
set by time Remove useless features

Null and invalid values
are set to 0Quantizationnormalization

Set partitioning

t

𝑁1

𝑁2

𝑁𝑖

𝑁3

𝑁4

𝑁5

𝑁6

𝑡𝑡𝑒𝑠𝑡 𝑡𝑡𝑒𝑠𝑡 + 3𝑡𝑠/10 𝑡 𝑡 + 7𝑡𝑠/10

Training sets Test sets

Figure 10. Random selection of datasets. The blue circle represents the dataset used for training, the
green represents the validation set, and the yellow represents the test set.

Remote Sens. 2023, 15, 3611 14 of 20

Once the datasets for training and testing are selected, it is necessary to build graphs
based on specific rules. Graph construction is performed to find neighbors for nodes,
so knowing the neighbor-finding process for one node is enough to construct the entire
graph. The process of finding neighbors for nodes can be divided into two parts: finding
neighborhood Bi for node Ni and finding neighborhood N k

i for node vk
i .

Bi is obtained using the cosine similarity with the NI field of the dataset, as shown in
Formula (3). The method is as follows: assuming the time when vk

i exists is tk
i , and the latest

node before the time tk
i for any Nj is vlt

j , calculate the cosine similarity cos(θ)klt
ij between vk

i

and vlt
j , if cos(θ)klt

ij is more significant than 0.7, then add Nj to Bi. Here, xi represents the

i-th feature value in vk
i ’s NI field, and yi represents the i-th feature value in vlt

j ’s NI field.

cos(θ) =
∑n

i=1(xi × yi)√
∑n

i=1(xi)
2 ×

√
∑n

i=1(yi)
2

(3)

In Bi, all nodes (vl
j, including vk

i) within (tk
i − ∆t) to tk

i are neighbors of vk
i , and these

nodes form the neighborhood N k
i of vk

i . Then, connect A and C to form an edge (E), which
is a directed edge from vk

i to vl
j. In this article, ∆t is set to 3 s when constructing the graph

using the method described above, resulting in the graph structure shown in Formula (4).

V = vk
i i ∈ [1, n], k ∈ [1, ∞)

E = ekl
ij l ∈ [tk

i − ∆t, tk
i], j ∈ N k

i

G ← V, E

(4)

4.3. N-STGAT Training

The dataset contains two labels, “Label” and “Attack”. The “Label” indicates whether
the data flow is an attack or not, while the “Attack” label defines the type of data flow.
Therefore, the labels can be used for binary and multi-class classification training.

N-STGAT is described in Algorithm 1, and the pseudocode shows the process of
integrating GAT and LSTM. In lines 3 to 6, GAT is used to calculate the hidden layer feature
→
v

k′
i . Then, in line 7,

→
v

k′
i is assigned to xk

i to participate in the LSTM calculation process.
Lines 8 to 13 represent the LSTM calculation process. Finally, in line 16, the output (C) of
LSTM is fed into a fully connected layer to obtain the final recognition result (rk

i).
The algorithm uses only one layer of the GAT model instead of multiple layers because

multiple layers can make the features blur and not be conducive to recognition. Specifically,
we add the cosine similarity cos(θ)kj

i between two nodes as a constraint to the calculation
of attention coefficients in the attention coefficient calculation process in the 4th line, so that
the graph information constructed in Section 4.2 can be better expressed. Its calculation
method is shown in Equation (5). The similarity constraint is introduced because the
aggregation of neighboring nodes may significantly impact the target node. By using the
similarity constraint, we can effectively balance this situation. This improvement is not
present in the original GAT and is a modification made in this paper.

cos(θ)kj
i =

∑n
p=1
(
xpyp

)√
∑n

p=1
(
xp
)2
√

∑n
p=1
(
yp
)2

j ∈ Ni (5)

In the equation, cos(θ)kj
i represents the similarity value between the k-th data stream

of the i-th node and its j-th neighbor. xp denotes the p-th feature value of data stream k,
while yp represents the p-th feature value of data stream j.

Remote Sens. 2023, 15, 3611 15 of 20

Algorithm 1: Pseudocode of the N-STGAT algorithm.

Input: G(V, E)

node features
→
v

k
i ;

GAT weight matrices W;
non-linearity σ;
LSTM weight matrices W f , Wl , WC, Wo, b f , bl , bC, bo;
LSTM initialization C0, h0

Output: node features rk
i ;

1 for i = 1 to n do
2 for k = 1 to length(Ni) do
3 for j = 1 to length(N k

i) do

4 α
kj
i =

cos(θ)kj
i

(
exp

(
LeakyReLU

(
→
a

T
[

W
→
v

k
i

∣∣∣∣∣∣∣∣W→
v

j
])))

∑s∈Ni
cos(θ)ks

i

(
exp

(
LeakyReLU

(
→
a

T
[

W
→
v

k
i

∣∣∣∣∣∣∣∣W→
v

s
])))

5 end

6
→
v

k′

i = σ(∑s∈Ni
αks

i W
→
v

s
)

7 xk
i ←

→
v

k′

i

8 f k
i = σ

(
W f ·

[
hk−1

i , xk
i

]
+ b f

)
9 lk

i = σ
(

Wl ·
[

hk−1
i , xk

i

]
+ bl

)
10

∼
C

k

i = tanh
(

WC·
[

hk−1
i , xk

i

]
+ bC

)
11 Ck

i = f k
i ∗ Ck−1

i + lk
i ∗
∼
C

k

i

12 ok
i = σ

(
Wo·

[
hk−1

i , xk
i

]
+ bo

)
13 hk

i = ok
i ∗ tanh

(
Ck

i

)
14 end
15 end
16 rk

i = FC
(

hk
i

)
//FC is fully connected layers

We conducted experiments with the hyperparameters shown in Table 5 for each
dataset mentioned in the experiments to obtain the best training model. As mentioned
above, we used a single-layer GAT model instead of a multi-layer one. To better represent
node features, we expanded the original 53 features to 256 hidden layer features. GAT
supports multi-head attention, but we only used single-head attention in this case since
we introduced cosine similarity as a constraint for attention coefficient calculation. We
used ReLU as the activation function and did not use a dropout rate. The cross-entropy
function was used to calculate the training loss, and Adam was used for backpropagation
optimization with a learning rate set to 0.002.

Table 5. Hyperparameter values used in N-STGAT.

Hyperparameter Values

No. layers 1
No. hidden 256

No. k 1
Learning rate 2 × 10−3

Activation func. ReLU
Loss func. Cross-entropy
Optimizer Adam

4.4. N-STGAT Detection

In the previous section, the N-STGAT modelMwas obtained through model training. In
the detection task, the test graph Gtest is input into the modelM. The 16th line of Algorithm 1
uses a fully connected layer to recognize the specific classification. Whether it is a binary or

Remote Sens. 2023, 15, 3611 16 of 20

multi-classification problem, the softmax function is used to calculate the classification in the
final layer of the fully connected layer to obtain the exact classification result.

5. Experimental Evaluation
5.1. Evaluation Metrics

To evaluate the performance of N-STGAT, experiments were conducted using the
datasets mentioned in Section 3.2. Due to the large size of these datasets, 10% of the datasets
were selected using the method described in Section 4.2 for experimentation, with 70% of
the experimental dataset used for training and 30% for testing. Since only a portion of the
dataset was used for experimentation, experiments were conducted multiple times for each
algorithm and each dataset.

The proposed method was compared in the experiments with graph neural network-
based methods (GAT, E-ResGAT, Anomal-E) and traditional machine learning methods (SVM,
Random Forest). Therefore, evaluation metrics, as shown in Table 6, were used to assess the
performance of all methods. TP, FP, FN, and TN represent true positive, false positive, true
negative, and true negative in the confusion matrix, respectively. These evaluation metrics
provide a comprehensive comparison of the superiority of the proposed method.

Table 6. Performance comparison metrics for experiments.

Metric Definition

Recall
TP

TP + FN

Precision
TP

TP + FP

F1-Score 2× Recall× Precision
Recall + Precision

Accuracy
TP + TN

TP + FP + FN + TN

5.2. Result

In the experiments, the accuracy and loss changes during the training process were
first recorded, and then the recognition results for both binary and multi-class classification
were evaluated based on the performance metrics in Section 5.1.

5.2.1. Loss and Accuracy Comparison in Training

The training accuracy changes for multi-class classification on different datasets are
shown in Figure 11. The training accuracy of dataset NF-BoT-IoT-v2 quickly reached
90% before 20 epochs and remained stable above 95% after 100 epochs. Its validation
accuracy was lower than the training accuracy throughout the entire training process but
also stabilized above 92% in the end. The training accuracy of dataset NF-ToN-IoT-v2
was slightly lower than that of dataset NF-BoT-IoT-v2, with continuous growth before
600 epochs and stability above 93% after 700 epochs. The validation accuracy was also
lower than the training accuracy throughout the entire training process but stabilized above
90% in the end.

The cross-entropy loss during the training process for multi-classification on different
datasets is shown in Figure 12. For the dataset NF-BoT-IoT-v2, the training loss rapidly
decreased to 0.6 before 100 epochs and stabilized around 0.4 after 200 epochs. The validation
loss was higher than the training loss throughout the training process but also stabilized
at about 0.7 in the end. For the dataset NF-ToN-IoT-v2, the training loss was slightly
worse than that of NF-BoT-IoT-v2, and it continued to decrease before 600 epochs and then
stabilized at 0.4 after 700 epochs. The validation loss was higher than the training loss
throughout the training process but stabilized at 0.6 in the end.

Remote Sens. 2023, 15, 3611 17 of 20
Remote Sens. 2023, 15, x FOR PEER REVIEW 16 of 20

(a) (b)

Figure 11. The accuracy changes on different datasets. (a) Dataset NF-BoT-IoT-v2. (b) Dataset NF-
ToN-IoT-v2.

The cross-entropy loss during the training process for multi-classification on differ-
ent datasets is shown in Figure 12. For the dataset NF-BoT-IoT-v2, the training loss rapidly
decreased to 0.6 before 100 epochs and stabilized around 0.4 after 200 epochs. The valida-
tion loss was higher than the training loss throughout the training process but also stabi-
lized at about 0.7 in the end. For the dataset NF-ToN-IoT-v2, the training loss was slightly
worse than that of NF-BoT-IoT-v2, and it continued to decrease before 600 epochs and
then stabilized at 0.4 after 700 epochs. The validation loss was higher than the training loss
throughout the training process but stabilized at 0.6 in the end.

(a) (b)

Figure 12. The loss changes on different datasets. (a) Dataset NF-BoT-IoT-v2. (b) Dataset NF-ToN-
IoT-v2.

5.2.2. Binary Classification Results
The results of the binary classification experiment using the “Label” label of the test

set are shown in Table 7. In the binary classification task, the proposed method in this
article outperforms the other 5 methods in terms of recall and accuracy, indicating that
the proposed method has a better recognition accuracy. Additionally, the proposed
method also performs well in precision, with results only 0.4% lower than E-GraphSAG
in the NF-ToN-IoT-v2 dataset but higher than the other 5 methods. In terms of the F1-

Figure 11. The accuracy changes on different datasets. (a) Dataset NF-BoT-IoT-v2. (b) Dataset
NF-ToN-IoT-v2.

Remote Sens. 2023, 15, x FOR PEER REVIEW 16 of 20

(a) (b)

Figure 11. The accuracy changes on different datasets. (a) Dataset NF-BoT-IoT-v2. (b) Dataset NF-
ToN-IoT-v2.

The cross-entropy loss during the training process for multi-classification on differ-
ent datasets is shown in Figure 12. For the dataset NF-BoT-IoT-v2, the training loss rapidly
decreased to 0.6 before 100 epochs and stabilized around 0.4 after 200 epochs. The valida-
tion loss was higher than the training loss throughout the training process but also stabi-
lized at about 0.7 in the end. For the dataset NF-ToN-IoT-v2, the training loss was slightly
worse than that of NF-BoT-IoT-v2, and it continued to decrease before 600 epochs and
then stabilized at 0.4 after 700 epochs. The validation loss was higher than the training loss
throughout the training process but stabilized at 0.6 in the end.

(a) (b)

Figure 12. The loss changes on different datasets. (a) Dataset NF-BoT-IoT-v2. (b) Dataset NF-ToN-
IoT-v2.

5.2.2. Binary Classification Results
The results of the binary classification experiment using the “Label” label of the test

set are shown in Table 7. In the binary classification task, the proposed method in this
article outperforms the other 5 methods in terms of recall and accuracy, indicating that
the proposed method has a better recognition accuracy. Additionally, the proposed
method also performs well in precision, with results only 0.4% lower than E-GraphSAG
in the NF-ToN-IoT-v2 dataset but higher than the other 5 methods. In terms of the F1-

Figure 12. The loss changes on different datasets. (a) Dataset NF-BoT-IoT-v2. (b) Dataset NF-ToN-
IoT-v2.

5.2.2. Binary Classification Results

The results of the binary classification experiment using the “Label” label of the test
set are shown in Table 7. In the binary classification task, the proposed method in this
article outperforms the other 5 methods in terms of recall and accuracy, indicating that the
proposed method has a better recognition accuracy. Additionally, the proposed method
also performs well in precision, with results only 0.4% lower than E-GraphSAG in the
NF-ToN-IoT-v2 dataset but higher than the other 5 methods. In terms of the F1-score,
the proposed method outperforms the other 5 methods, indicating better stability of the
proposed method.

Remote Sens. 2023, 15, 3611 18 of 20

Table 7. Results of each method on binary classification.

DataSet Algorithm Recall Precision F1-Score Accuracy

NF-BoT-IoT-v2

SVM 0.8485 0.9367 0.8904 0.8299
Random Forest 0.8212 0.9151 0.8656 0.7923

GAT 0.9013 0.9633 0.9313 0.8917
E-GraphSAG 0.9615 0.9825 0.9719 0.9547

Anomal-E 0.9412 0.9859 0.963 0.9412
N-STGAT 0.9812 0.9927 0.9869 0.9788

NF-ToN-IoT-v2

SVM 0.7689 0.8991 0.8289 0.7415
Random Forest 0.7368 0.9307 0.8224 0.7409

GAT 0.8746 0.9724 0.9209 0.8776
E-GraphSAG 0.9578 0.9867 0.972 0.9551

Anomal-E 0.9461 0.9846 0.965 0.9441
N-STGAT 0.9755 0.9827 0.9791 0.9661

5.2.3. Multiclass Classification Results

The results of the multi-class classification experiment using the “Attack” label of the
test set are shown in Tables 8 and 9. It can be seen from the results that the proposed method
has superiority in multi-class problems, with high recognition rates for each category of
different datasets. On the NF-BoT-IoT-v2 dataset, the proposed method has a 3.53–20.49%
improvement in “Weighted Recall” and an 8.03–23.16% improvement in “Weighted F1-
Score” compared to other methods. On the NF-ToN-IoT-v2 dataset, the proposed method
has a 4.05–18.69% improvement in “Weighted Recall” and a 7.17–17.78% improvement in
“Weighted F1-Score” compared to other methods.

Table 8. Performance results for each algorithm over multiple classifications.

DataSet Algorithm Weighted Recall Weighted F1-Score

NF-BoT-IoT-v2

SVM 0.7101 0.6948
Random Forest 0.7719 0.7492

GAT 0.7227 0.7021
E-GraphSAG 0.8797 0.8461

Anomal-E 0.865 0.8016
N-STGAT 0.915 0.9264

NF-ToN-IoT-v2

SVM 0.7195 0.7514
Random Forest 0.7786 0.7364

GAT 0.7699 0.8163
E-GraphSAG 0.8533 0.8204

Anomal-E 0.8659 0.8425
N-STGAT 0.9064 0.9142

Table 9. Recall results per class on the two datasets.

Dataset Algorithm Per Class Recall

NF-BoT-IoT-v2

Benign RN DDos Dos Theft

SVM 0.7154 0.6148 0.8412 0.8649 0.7225
Random Forest 0.8205 0.8415 0.7451 0.5748 0.8148

GAT 0.8952 0.6715 0.8216 0.7469 0.7149
E-GraphSAG 0.8756 0.8912 0.82465 0.9051 0.8694

Anomal-E 0.9049 0.8648 0.7903 0.9417 0.8795
N-STGAT 0.9506 0.9241 0.8786 0.9207 0.9513

NF-ToN-IoT-v2

Benign RN DDos Dos Backdoor Injection MITM Password Scanning XSS

SVM 0.7147 0.5792 0.8106 0.7129 0.6129 0.6792 0.8059 0.7138 0.846 0.7816
Random Forest 0.8703 0.7126 0.6109 0.5498 0.7159 0.8619 0.7469 0.8759 0.7482 0.6874

GAT 0.8761 0.7454 0.8418 0.7923 0.8219 0.7619 0.8242 0.6958 0.8716 0.9015
E-GraphSAG 0.9418 0.8819 0.9112 0.8109 0.8846 0.7805 0.8759 0.8904 0.8513 0.8927

Anomal-E 0.8042 0.9229 0.8496 0.8217 0.9036 0.9158 0.8176 0.9013 0.7219 0.9014
N-STGAT 0.9712 0.9013 0.9013 0.8735 0.9213 0.9016 0.9254 0.9186 0.8619 0.9208

Remote Sens. 2023, 15, 3611 19 of 20

6. Conclusions

This article proposes a spatio-temporal graph attention network (N-STGAT) that con-
siders node states and applies it to network intrusion detection in near-Earth remote sensing
systems. A method is proposed for constructing graphs based on node state and the tem-
poral characteristics of data flow, where data flow is viewed as nodes in the graph, and
edges between nodes are constructed based on cosine similarity and time series features. A
spatio-temporal graph neural network combining GAT and LSTM is applied to intrusion
detection systems. Finally, experiments are conducted using the latest flow-based network
intrusion detection dataset, and the proposed method is compared with existing methods to
demonstrate its superiority and feasibility.

Author Contributions: Conceptualization, Y.W. and J.L.; data curation, H.Z.; formal analysis, Z.H.;
investigation, Z.H.; methodology, Y.W. and W.Z.; project administration, J.L.; resources, Y.W.; software,
Z.H.; supervision, X.H.; validation, Y.W., J.L. and W.Z.; writing—original draft, Y.W.; writing—review &
editing, W.Z., L.W. and X.H. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Key Science and Technology Project of Henan Province
(201300210400).

Data Availability Statement: This article references four datasets: NF-BoT-IoT-v2, NF-ToN-IoT-v2,
BoT-IoT, and ToN-IoT. The datasets NF-BoT-IoT-v2 and NF-ToN-IoT-v2 can be found at the following
link: https://staff.itee.uq.edu.au/marius/NIDS_datasets/ (accessed on 22 September2022). The link for
the BoT-IoT dataset is https://research.unsw.edu.au/projects/bot-iot-dataset (accessed on 24 September
2022). The link for the ToN_IoT dataset is https://research.unsw.edu.au/projects/toniot-datasets
(accessed on 24 September 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wang, D.; Zhang, J.; Du, B.; Xia, G.-S.; Tao, D. An Empirical Study of Remote Sensing Pretraining. IEEE Trans. Geosci. Remote. Sens.

2023, 61, 5608020. [CrossRef]
2. Goswami, A.; Sharma, D.; Mathuku, H.; Gangadharan, S.M.P.; Yadav, C.S.; Sahu, S.K.; Pradhan, M.K.; Singh, J.; Imran, H. Change

Detection in Remote Sensing Image Data Comparing Algebraic and Machine Learning Methods. Electronics 2022, 11, 431. [CrossRef]
3. Sun, X.; Zhang, Y.; Shi, K.; Zhang, Y.; Li, N.; Wang, W.; Huang, X.; Qin, B. Monitoring water quality using proximal remote

sensing technology. Sci. Total. Environ. 2022, 803, 149805. [CrossRef]
4. Chen, J.; Chen, S.; Fu, R.; Li, D.; Jiang, H.; Wang, C.; Peng, Y.; Jia, K.; Hicks, B.J. Remote Sensing Big Data for Water Environment

Monitoring: Current Status, Challenges, and Future Prospects. Earth’s Future 2022, 10, e2021EF002289. [CrossRef]
5. Li, J.; Hong, D.; Gao, L.; Yao, J.; Zheng, K.; Zhang, B.; Chanussot, J. Deep learning in multimodal remote sensing data fusion: A

comprehensive review. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102926. [CrossRef]
6. Lo, W.W.; Layeghy, S.; Sarhan, M.; Gallagher, M.; Portmann, M. E-GraphSAGE: A Graph Neural Network based Intrusion

Detection System for IoT. In Proceedings of the NOMS 2022-2022 IEEE/IFIP Network Operations and Management Symposium,
Budapest, Hungary, 25–29 April 2022; pp. 1–9. [CrossRef]

7. Ferrag, M.A.; Shu, L.; Friha, O.; Yang, X. Cyber Security Intrusion Detection for Agriculture 4.0: Machine Learning-Based
Solutions, Datasets, and Future Directions. IEEE/CAA J. Autom. Sin. 2022, 9, 407–436. [CrossRef]

8. He, H.; Sun, X.; He, H.; Zhao, G.; He, L.; Ren, J. A Novel Multimodal-Sequential Approach Based on Multi-View Features for
Network Intrusion Detection. IEEE Access 2019, 7, 183207–183221. [CrossRef]

9. Lawal, M.A.; Shaikh, R.A.; Hassan, S.R. An Anomaly Mitigation Framework for IoT Using Fog Computing. Electronics 2020, 9, 1565.
[CrossRef]

10. Sarhan, M.; Layeghy, S.; Moustafa, N.; Portmann, M. NetFlow Datasets for Machine Learning-Based Network Intrusion Detection
Systems. In Big Data Technologies and Applications; Deze, Z., Huang, H., Hou, R., Rho, S., Chilamkurti, N., Eds.; BDTA WiCON
2020; Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering; Springer:
Cham, Switzerland, 2020; Volume 371. [CrossRef]

11. Kumar, P.; Gupta, G.P.; Tripathi, R. An ensemble learning and fog-cloud architecture-driven cyber-attack detection framework for
IoMT networks. Comput. Commun. 2020, 166, 110–124. [CrossRef]

12. Churcher, A.; Ullah, R.; Ahmad, J.; Rehman, S.U.; Masood, F.; Gogate, M.; Alqahtani, F.; Nour, B.; Buchanan, W.J. An Experimental
Analysis of Attack Classification Using Machine Learning in IoT Networks. Sensors 2021, 21, 446. [CrossRef]

13. Cheng, Q.; Wu, C.; Zhou, S. Discovering Attack Scenarios via Intrusion Alert Correlation Using Graph Convolutional Networks.
IEEE Commun. Lett. 2021, 25, 1564–1567. [CrossRef]

https://staff.itee.uq.edu.au/marius/NIDS_datasets/
https://research.unsw.edu.au/projects/bot-iot-dataset
https://research.unsw.edu.au/projects/toniot-datasets
https://doi.org/10.1109/TGRS.2022.3176603
https://doi.org/10.3390/electronics11030431
https://doi.org/10.1016/j.scitotenv.2021.149805
https://doi.org/10.1029/2021EF002289
https://doi.org/10.1016/j.jag.2022.102926
https://doi.org/10.1109/noms54207.2022.9789878
https://doi.org/10.1109/JAS.2021.1004344
https://doi.org/10.1109/ACCESS.2019.2959131
https://doi.org/10.3390/electronics9101565
https://doi.org/10.1007/978-3-030-72802-1_9
https://doi.org/10.1016/j.comcom.2020.12.003
https://doi.org/10.3390/s21020446
https://doi.org/10.1109/LCOMM.2020.3048995

Remote Sens. 2023, 15, 3611 20 of 20

14. Caville, E.; Lo, W.W.; Layeghy, S.; Portmann, M. Anomal-E: A self-supervised network intrusion detection system based on graph
neural networks. Knowl.-Based Syst. 2022, 258, 110030. [CrossRef]

15. Huang, Y.; Bi, H.; Li, Z.; Mao, T.; Wang, Z. Stgat: Modeling Spatial-Temporal Interactions for Human Trajectory Prediction. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October 2019–2 November 2019;
pp. 6272–6281. Available online: https://openaccess.thecvf.com/content_ICCV_2019/html/Huang_STGAT_Modeling_Spatial-
Temporal_Interactions_for_Human_Trajectory_Prediction_ICCV_2019_paper.html (accessed on 4 August 2022).

16. Casas, P.; Mazel, J.; Owezarski, P. Unsupervised Network Intrusion Detection Systems: Detecting the Unknown without
Knowledge. Comput. Commun. 2012, 35, 772–783. [CrossRef]

17. Friha, O.; Ferrag, M.A.; Shu, L.; Maglaras, L.; Choo, K.-K.R.; Nafaa, M. FELIDS: Federated learning-based intrusion detection
system for agricultural Internet of Things. J. Parallel Distrib. Comput. 2022, 165, 17–31. [CrossRef]

18. Ferrag, M.A.; Shu, L.; Djallel, H.; Choo, K.-K.R. Deep Learning-Based Intrusion Detection for Distributed Denial of Service Attack
in Agriculture 4.0. Electronics 2021, 10, 1257. [CrossRef]

19. Raghuvanshi, A.; Singh, U.K.; Sajja, G.S.; Pallathadka, H.; Asenso, E.; Kamal, M.; Singh, A.; Phasinam, K. Intrusion Detection Using
Machine Learning for Risk Mitigation in IoT-Enabled Smart Irrigation in Smart Farming. J. Food Qual. 2022, 2022, 1–8. [CrossRef]

20. Vormayr, G.; Zseby, T.; Fabini, J. Botnet Communication Patterns. IEEE Commun. Surv. Tutor. 2017, 19, 2768–2796. [CrossRef]
21. Bhuyan, M.H.; Bhattacharyya, D.K.; Kalita, J.K. Surveying Port Scans and Their Detection Methodologies. Comput. J. 2011,

54, 1565–1581. [CrossRef]
22. Kambourakis, G.; Moschos, T.; Geneiatakis, D.; Gritzalis, S. Detecting DNS Amplification Attacks. In Critical Information Infras-

tructures Security; Lopez, J., Hämmerli, B.M., Eds.; CRITIS 2007; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg,
Germany, 2007; Volume 5141. [CrossRef]

23. Leichtnam, L.; Totel, E.; Prigent, N.; Mé, L. Sec2graph: Network Attack Detection Based on Novelty Detection on Graph Structured Data. In
Detection of Intrusions and Malware, and Vulnerability Assessment, Proceedings of the DIMVA 2020, 24–26 June 2020, Lisbon, Portugal; Lecture Notes
in Computer Science; Maurice, C., Bilge, L., Stringhini, G., Neves, N., Eds.; Springer: Cham, Switzerland, 2020; Volume 12223. [CrossRef]

24. Ali, A.; Zhu, Y.; Zakarya, M. Exploiting dynamic spatio-temporal correlations for citywide traffic flow prediction using attention
based neural networks. Inf. Sci. 2021, 577, 852–870. [CrossRef]

25. Ali, A.; Zhu, Y.; Zakarya, M. Exploiting dynamic spatio-temporal graph convolutional neural networks for citywide traffic flows
prediction. Neural Netw. 2021, 145, 233–247. [CrossRef]

26. Hao, J.; Liu, J.; Pereira, E.; Liu, R.; Zhang, J.; Zhang, Y.; Yan, K.; Gong, Y.; Zheng, J.; Zhang, J.; et al. Uncertainty-guided graph
attention network for parapneumonic effusion diagnosis. Med. Image Anal. 2021, 75, 102217. [CrossRef]

27. Jiang, W. Graph-based deep learning for communication networks: A survey. Comput. Commun. 2021, 185, 40–54. [CrossRef]
28. Jiang, W.; Luo, J. Graph neural network for traffic forecasting: A survey. Expert Syst. Appl. 2022, 207, 117921. [CrossRef]
29. He, X.; Deng, K.; Wang, X.; Li, Y.; Zhang, Y.; Wang, M. LightGCN: Simplifying and Powering Graph Convolution Network for

Recommendation. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR ‘20), New York, NY, USA, 25 July 2020; pp. 639–648. [CrossRef]

30. Sun, P.; Guo, Z.; Wang, J.; Li, J.; Lan, J.; Hu, Y. Deepweave: Accelerating Job Completion Time with Deep Reinforcement
Learning-Based Coflow Scheduling. In Proceedings of the International Joint Conferences on Artificial Intelligence, Virtual, 19–26
August 2021; pp. 3314–3320. Available online: https://www.ijcai.org/proceedings/2020/0458.pdf (accessed on 4 October 2022).

31. Xu, K.; Hu, W.; Leskovec, J.; Jegelka, S. How powerful are graph neural networks? arXiv 2018, arXiv:1810.00826. [CrossRef]
32. Cai, H.; Zheng, V.W.; Chang, K.C.-C. A Comprehensive Survey of Graph Embedding: Problems, Techniques, and Applications.

IEEE Trans. Knowl. Data Eng. 2018, 30, 1616–1637. [CrossRef]
33. Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò, P.; Bengio, Y. Graph attention networks. arXiv 2017, arXiv:1710.10903. [CrossRef]
34. Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2016, arXiv:1609.02907. [CrossRef]
35. Hamilton, W.; Ying, Z.; Leskovec, J. Inductive Representation Learning on Large Graphs. In Proceedings of the Advances in Neural

Information Processing Systems, Long Beach, CA, USA, 4 December 2017; Volume 30. Available online: https://proceedings.neurips.
cc/paper_files/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf (accessed on 7 August 2022).

36. Smagulova, K.; James, A.P. A survey on LSTM memristive neural network architectures and applications. Eur. Phys. J. Spéc. Topics
2019, 228, 2313–2324. [CrossRef]

37. Yu, B.; Yin, H.; Zhu, Z. Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting. arXiv
2017, arXiv:1709.04875. [CrossRef]

38. Sarhan, M.; Layeghy, S.; Portmann, M. Towards a Standard Feature Set for Network Intrusion Detection System Datasets.
Mob. Netw. Appl. 2021, 27, 357–370. [CrossRef]

39. Koroniotis, N.; Moustafa, N.; Sitnikova, E.; Turnbull, B. Towards the development of realistic botnet dataset in the Internet of
Things for network forensic analytics: Bot-IoT dataset. Futur. Gener. Comput. Syst. 2019, 100, 779–796. [CrossRef]

40. Moustafa, N. A new distributed architecture for evaluating AI-based security systems at the edge: Network TON_IoT datasets.
Sustain. Cities Soc. 2021, 72, 102994. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.knosys.2022.110030
https://openaccess.thecvf.com/content_ICCV_2019/html/Huang_STGAT_Modeling_Spatial-Temporal_Interactions_for_Human_Trajectory_Prediction_ICCV_2019_paper.html
https://openaccess.thecvf.com/content_ICCV_2019/html/Huang_STGAT_Modeling_Spatial-Temporal_Interactions_for_Human_Trajectory_Prediction_ICCV_2019_paper.html
https://doi.org/10.1016/j.comcom.2012.01.016
https://doi.org/10.1016/j.jpdc.2022.03.003
https://doi.org/10.3390/electronics10111257
https://doi.org/10.1155/2022/3955514
https://doi.org/10.1109/COMST.2017.2749442
https://doi.org/10.1093/comjnl/bxr035
https://doi.org/10.1007/978-3-540-89173-4_16
https://doi.org/10.1007/978-3-030-52683-2_12
https://doi.org/10.1016/j.ins.2021.08.042
https://doi.org/10.1016/j.neunet.2021.10.021
https://doi.org/10.1016/j.media.2021.102217
https://doi.org/10.1016/j.comcom.2021.12.015
https://doi.org/10.1016/j.eswa.2022.117921
https://doi.org/10.1145/3397271.3401063
https://www.ijcai.org/proceedings/2020/0458.pdf
https://doi.org/10.48550/arXiv.1810.00826
https://doi.org/10.1109/TKDE.2018.2807452
https://doi.org/10.48550/arXiv.1710.10903
https://doi.org/10.48550/arXiv.1609.02907
https://proceedings.neurips.cc/paper_files/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
https://doi.org/10.1140/epjst/e2019-900046-x
https://doi.org/10.48550/arXiv.1709.04875
https://doi.org/10.1007/s11036-021-01843-0
https://doi.org/10.1016/j.future.2019.05.041
https://doi.org/10.1016/j.scs.2021.102994

	Introduction
	Related Work
	Background
	GNN and LSTM
	GNN
	LSTM
	STGNN

	Datasets

	Method Description
	Problem Definition
	Pre-Processing and Graph Construction
	N-STGAT Training
	N-STGAT Detection

	Experimental Evaluation
	Evaluation Metrics
	Result
	Loss and Accuracy Comparison in Training
	Binary Classification Results
	Multiclass Classification Results

	Conclusions
	References

