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Abstract: In this research, we present the Spatial-Aware Transformer (SAT), an enhanced implemen-
tation of the Swin Transformer module, purposed to augment the global modeling capabilities of
existing transformer segmentation mechanisms within remote sensing. The current landscape of
transformer segmentation techniques is encumbered by an inability to effectively model global depen-
dencies, a deficiency that is especially pronounced in the context of occluded objects. Our innovative
solution embeds spatial information into the Swin Transformer block, facilitating the creation of
pixel-level correlations, and thereby significantly elevating the feature representation potency for
occluded subjects. We have incorporated a boundary-aware module into our decoder to mitigate the
commonly encountered shortcoming of inaccurate boundary segmentation. This component serves
as an innovative refinement instrument, fortifying the precision of boundary demarcation. After
these strategic enhancements, the Spatial-Aware Transformer achieved state-of-the-art performance
benchmarks on the Potsdam, Vaihingen, and Aerial datasets, demonstrating its superior capabil-
ities in recognizing occluded objects and distinguishing unique features, even under challenging
conditions. This investigation constitutes a significant advancement toward optimizing transformer
segmentation algorithms in remote sensing, opening a wealth of opportunities for future research
and development.

Keywords: image segmentation; self-attention; semi-supervised learning; self-attention mechanism
for remote sensing

1. Introduction

The utility and prominence of image segmentation algorithms in the remote sensing [1,2]
domain are well established. The processing and interpretation of satellite and aerial
imagery have been drastically transformed, unlocking a diverse array of applications. This
has allowed for more nuanced environmental monitoring, detailed urban planning, and
intricate military surveillance, among other applications. As the need for high-resolution
feature extraction and object identification becomes increasingly pressing, so does the
importance of refining and improving these segmentation algorithms.

Fully Convolutional Networks (FCNs) [3], U-Net [4], and SegNet [5] stand as notewor-
thy examples among the plethora of image segmentation algorithms employed. FCNs [3,6,7]
are prized for their ability to handle varying input sizes, an attribute that has led to ad-
mirable segmentation results across several scenarios. However, FCNs’ scope in extracting
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global features is limited. This drawback often becomes evident in tasks that require a
broader contextual understanding. On the other hand, U-Net-based methods [4,8,9] boast
an efficient encoder–decoder architecture, which has been particularly successful in biomed-
ical image segmentation. Yet, their application in remote sensing is constrained due to their
limited capacity to manage large-scale, high-resolution images. SegNet [5,10] demonstrates
proficiency in segmenting complex scenes but exhibits shortcomings in accurately delineat-
ing boundaries and effectively handling occluded objects’ essential capabilities in remote
sensing image segmentation. The advent of Transformer-based models has revolutionized
numerous fields, primarily due to their ability to model long-range dependencies without
the constraints of local receptive fields, as is the case with CNNs [11,12]. Swin Transform-
ers [13], a variant of the Transformer family [14–17], offer an additional advantage by
enabling both local representations. However, they limit global modeling capabilities in
the Transformer-based methods.

To address these limitations, we have developed the Spatial-Aware Transformer, a
constituent of the Swin Transformer block, to optimize the employment of self-attention
strategies, forge pixel-level correspondences, and augment the faculty of feature repre-
sentation. As Figure 1a shows, our segmentation algorithm may encounter challenges in
accurately identifying certain areas within the image. For instance, in the white box, the
algorithm faces difficulty in distinguishing between an impervious surface and a car within
the local region. Similarly, as illustrated by the yellow box, the algorithm struggles to
differentiate between regions that belong to a car and those that are part of a building. As
Figure 1b shows, the integration of spatial data within the Swin Transformer block via the
Spatial-Aware component engenders a nuanced comprehension of pixel interrelationships,
thereby facilitating improved segmentation accuracy. This approach equips the model with
the capability to take into account not only the immediate local context but also the wider
spatial context, thereby aiding in modeling obscured entities and extracting complex fea-
tures. The integration of the Spatial-Aware component into our methodological approach
yields several benefits. It enhances the feature representation capacity, equipping the model
with the ability to capture the subtleties and complex structures present in remote sensing
imagery with greater finesse. Furthermore, the module augments the model’s capacity
to model global dependencies through the utilization of the self-attention mechanism.
This allows the model to perceive the spatial interrelations between objects, resulting in
precise segmentation.

Figure 1. (a) Some problems that our segmentation algorithm may encounter are, as shown in the
white box, it is difficult for the algorithm to determine whether the area is an impervious surface or a
car in the local range, and as shown by the yellow box, it is difficult for the algorithm to distinguish
whether the area is part of a car or a building. (b) The summary diagram of our method, the Swin
Transformer segmentation picture ignores the importance of global modeling, there is almost no
information exchange between blocks, and we propose a Spatial-Aware Transformer, which focuses
on both the attention segmentation of a single small block and global modeling.



Remote Sens. 2023, 15, 3607 3 of 21

Another critical challenge that plagues remote sensing image segmentation pertains to
the accuracy of edge or boundary segmentation. The complexity of remote sensing imagery
is often exacerbated due to the top-view perspective of many images in datasets. Such
a perspective can obscure the clear demarcation between objects, leading to inaccurate
segmentation outputs, particularly around the objects’ boundaries. It is essential to address
this limitation, given the significance of precise boundary segmentation to the overall
accuracy and utility of the segmentation task. We have integrated a boundary-aware
module into our decoder, serving as a refinement tool that markedly improves boundary
delineation. To this end, we propose the integration of a boundary-aware module into our
decoder. This module brings about substantial improvements in boundary segmentation
and functions as a refinement tool. The boundary-aware module exhibits a heightened
sensitivity to boundary structures, which leads to more precise delineation of segmented
regions. Consequently, the characterization of objects within the scene is significantly
enhanced, contributing to more accurate segmentation outputs. Furthermore, our model
employs a hybrid loss function, incorporating Binary Cross-Entropy (BCE) loss, Structural
Similarity Index (SSIM) loss, and Intersection over Union (IoU) loss. This enables the model
to learn from different aspects of the image.

Experimental evaluations of our proposed modules have exhibited impressive results
and achieved state-of-the-art performance on three renowned datasets: Potsdam, Vaihingen,
and Aerial. These results testify to the SAT’s capability to effectively manage occlusion,
delineate intricate features, and precisely segregate object boundaries, outperforming
existing models.

To sum up, this study presents a pioneering approach toward refining image seg-
mentation in remote sensing. By strategically addressing recognized limitations in current
methods and incorporating unique, targeted enhancements, we offer an innovative so-
lution that not only meets the field’s current needs but also lays a strong foundation for
future advancements.

2. Related Work
2.1. CNN-Based Remote Sensing Image Segmentation

Convolutional Neural Networks (CNNs) [11,12,18,19] have long been recognized as
powerful tools for image analysis due to their ability to learn hierarchical feature representa-
tions from raw image data. They have been particularly successful in various segmentation
tasks, thanks to their robustness in extracting spatial features from images.

Early works applied traditional CNN architectures, such as LeNet [20] and AlexNet [21],
to remote sensing image segmentation tasks. These initial efforts demonstrated the potential
of CNNs in this domain, revealing substantial improvements over traditional machine
learning methods. However, the relatively shallow architectures of these initial CNNs
were limited in their ability to capture complex patterns and structures inherent in remote
sensing imagery.

The advent of deeper architectures, such as VGGNet [22] and ResNet [23], brought
about significant improvements. These deep CNNs, armed with an increased number of
layers, improved the capacity to capture more complex features and patterns within the
remote sensing images. Particularly, ResNet introduced the concept of skip connections,
which mitigated the vanishing gradient problem, thereby allowing for the effective training
of deep networks.

Although deep CNNs offered substantial improvements over their predecessors, they
were primarily constrained by their limited receptive fields, inhibiting their global modeling
capabilities. In the context of remote sensing images, which often encompass intricate spatial
structures and long-range dependencies, this limitation becomes particularly significant.

A range of methods have been proposed to tackle this issue. One notable approach
is the integration of multi-scale features, as demonstrated in the Pyramid Scene Parsing
Network (PSPNet) [24] and the Deeplab family of models [25–27]. These architectures em-
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ploy spatial pyramid pooling and dilated convolutions, respectively, to capture contextual
information at various scales.

Despite these advancements, conventional CNN-based segmentation algorithms still
struggle to fully capture the complex spatial relationships and global context inherent
in remote sensing imagery. This limitation underscores the need for new approaches,
particularly those leveraging Transformer-based models, as explored in the next section.

2.2. Remote Sensing Image Segmentation Based on Self-Attention Mechanisms

The self-attention mechanism, also known as the Transformer, was introduced by [28].
In the domain of natural language processing, unlike CNNs, Transformers are not restricted
by local receptive fields and are capable of capturing long-range dependencies in data,
making them a promising solution for the global modeling challenge in remote sensing
image segmentation.

The self-attention mechanism computes the response at a position as a weighted
sum of the features at all positions in the data. This global context-awareness allows the
Transformer to better capture intricate spatial structures and long-range dependencies that
are characteristic of remote sensing images [19,29–31].

Initial applications of the Transformer in remote sensing image segmentation used
hybrid models, combining CNNs for local feature extraction and Transformers for global
context aggregation [32]. Examples include the Vision Transformer (ViT) [33] and the
TransUNet [34]. These models achieved promising results, underscoring the potential of
Transformers in this domain.

Despite their merits, the application of traditional Transformers to remote sensing
image segmentation is not straightforward due to their high computational cost and the
requirement for large-scale datasets for effective training [35]. To address this, researchers
introduced the Swin Transformer [13], a variant that allows for both local and global
representations, making it more suitable for segmentation tasks.

The Swin Transformer divides the input image into non-overlapping patches and
processes them in a hierarchical manner, thus effectively capturing spatial information
at multiple scales [13]. This characteristic is particularly advantageous in handling the
complex spatial structures of remote sensing images.

Our research builds upon the aforementioned works, seeking to further advance the
field of remote sensing image segmentation. We extend the Swin Transformer model by
incorporating spatial awareness, enhancing its capacity to handle intricate and intercon-
nected objects in remote sensing imagery. Additionally, we introduce a boundary-aware
module to improve edge segmentation, addressing a critical challenge in this domain.

In summary, the research landscape of remote sensing image segmentation reveals
significant progress, with CNN-based models providing the initial groundwork and
Transformer-based models introducing exciting new possibilities. Our work seeks to
contribute to this ongoing progress, offering a novel and comprehensive approach to
enhance global modeling abilities and improve boundary segmentation accuracy.

3. Methods

This section outlines the details of the methods adopted in this research, specifically
focusing on two primary components: the Spatial-Aware Transformer module, which
enhances the global modeling capabilities of our segmentation algorithm, and the Boundary-
Aware Refinement module, which sharpens the boundary segmentation in our output.
These modules operate in conjunction and facilitate a novel and effective approach to
remote sensing image segmentation.

3.1. Network Architecture

Figure 2 presents the comprehensive structure of our algorithm, melding U-Net’s
straightforward yet sophisticated traits. This is achieved by employing a skip connection
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layer to bridge the encoder and decoder and integrating two primary components: the SAT
and the mask refinement module.

Figure 2. Architecture of our proposed method, which contains two important modules: Spatial-
Aware Transformer, and Boundary-Aware Refinement module. The input image is divided into n
small patches and processed through the encoder, which includes several spatial-aware transformer
modules. The encoder’s output is then fed into the bottleneck layer to extract deeper-level feature
information, and the output of the bottleneck layer is passed to the decoder. The rough predicted
mask from the decoder is input into the refine module to obtain the edge-optimized predicted mask.

In the encoder segment, the initial step involves taking the remote sensing image
slated for division as the input and dissecting it into non-overlapping segments, each of
which we consider as a token. These tokens are not inherently connected in the context of
the language model. However, in the Vision Transformer (ViT), not only are the segments
interconnected, but the pixels within these segments also share robust linkages.

To augment the semantic correlation among pixels, we establish the segment size at
8× 8 and set the overlapping percentage to 50%. Subsequently, each divided segment
undergoes a Linear Embedding process, acquiring the feature of the c-dimension. This
feature is then inserted into the Spatial-Aware Transformer module, effectively mitigating
the constraint of window self-attention, allowing for global pixel-level information pairing,
and reducing the semantic uncertainty induced by obstruction.

Next, the encoder’s output is routed into the bottleneck layer, constructed from a
pair of Spatial-Aware Transformer modules, without altering the feature dimension. This
process enables the maximum possible exploration within the features. The resultant
output from the bottleneck layer is then fed into the decoder layer to generate a preliminary
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prediction mask. Then, this mask is processed through the Boundary-Aware module to
produce the final refined prediction mask.

3.2. Transform Module with Spatial Awareness

The basis of our Spatial-Aware Transformer module is the Swin Transformer, a spe-
cialized variant of the generic Transformer model, which has seen significant success in
a myriad of visual tasks. We first delineate the fundamental principles behind the Swin
Transformer before delving into the specifics of our proposed module.

3.2.1. Swin Transformer

The distinctive feature of the Swin Transformer is its “shifted window” approach to
partitioning an input image. The process commences by dividing the input image into
miniature patches, each measuring 4 px by 4 px. Each of these patches has three channels,
summing up to 48 feature dimensions (4× 4× 3 = 48).

These patches, each of 48 dimensions, are subsequently linearly transformed into a
dimensionality denoted as C, effectively converting these patches into vectors of dimension
C. The choice of C is a design choice that impacts the size of the Transformer model and,
consequently, the number of hidden parameters in the model’s fully connected layers.

The Swin Transformer revolutionizes image processing by transitioning from the
Vision Transformer’s quadratic computational approach to a more streamlined linear
complexity. This is achieved by focusing self-attention within local windows rather than
globally, making the Swin Transformer more adept at dense recognition tasks and versatile
in remote sensing applications.

Moving on, as depicted in Figure 3, the blue box signifies the Swin Transformer’s
primary operation. We designate the input as ‘I’. Prior to feeding ‘I’ into the transformer,
an initial patch merging is executed, which serves the dual purpose of downsampling and
setting the stage for hierarchical structure formation. This not only minimizes resolution
but optimizes the channel count, conserving computational resources. In particular, each
downsampling doubles, selecting elements at intervals of two both in rows and columns of
the input feature ‘I’, which are then amalgamated into a single tensor. At this stage, the
channel dimension increases 4-fold, which is subsequently fine-tuned to twice its original
size via a fully connected layer.

Figure 3. Architecture of the Spatial-Aware Transformer module.

Diving into specifics, the output from the fully connected layer is input into the
transformer module. Here, post layer normalization, Window Self-Attention (Win-SA)
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is performed. The resultant attention-modulated features are then passed through an-
other layer normalization layer followed by a Multilayer Perception (MLP) layer. The
mathematical representation is as follows:

f̂t = Win− SA
(

LNorm
(

ft−1
))

+ ft−1

ft = MLP
(

LNorm
(

f̂t
))

+ f̂t
(1)

where ft−1 denotes the input feature of the transformer module, ‘LNorm’ signifies layer
normalization, and ‘Win-SA’ represents Window Multi-head Self-Attention. The term f̂t

reflects the sum of the output feature from Window Self-Attention and the input feature.
At this juncture, input image features are segmented into W ×W blocks, with each block
treated as a window where self-attention is performed. This strategy effectively mitigates
the computational strain of the Vision Transformer, which can struggle with handling large
image features. Additionally, the window size is a flexible hyper-parameter that is typically
chosen based on computational efficacy and task demands. In this experiment, we chose
W as 8 for ease of feature computation and practicality.

However, partitioning image features into smaller windows comes at the expense of
the self-attention mechanism’s core premise, wherein any feature point should be able to
communicate with others. The fact that attention is restricted within windows results in
a lack of inter-window information exchange. To counter this, a window shift operation
is employed, involving passing the ft−1 feature through the layer normalization layer
and feeding it into the Shifted Window Self-Attention (SWin-SA) module. Thereafter, the
attention-matched feature is passed through another layer normalization layer and an MLP
layer. This process can be mathematically represented as follows:

f̂t+1 = SWin− SA
(
LNorm

(
ft))+ ft

ft+1 = MLP
(

LNorm
(

f̂t+1
))

+ f̂t+1 (2)

where f̂t+1 indicates the combined output features and input feature after the Shifted
Window Self-Attention operation, and ft+1 represents the combined output of the MLP
layer and f̂t+1. This step helps ensure that the essential aspect of self-attention—interaction
between different feature points—is retained.

3.2.2. Spatial-Aware Transformer

As we pivot to the Spatial-Aware Transformer, it is important to recognize a trade-off
with the Swin Transformer block. Although it efficiently establishes relationships among
patch tokens within a bounded window and reduces memory consumption, there is a
downside: it marginally impedes the Transformer’s ability to model global relationships.
This constraint remains despite the use of alternating standard and shifted windows.

Delving into the specifics, in remote sensing imagery, the obscuring of ground objects
frequently leads to indistinct boundaries. Addressing this requires the integration of spatial
information for sharpening the edges. Hence, as a solution, we introduce the Spatial-
Aware Transformer (SAT) in alliance with the W-Transform and SW-Transform blocks.
This integration facilitates enriched information exchange and encodes more nuanced
spatial details.

Notably, SAT distinguishes itself by employing attention mechanisms across two spa-
tial dimensions. In doing so, it focuses on the interrelationships between individual pixels,
rather than solely on patch tokens. This adaptation makes the transformer particularly
adept at handling image segmentation tasks. For visual clarity, the constituents of SAT are
graphically represented in Figure 3.

During stage m, the W-Transform block takes an input feature ft−1 ∈ R(h×w)×c1 and
reshapes it into s ∈ Rh×w×c1 . For clarity, let’s define c1 = 2m−1C1, ht =

(
H/

(
2m+1)),

and wt =
(
W/

(
2m+1)). The next step involves processing feature s through a 3 × 3
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dilated convolution layer with a dilation rate of 2. This operation revitalizes the structural
information of the feature map by expanding its receptive field and, at the same time,
reduces the number of channels to c1/2 for the sake of efficiency.

Following this, global average pooling comes into play to distill the spatial statistics in
both vertical and horizontal directions from the feature map. To provide more detail on
this aspect, the calculation for elements in each direction is articulated as follows:

vk
hti

=
1
w

wt−1

∑
j=0

ŝc
2(i, j)

vk
wtj

=
1
h

ht−1

∑
i=0

ŝc
2(i, j)

(3)

where i, j, and c2 act as indices for the vertical and horizontal directions, and the channel,
respectively, where 0 ≤ i < ht, 0 ≤ j < wt, 0 ≤ k < c1/2. We formulate the feature ŝ as f (s),
with f (·) denoting a dilated convolution layer, incorporating batch normalization and the
GELU activation function. The accumulated tensors in the vertical and horizontal directions,
calculated as per Equation (3), are represented as vht ∈ Rht×1×(c1/2) and vwt ∈ R1×w×(c1/2),
respectively.

The tensors vht and vwt merge the pixel-level weights of the feature map spatially. The
resulting product forms the position-aware attention map AM, defined as AM ∈ Rht×wt×(c1/2).
Subsequently, the output feature map FR of SAT is achieved by combining AM and the
output of the SWin-Transform block, denoted as ft+1. It is vital to remember that a convo-
lutional layer enlarges the dimensions of AM to align with the dimensions of feature ft+1.
Thus, feature FR ∈ Rht×wt×c1 emerges, as depicted below:

FR = ft+1 ⊕ ϕ(vht⊗ vwt) (4)

where “⊗” represents matrix multiplication and “⊕” is used to denote element-wise
addition. Furthermore, “ϕ(·)” is indicative of a 1× 1 convolutional layer, which employs
batch normalization coupled with the GELU activation function.

In summary, the Swin Transformer block, with its local window-based self-attention
operation and accompanying MLP, provides an efficient and effective method for handling
image data within the Transformer model context. Its design and operations have made
significant contributions to the field of remote sensing image segmentation tasks.

3.3. Boundary-Aware Refinement Module

To address the challenge of accurate boundary segmentation in Spatial-Aware Trans-
formers, we introduce a two-step modification: integrating a bottleneck layer behind the
encoder and inputting the coarse prediction mask into a boundary refinement module.

3.3.1. Bottleneck Layer Integration

The Bottleneck Layer Integration module is designed to leverage the hierarchical
representation power of the Swin Transformer and enhance its segmentation performance.
By incorporating two consecutive Swin Transformer modules as the bottleneck layer,
we enable the model to capture more complex spatial dependencies and obtain deeper
contextual information.

Let X ∈ RH×W×C denote the input feature map to the Bottleneck Layer Integration
module, where H represents the height, W represents the width, and C represents the
number of channels. The feature map X is processed by the first Swin Transformer module,
denoted as f (1)Swin. This module applies self-attention mechanisms and feed-forward net-

works to refine the feature representation. The output of f (1)Swin is denoted as Y ∈ RH×W×C′ ,
where C′ represents the number of output channels.
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The output feature map Y is then fed into the second Swin Transformer module,
denoted as f (2)Swin. This module further refines the feature representation by applying

self-attention mechanisms and feed-forward networks. The output of f (2)Swin is denoted as
Z ∈ RH×W×C′′ , where C′′ represents the final number of output channels.

To integrate the bottleneck layer into the overall segmentation architecture, the output
feature map Z is concatenated with the input feature map X. The concatenation operation
is performed along the channel dimension, resulting in a fused feature map X ⊕ Z ∈
RH×W×(C+C′′).

To ensure the consistency of feature dimensions throughout the network, a 1 × 1
convolutional layer is applied to X⊕Z to adjust the number of channels back to the original
value. The output of this convolutional layer is denoted as B ∈ RH×W×C, representing the
integrated bottleneck layer.

The Bottleneck Layer Integration module enriches the segmentation model with deeper
contextual information and enhances its ability to capture complex spatial dependencies. By
employing two consecutive Swin Transformer modules as the bottleneck layer, our model
achieves improved segmentation performance and higher-level feature representation.

3.3.2. Refinement Module

As Figure 4 shows, the refinement module is comprised of several components: a 3× 3
convolutional layer, batch normalization, a ReLU activation function, and a max-pooling
operation. Each of these components is integrated into every convolutional kernel layer
during the encoding phase. Transitioning to the decoding phase, the model employs
bilinear interpolation as its upsampling technique. Post-upsampling, convolutional layers
and long skip connections are strategically implemented. These connections bridge the
respective decoders and encoders, thereby facilitating the incorporation of supplemental
contextual information. This streamlined structure ensures efficiency while preserving the
critical attributes of the data through various stages of processing.

Figure 4. On the left is a schematic diagram of the refinement module. On the right is the segmented
contrast image with and without the refinement module, (a) represents the segmented image with
the refinement module, and (b) represents the comparison image without the refinement module.
Different colors in the image represent different segmented objects.

3.3.3. Conjoint Loss Function

The model utilizes a conjoint loss function, incorporating BCE loss, SSIM loss, and IoU
loss. This allows the model to glean insights from various facets of the image. The hybrid
loss function is defined as follows:

LOSS = αLOSSBCE(U, Û) + βLOSSSSIM(U, Û) + γLOSSIOU (5)

In the given formulation, we have LOSSBCE, LOSSSSIM, and LOSSIOU representing
the BCE loss, SSIM loss, and IoU loss, respectively. The ground truth is denoted by U, the
predicted output is Û, and α, β, and γ are the weights assigned to each loss component.

Binary Cross-Entropy Loss
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The BCE loss function is extensively employed for binary classification tasks. It
assesses the performance of a classification model that generates probability values ranging
from 0 to 1. The BCE loss is defined as:

LOSSBCE(U, Û) = 1− (U · log(Û) + (1−U) · log(1− Û)) (6)

where U represents the actual label, Û represents the predicted label.

Structural Similarity Index Loss

The Structural Similarity Index (SSIM) loss function is a perceptual loss function
employed to quantify the similarity between two images. It compares the local patterns of
normalized pixel intensities and is commonly employed as a metric for image similarity.
The SSIM index is computed using image windows:

LOSSSSIM(U, Û) = 1−
(2µUµÛ + X)(2σUÛ + Y)

(µ2
U + µ2

Û
+ X)(σ2

U + σ2
Û
+ Y)

(7)

Here, U and Û represent the ground truth image and the predicted (reconstructed)
image, respectively, µU and µÛ denote their respective averages, σUÛ represents the covari-
ance between U and Û, and X and Y are variables employed to stabilize the division with
a weak denominator.

Intersection over Union (IoU) Loss

The IoU loss measures the overlap between two bounding boxes and can be employed
as a loss function for object detection tasks. The IoU is computed by dividing the area of
intersection between two bounding boxes by the area of their union, as follows:

LOSSIOU = 1− Ar_intersect
Ar_union

(8)

where we denote the intersection area as “Ar_intersect” and the union area as “Ar_union”.
In conclusion, the proposed method produces an optimized prediction mask, demon-

strating improved boundary segmentation performance. This highlights the novel applica-
tion of the Spatial-Aware Transformer in addressing existing challenges in remote sensing
image segmentation.

4. Experiments
4.1. Datasets

Our study was validated on the basis of two types of datasets. First, the COCO
dataset, known for its variety and comprehensive feature set. The COCO dataset offers us a
multitude of annotated everyday objects, facilitating the early-stage learning of distinctive
features. Subsequently, we employ three remote sensing datasets, Vaihingen, Potsdam, and
Aerial, each providing high-resolution imagery capturing diverse landscapes.

4.1.1. Vaihingen Dataset

The Vaihingen dataset is provided for the semantic segmentation of urban scenes. It
contains aerial images of Vaihingen along with ground truth labels. The on-board scanner
provides these images with very high resolution, which makes them a good choice for
evaluating the performance of segmentation algorithms. The Vaihingen dataset includes
several different types of urban features. The high resolution of the images (approximately
9 cm per pixel) enables the detection and classification of these classes at a high level of
detail. The Vaihingen dataset has been used in numerous studies on semantic segmentation
and other related tasks in remote sensing.
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4.1.2. Aerial Imagery Datasets

This dataset comprises images captured from an airborne perspective, such as from
a drone, plane, or satellite. Aerial image datasets are widely used in the computer vision
field to facilitate a variety of tasks like image segmentation, object detection, and scene
recognition. They are key to many applications, including land cover mapping, urban
planning, environmental monitoring, disaster management, and military reconnaissance.
Aerial images present unique challenges due to their high-resolution, large coverage area,
and variations in view angles, lighting conditions, and land cover types.

4.1.3. Potsdam Dataset

The Potsdam dataset is a popular benchmark dataset provided for 2D Semantic
Labeling. The ground sampling distance is approximately 5 cm, offering high detail. The
dataset provides corresponding ground truth images where each pixel has been labelled
with one of six categories, as shown in Figure 5. In the course of our experimental process,
each image within the dataset is constituted by three distinct channel combinations: namely,
Infrared-Red-Green (IR-R-G), Red-Green-Blue (R-G-B), and a four-channel variant Red-
Green-Blue-Infrared (R-G-B-IR). We employed a dataset comprised of 17 images for training,
each possessing the R-G-B channel combination. The remaining seven R-G-B images were
assigned for the testing. For both training and testing, the original images were uniformly
cropped to patches of 256× 256 pixels to maintain consistency in the data handling and
processing workflow.

Figure 5. Proportion of each semantic label in the Vaihingen and Potsdam datasets.

4.2. Implementation Details

We utilize a 12 GB 2080Ti GPU to train our model, employing the Adam optimization
function and PyTorch as the programming language. Figure 6(3) illustrates our training
procedure, which begins with pre-training the remote sensing segmentation model on the
image dataset. This is subsequently followed by the primary training phase on the remote
sensing dataset.

4.2.1. Pre-Training and Fine-Tuning Strategy

Our training strategy adopts a two-pronged approach. First, we employ the COCO
dataset to pre-train our model, which takes approximately 30 h, utilizing a learning rate of



Remote Sens. 2023, 15, 3607 12 of 21

0.001 and the Adam optimizer. Subsequently, the model is fine-tuned on our remote sensing
datasets. Model parameters stem from the pre-training, and we adjust the learning rate
to 0.0001 to cater to the simpler nature of remote sensing images. This tailored approach
ensures the model’s proficiency in managing various occlusion cases and intricate object
details pertinent to remote sensing. For data augmentation, we utilize random scaling,
cropping, and both horizontal and vertical flipping to bolster the model’s resilience to
different scenarios.

Figure 6. Our three different training strategies. Scheme 1 involves training only on a large-scale
image dataset, specifically the COCO dataset. Scheme 2 involves training solely on remote sensing
datasets, namely the Potsdam and Vaihingen datasets. The third Scheme is to perform pre-training
on a large-scale image dataset and then conduct primary training on remote sensing datasets.

4.2.2. Model Configuration

The configuration of the Spatial-Aware Transformer and the Boundary-Aware Refine-
ment module is specifically tailored to meet the unique requirements of remote sensing
image segmentation. The Spatial-Aware Transformer comprises four stages, each with
hidden dimensions of 96, 192, 384, and 768, and window sizes uniformly set at 7. The
bottleneck layer is designed with 1024 channels. Training is executed in mini batches, each
containing 16 images, and the process is carried out over 50 epochs.

4.2.3. Evaluation Metrics and Benchmarks

The efficacy of our model is primarily evaluated using IoU and boundary F1, which
serve to validate the efficiency of both segmentation and boundary delineation. In addition,
we employ Precision and Recall metrics to ensure a comprehensive assessment. Our
performance benchmarks are established based on the current leading segmentation models
for remote sensing, with a particular emphasis on models that have been trained on the
Vaihingen and Potsdam datasets.

4.3. Ablation Study

This paper requires ablation experiments on the Vaihingen dataset to verify the validity
of the method and thus to discern the importance of each module.

4.3.1. Pre-Training and Main Training

Figure 6 presents three distinct training methodologies. The first approach involves
training exclusively with the Potsdam datasets, the second employs only remote sensing
image datasets, and the final method is a combination of pre-training and main training,
which is the strategy we have adopted. Table 1 depicts the training accuracy corresponding
to these three methods. An interesting observation is that the accuracy of the model trained
solely with images surpasses that of the model trained only with video sets, underscoring
the significance of dataset size in the training process. These experiments demonstrate that
the abundant static image resources utilized in pre-training can contribute to enhancing
the robustness of our network. Consequently, we employ a combination of pre-training
and main training strategies to ensure that our model achieves optimal results.
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Table 1. Ablation experiment of three different strategies on the Vaihingen dataset.

Network Structure MIoU (%) Average F1 (%)

Scheme 1 65.26 74.57
Scheme 2 64.31 71.92
Scheme 3 74.88 81.44

4.3.2. Spatial-Aware Transformer Module

In order to evaluate the effectiveness of the Spatial-Aware Transformer (SAT) module,
we conduct an ablation study where we systematically remove or modify certain compo-
nents of the SAT and observe the impact on the model’s performance. The goal of this
study is to understand the contribution of each component to the overall performance of
the model.

We start with a baseline model, which is the Swin Transformer without any modifica-
tions. We train this model on the same datasets and evaluate its performance.We modify
the SAT to not include the spatial information in the Swin Transformer block. This will help
us understand the impact of embedding spatial information into the Transformer block.

For each of these experiments, we measure the model’s performance on the Vaihingen
datasets using the same evaluation metrics. We compare the performance of each variant
with the baseline model and the full SAT model to understand the contribution of each
component. As shown in Table 2, with the help of the Spatial-Aware Transformer module,
the MIoU mean and average F1 mean are improved by 6.5% and 1.4%.

Table 2. Ablation experiment of the Spatial-Aware Transformer on the Vaihingen dataset.

Network Structure MIoU (%) Average F1 (%)

Ours 74.88 81.44
Swin Transformer [13] 68.35 80.01

Vision Transformer [33] 66.35 79.13

4.3.3. Boundary-Aware Refinement Module

An ablation study was carried out to understand the contribution of the Boundary-
Aware Refinement module in our Spatial-Aware Transformer (SAT). The study involves
training three versions of the SAT: one with the Boundary-Aware Refinement module
(referred to as SAT-B) one without a refinement module (referred to as SAT-NR), and
one without the entire Boundary-Aware Refinement module (referred to as SAT-NB).
The ablation experiments on the effect of the Boundary-Aware Refinement module were
implemented on the Vaihingen dataset. The performance of both models is evaluated using
the same metrics. Finally, we compare the performance of SAT-B, SAT-NR, and SAT-NB. As
shown in Table 3, the improvement in the performance metrics indicates the effectiveness
of the boundary-aware SAT-B module in the task of remote sensing image segmentation.
The MIoU mean and average F1 mean are improved by 2.9% and 1.8%. Figure 7 shows
the comparison of the training accuracy of several different loss functions in our model
training, and it can be seen that the training effect of our mixed loss function is the best.

Table 3. Ablation experiment of the Boundary-Aware Refinement module.

Network Structure MIoU (%) Average F1 (%)

SAT-B 74.88 81.44
SAT-NR 72.87 80.21
SAT-NB 71.92 79.76
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4.4. Comparisons to State-of-the-Art Methods
4.4.1. Vaihingen Dataset

Table 4 shows a summary of the comparison between the different state-of-the-art
methods, including the proposed methods, in terms of their performance on the aerial
validation set. The results are sorted by IoU for impervious surfaces.The table includes
eight different methods: Unet, Swin-UNet, FCN, TransUNet, Upernet, DANet, Deeplab
V3+, and our method. Each method is evaluated based on seven performance metrics: IoU
for impervious surfaces, buildings, low vegetation, trees, and cars, as well as the mean IoU
and average F1 score.

Figure 7. Ablation experiment of loss functions on the Vaihingen dataset.

Table 4. Comparison using Vaihingen validation sets. Results are sorted by IoU of impervious surface.

IoU (%) Evaluation Index (%)

Method Impervious Surface Building Low Vegetation Tree Car Mean IoU Average F1

Unet [13] 67.92 73.47 49.99 68.01 31.03 58.37 71.86
Swin-UNet [4] 72.03 82.46 56.97 72.02 58.30 66.46 80.01
FCN [3] 75.32 79.08 55.79 71.14 40.11 63.57 76.97
TransUNet [34] 73.58 80.86 54.97 70.98 54.63 68.33 80.03
Upernet [36] 72.91 80.99 55.89 72.24 47.31 64.74 79.06
DANet [37] 72.97 82.01 57.08 72.57 43.57 65.25 77.92
Deeplab
V3+ [38] 73.95 84.33 55.86 72.65 51.43 67.27 80.69

Ours 77.73 82.39 75.38 77.59 61.31 71.60 81.44

A meticulous analysis of the table reveals that the proposed method, denoted as
’our’ method, outperforms the other seven methods in terms of mean IoU (71.60%) and
average F1 score (81.44%). This suggests a higher overall accuracy and harmonic mean of
precision and recall, respectively, for the proposed method. Moreover, our method exhibits
exceptional performance in the IoU of low vegetation (75.38%), which is significantly higher
compared to the rest. For the IoU of impervious surfaces and trees, our method yields
scores of 77.73% and 77.59%, respectively, indicating competitive results.
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In contrast, methods like Unet and FCN have relatively lower scores across the board,
suggesting their limitations in handling this particular dataset.

Figure 8 presents a comparative analysis of segmentation outcomes between our
technique and other cutting-edge methods utilizing the Vaihingen dataset, depicted in
Figures 1–3 and 5. It is evident that our approach yields more precise identification results.

Figure 8. Comparison of segmentation results on the Vaihingen dataset. (a) represents the Swin
Transformer and (b) represents the Vision Transformer.

This heightened accuracy can be attributed to a combination of pre-training on the
COCO image dataset and the integration of our Spatial-Aware module, which together
enhance our capability to discern different targets with a finer granularity. A case in point
is the swimming pool in the fourth image, which is accurately segmented solely by our
method. Furthermore, the incorporation of the Boundary-Aware Refinement module in
our approach lends itself to achieving smoother object boundaries. This is particularly
observable in the seventh image, where the segmentation is characterized by remarkably
defined edges. This streamlined analysis not only maintains conciseness but also offers
clear insights into the merits of our method in comparison to others, particularly in terms
of target identification and edge optimization.

In conclusion, the proposed method demonstrates superiority in handling aerial
validation sets, especially in extracting features of low vegetation, impervious surfaces, and
trees with higher precision and reliability compared to other state-of-the-art methods.

4.4.2. Potsdam Dataset

Table 5 provides a comparative analysis of the segmentation outcomes for each method
on the Potsdam dataset; it is discernible that our method surpasses all the other techniques
with an average F1 score of 83.00%. This evidences a higher harmonic mean between
precision and recall. Additionally, our method demonstrates a striking performance in the
IoU of low vegetation, with a score of 76.23%, which is markedly superior compared to the
others. In terms of IoU for impervious surfaces, our method excels with a score of 78.29%,
while for trees it exhibits a highly competitive score of 77.10%. A notable observation is
that Upernet performs exceptionally in the category of buildings with an IoU of 85.51%.
Nonetheless, our method showcases a more balanced and consistent performance across
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all categories. Contrarily, FCN appears to be less efficacious as per the table, especially in
categories like Car IoU, where it scores only 30.83%.

Figure 9 illustrates the segmentation outcomes achieved by our method on the Pots-
dam dataset. Our method’s efficacy in segmenting complex objects is commendable, which
is a direct consequence of employing the Spatial-Aware Transformer algorithm. For in-
stance, a close examination of the images in the second and fourth rows of the first column
reveals intricate objects adeptly segmented. Moreover, our model excels in handling objects
with convoluted edges, owing to the integration of the Boundary-Aware Refinement mod-
ule. This is particularly evident in the images located in the first row of the third column
and the fourth row of the third column, where the segmentation of objects with intricate
edges is astutely precise. Figure 10 shows the segmentation performance of our algorithm
in more complex environments, with images derived from the results of the Vaihingen
dataset and the Potsdam dataset.

Figure 9. Comparison of segmentation results on the Potsdam dataset.

Table 5. Comparison using Potsdam validation sets. Results are sorted by IoU of impervious surface.

IoU (%) Evaluation Index (%)

Method Impervious Surface Building Low Vegetation Tree Car Mean IoU Average F1

FCN [3] 67.32 74.74 50.65 67.68 30.83 58.28 71.53
UNet [4] 71.83 82.23 56.65 72.37 48.19 64.97 81.43
Swin-Unet [13] 75.80 79.00 54.36 70.04 42.53 63.15 77.16
TransUNet [34] 74.22 80.86 56.39 70.10 55.99 67.93 79.31
Deeplab V3+ [38] 73.00 82.25 56.17 73.33 46.49 64.09 80.32
DANet [37] 73.49 81.39 56.68 73.82 45.01 65.59 76.71
Upernet [36] 72.83 85.51 56.71 71.87 52.59 68.47 79.10

Ours 78.29 83.71 76.23 77.10 62.43 70.52 83.00
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Figure 10. More results on the Vaihingen dataset and Potsdam dataset.

This analysis effectively communicates the key strengths of our method in dealing
with complex objects and intricate edges, and presents the information in a coherent and
concise manner.

In summary, the proposed method epitomizes robustness and reliability in dealing
with Potsdam validation sets, rendering it an optimal choice for comprehensive and precise
feature extraction. Moreover, its performance is particularly noteworthy in the evaluation
of low vegetation, impervious surfaces, and trees.

4.4.3. Aerial Dataset

As shown in Table 6, it is evident that our proposed method outperforms the other
approaches in terms of the mean Pixel Accuracy (mPA), mean Precision, mean Recall,
and mean Intersection over Union (mIoU) for the roof category, with scores of 80.26%,
89.01%, 91.36%, and 98.49%, respectively. Notably, the mIoU for the roof category is
exceptionally high, nearing perfection, which indicates an outstanding ability to correctly
identify the relevant objects. In the context of the background category, our method
also demonstrates superior performance. The mPA, mPrecision, mRecall, and mIoU are
97.91%, 97.26%, 98.00%, and 98.17%, respectively, which are amongst the highest scores
in comparison to the other methods. Among the competing methods, Swin-UNet has the
second-highest performance in the roof category in terms of mPA, with a score of 79.12%.
For the background category, Swin-UNet also showcases remarkable results, especially in
terms of mPA, mPrecision, and mRecall. It is crucial to mention that Swin-UNet achieves a
notably high mRecall of 98.03% in the roof category, suggesting its proficiency in detecting
relevant objects, though it does not lead in other metrics.
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Table 6. Comparison using Aerial validation sets. Results are sorted by IoU of impervious surface.

Roof (%) Background (%)

mIoU mPA mPrecision mRecall mIoU mPA mPrecision mRecall mIoU

Unet [13] 72.39 83.41 81.36 86.34 81.85 87.89 91.39 96.21
Swin-UNet [4] 79.12 88.31 89.76 88.24 96.21 98.03 98.37 98.22
FCN [3] 76.52 81.01 83.93 81.59 80.32 84.09 96.39 97.13
TransUNet [34] 77.58 84.83 84.97 82.30 86.26 94.22 80.43 92.96
Upernet [36] 75.84 82.01 86.33 80.59 86.31 94.37 89.27 93.37
DANet [37] 76.77 82.50 86.37 81.00 81.32 96.30 87.16 94.21
Deeplab V3+ [38] 75.03 85.98 85.87 90.54 89.10 88.06 92.31 95.54

Ours 80.26 89.01 91.36 98.49 97.91 97.26 98.00 98.17

In Figure 11, the segmentation outcomes of our approach using the Aerial Imagery
dataset are displayed. It is evident that our method yields both exceptional and consis-
tent results. Furthermore, our algorithm demonstrates a remarkable ability to accurately
segment dense building complexes, as is clearly illustrated in two instances—the second
image in the first row and the image in the second column of the second row. This precise
segmentation in complex scenarios highlights the robustness and efficacy of our method.

Figure 11. Comparison of segmentation results on the Aerial dataset.

In summary, our method evidently leads in performance across the board, demonstrat-
ing superiority in both the roof and background categories. This can be attributed to likely
advancements in the architecture or training techniques employed. The table efficiently
highlights these achievements and provides a clear comparative analysis among several
state-of-the-art approaches.

4.5. Limitations

Our method, despite showing significant promise, acknowledges room for enhance-
ment. As displayed in Figure 12, the segmentation results for elements like ‘car’ and ‘road’
are somewhat rough around the edges, indicating the need for more precise segmentation
of smaller objects within the image. Throughout our experimental process, we identified in-
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stances of semantic confusion appearing in certain segmentation outcomes. Such confusion
typically manifests in images comprising categories that are semantically similar.

In conclusion, while our model may occasionally falter under specific extreme condi-
tions, it consistently delivers high-quality segmentation results in the vast majority of cases.
It proves especially adept at handling situations characterized by occlusion, distractions,
and intricate object appearances. Furthermore, our network strikes an exceptional balance
between accuracy and processing speed, underpinning its robust performance.

Figure 12. Unperfect results.

5. Conclusions

This paper presents a novel Spatial-Aware Transformer module and Boundary-Aware
Refinement module, enhancing the Transformer segmentation algorithms for improved
remote sensing image segmentation accuracy. The performance was evaluated using
two remote sensing datasets: Vaihingen and Potsdam. The Spatial-Aware Transformer
achieved a significant increase in the mean Intersection over Union (mIoU). Specifically,
the mIoU reached 74.88% on the Vaihingen dataset and 75.55% on the Potsdam dataset.
The Boundary-Aware Refinement module demonstrated superior accuracy in boundary
segmentation. It achieved a Boundary F1 score of 81.44% and 83.00% on the Vaihingen
and Potsdam datasets, respectively. These results validate the utility of our innovative
approach and demonstrate a significant potential for its application in remote sensing
image segmentation tasks. However, additional research is required to handle more diverse
and complex remote sensing tasks. Future work will focus on refining and expanding our
method to further advance the state-of-the-art in remote sensing image segmentation.
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