
Citation: Sa, R.; Fan, W. Estimation of

Forest Parameters in Boreal Artificial

Coniferous Forests Using Landsat 8

and Sentinel-2A. Remote Sens. 2023,

15, 3605. https://doi.org/10.3390/

rs15143605

Academic Editor: Klaus Scipal

Received: 16 May 2023

Revised: 14 July 2023

Accepted: 17 July 2023

Published: 19 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Estimation of Forest Parameters in Boreal Artificial Coniferous
Forests Using Landsat 8 and Sentinel-2A
Rula Sa and Wenyi Fan *

Key Laboratory of Sustainable Forest Ecosystem Management—Ministry of Education, School of Forestry,
Northeast Forestry University, Harbin 150040, China; sarula@nefu.edu.cn
* Correspondence: fanwy@nefu.edu.cn; Tel.: +86-139-4605-5384

Abstract: In order to evaluate forest quality and carbon stocks and improve our understanding of
ecosystems and carbon cycling processes, the accurate measurement of aboveground biomass (AGB)
and other forest characteristics is crucial. This paper considers the response differences between the
bands obtained from Landsat 8 and Sentinel-2A sensors, respectively, and combines the exhaustive
combination of spectral indices with normalization and ratio techniques to establish suitable weights
for the bands in the vegetation index using relative sensitivity and noise equivalent (NE) to improve
the saturation effect between the vegetation index and forest parameters (canopy closure (CC), forest
stand density (S), basal area (BA), and AGB) and extend the linear relationship between them. This
paper also considers the effects of window size, direction, and principal component analysis on
texture features, adds weight to textures and combines textures using linear correlation and NE,
establishes texture indices to improve the limitations of information contained in individual texture
features, analyzes the potential of texture features to evaluate each forest parameter under different
conditions, and better captures the variation of forest parameters. In this paper, we only analyze the
planted coniferous forest in Saihanba to avoid the differences in electromagnetic wave effects that
are difficult to judge and analyze because of the differences in leaf size and leaf orientation between
coniferous and broad-leaf forests. In contrast, the vegetation indices and texture indices obtained
from Sentinel-2A could better estimate each vegetation parameter, and the linear estimation of each
vegetation parameter using the new texture index reached an R2 above 0.65. The results of this
study indicate that Sentinel-2A and Landsat 8 are promising remote sensing datasets for estimating
vegetation parameters at the regional scale, and Sentinel-2A data can be employed as the primary
source of earth observation data for assessing forest resources in the Saihanba area.

Keywords: Landsat 8; Sentinel-2A; texture index; vegetation index

1. Introduction

The rising levels of CO2 in the atmosphere and its effects on the environment have
drawn public attention and have been addressed as a worldwide problem in recent decades.
Forest areas play a significant role in measuring the global carbon cycle and climate change
in this case [1]. Forests are the most structurally complex and functionally rich terrestrial
ecosystems and among the regions with the richest natural resources around the world [2].
Sustainable forest management depends extensively on the quantitative monitoring of
stand parameters, such as growing stem volume (GSV), BA, AGB, S, forest height, etc. [3].
Canopy closure refers to the ratio of the total projected area (crown width) of the tree crowns
in the forest under direct sunlight to the total area of the forest (stand), visually reflecting
the denseness of the forest canopy and the planting density of single trees, and laterally
reflecting the efficiency of photosynthesis and measuring the growth of the forest [4,5].
Forest stand density is the main factor affecting the structure and function of the forest
ecosystem and is an important indicator in forest resources surveys, with a very important
impact on the growth and development of forest trees [6]. The increase in the basal area
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implies an increase in forest stand density and an increase in the number of elements
(branches and leaves) that scatter and absorb electromagnetic radiation [7]. Aboveground
biomass is the mass of organic matter growing above the ground per unit area and is one
of the key parameters for assessing aboveground carbon stocks and carbon emissions [8,9].
The accurate estimation of forest structure parameters on a global scale contributes to a
better understanding of ecosystems and carbon cycling processes [10]. Boreal coniferous
forests are the largest biomes in the world, with abundant carbon accumulation capacity,
and so the estimation of their forest parameters is particularly noteworthy [8].

Remote sensing has the advantages of long time series, active and passive sensors,
repeated earth observations, acceptable accuracy, and relatively low cost. It has a wide
range of applications for obtaining information on biophysical variables and forest structure
parameters over large areas [11]. In terms of data archiving, availability, spatial coverage,
resolution, and data processing load, optical images with high spatial and temporal reso-
lution are the best option for the extensive dynamic monitoring of forest parameters [12].
Over the years, optical sensors have evolved into a major source of information to support
forest decision support tools that utilize the natural radiation of the sun to capture canopy
information and associated canopy shading, providing a two-dimensional view of forest
and other surface features. Aggregated spectral features (reflectance or vegetation indices)
have the advantages of global coverage, repeatability, and cost-effectiveness and contain
vegetation information that characterizes the distribution of forest structure [13–16]. As
far as optical sensors are concerned, Landsat is one of the most widely used datasets
because it provides freely acquired images with high temporal coverage and medium
spatial resolution [17]. Landsat has continuously covered the land surface for more than
50 years since the first satellite was launched in 1972 and has been used effectively for the
regular monitoring of forest and vegetation dynamics [18]. The AGB and Landsat 8 spectral
variables were found to be linearly correlated in the Gizachew study, which came to the
conclusion that this approach is appropriate for the baseline monitoring as well as reporting
of biomass in low-biomass, low-density stands in REDD+ programs [19]. The Sentinel-2
series of satellites launched through the EU Copernicus program offer new opportunities
for the large-scale enhancement of forest monitoring in tropical countries. Compared to
Landsat, Sentinel-2 data provide four additional spectral bands that are highly sensitive to
chlorophyll changes and can be effectively used to estimate forest parameters strategically
located in red edge regions [20]. Therefore, Sentinel-2 data can offer the potential for the
more cost-effective mapping of forest parameters accurately. Sentinel-2 can obtain more
precise information representing vegetation since it has a greater spatial resolution than
Landsat. Its six 20 m resolution bands and four 10 m resolution bands can more accurately
reflect forest changes [21]. Sentinel-2 and Landsat data are now the primary sensors used
to calculate forest characteristics [22].

The optical sensor data mainly respond to the physicochemical properties of veg-
etation, and the vegetation spectral reflectance contains information on the vegetation
chlorophyll absorption bands in the visible region (especially in the blue and red regions)
and the sustained high reflectance in the near-infrared (NIR) region. Since the visible and
NIR spectra only react with green leaves, theoretically only information on the leaves of
trees can be obtained, which cannot reflect information on the trunk, and the use of spectral
information to estimate forest parameters actually uses the relative growth relationship
between trees and leaves for the purpose of indirect estimation [13]. The better accuracy
obtained by Jiarui Li for CC estimation using the NIR band can explain 57% of CC [23].
Chen used Sentinel-2 images to research AGB in bamboo forests in Zhejiang Province,
China and reported that the red edge band and NIR band in Sentinel-2 improved the
identification of AGB [24].

Most of the popular vegetation indices are based on the interrelationship between
the red and NIR bands, enhancing the spectral contribution of green vegetation while
minimizing the contribution of other factors, such as atmospheric effects, solar and sensor
perspectives, and soil factors [25]. The vegetation index technique, which has the advantage
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of maintaining detailed spectral information and image clarity, is a more accurate element
of vegetation cover detection, obtained by means of arithmetic operations on the spectral
information of the radiation reflected by vegetation at different wavelengths. These indica-
tors are employed to assess the biophysical characteristics of the canopy, including its leaf
area index, biomass, etc. [26]. Delpasand found that the infrared percent vegetation index
(IPVI) was the best predictor of forest stand density [27]. Gunlu found that the enhanced
vegetation index (EVI) could explain 60% of the biomass and the vegetation index could bet-
ter estimate AGB compared to individual band reflectance [28]. Adel Nouri used Landsat 8
to extract NDVI linear estimates of canopy cover, S, and BA, with the R2 reaching 0.83, 0.86,
and 0.82, respectively, proving that linear regression is a feasible solution for estimating
forest stand parameters [29]. Lu Dengsheng compared different vegetation indices in the
Brazilian region and found that vegetation indices that incorporated NIR improved the
correlation with AGB in a relatively simple stand structure [30]. Other studies have demon-
strated that the addition of the red edge band improves correlation and can be used to
determine biophysical parameters and other forest attributes such as canopy cover, volume,
and BA [31–33]. Modified soil adjusted vegetation index (MSAVI) was shown to have a
strong correlation with biomass, with an R2 of 0.69 [34]. However, previous studies have
shown saturation in the vegetation index results in areas with moderate or high levels of
canopy closure [35]. Gitelson adjusted the relative contribution of NIR and red reflectance
to the vegetation index by adding a weighting factor to the NIR reflectance in the NDVI
index to mitigate saturation [36]. Several studies have shown that, for some vegetation
features, available spectral indices do not always obtain the most accurate results, neglect-
ing important information contained in other bands and leading to the embellishment of
mainstream spectral indices [37]. Dimitris Stratoulias used the spectral ratio of band 8 and
band 2 of Sentinel-2 to obtain an R2 of 0.70, while the best performing popular spectral
index, EVI, achieved an R2 of 0.65. The study found that a full wave combination survey
of small-scale studies, which can make use of current satellite systems to obtain amplified
information and avoid assumptions about environmental, structural, and ecosystem char-
acteristics for the selection of the vegetation index, can provide stronger correlations and
more accurate results than the blind application of popular spectral indices [38].

In order to characterize complex forest structures and improve the biophysical qualities
of fine vegetation, it is possible to use the relationship between image texture metrics
and forest property measures. This relationship enables the retrieval of data on forest
parameters based on the distribution of reflectance along neighboring pixels. Texture
may help to derive variables that do not reach saturation and allow the identification
of different aspects of forest structure, including forest stand density, age, and leaf area
index [35]. The study of Fugen Jiang showed that the textural features of Sentinel-2 red edge
bands can significantly improve the accuracy of GSV estimation [21]. Ibrahim Ozdemir
performed the linear estimation of BA and volume using entropy in the blue band, with the
R2 reaching 0.54 and 0.42, which is the best predictor and explains a significant proportion
of BA variation [39]. Kayitakire used texture features to predict S and BA with R2 of
0.82 and 0.35, respectively, proving that texture features, window size, and offsets are
the most important parameters [40]. However, studies have shown that raw textures
cannot eliminate the effect of terrain on reflected radiation and the errors associated with
sensor angle and sunlight radiation. Latifur Rahman Sarker demonstrated that using
texture parameters with high resolution optical data can significantly improve biomass
estimation performance, while using the ratio of texture parameters can further improve
biomass estimation performance as it combines the advantages of texture and ratio [41].
Sizwe Thamsanqa Hlatshwayo illustrated that the combination of two textures (R2 = 0.85)
provided better AGB detection results compared to a single texture (R2 = 0.64). Therefore,
opening new avenues for forest parameter estimation by introducing texture combinations
using multi-band texture ratio has been shown to be closely related to biomass, delaying
the saturation point to a large extent [42]. The use of texture band combinations has
been highly successful in estimating forest AGB, especially when compared with original
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texture bands and vegetation indices [35]. However, existing studies do not consider the
information contained in different texture features and the response relationships between
them, ignore their relative contributions to the texture indices, and do not make better use
of the performance of texture and ratio techniques.

In this context, Landsat 8 and Sentinel-2A images were used to estimate the CC, S,
BA, and AGB of the Saihanba forest farm in Hebei Province. This study extends the linear
relationship between forest parameters and vegetation index and texture features, fully
exploits the advantage of using the response between different bands and texture features
and alleviates the saturation limitation of existing studies. The main research activities of
this paper are as follows:

(1) We analyze the correlation and response relationship of each sensor’s raw bands,
popular vegetation indices, raw band textures, the average value of texture features
in each direction, and textures extracted by means of principal component analysis of
the raw bands with forest parameters.

(2) In order to more accurately characterize the biophysical characteristics of vegetation,
an extensive band combination normalization and ratio vegetation indices are estab-
lished, and the sensitivity of vegetation index band weight to variations in vegetation
parameters was analyzed by relative sensitivity and noise equivalent.

(3) The normalized and ratio texture indices containing weight are established by using
the original texture features, the average value of features in each direction, and
the features after principal component analysis, respectively, analyzing the response
characteristics between windows, directions, and different texture features, taking
advantage of the information of different vegetation parameters contained in different
textures, and analyzing the influence of texture features with different windows and
different directions on vegetation parameters by combining the noise equivalent to
establish the optimal texture indices.

This paper is organized as follows: Section 2 presents some basic information about
the sample points and the measured data, the processing of the optical data, and the
extraction of variables. The theory of the proposed method is explained in Section 3.
Section 4 describes the results and Section 5 explores the effects of noise equivalent and
band saturation on forest parameters and provides a detailed interpretation and analysis of
the results. Section 6 is the conclusion.

2. Study Area and Data
2.1. Study Area and Sample Plot Data

The study area, Saihanba Forest is the largest plantation forest in the north of China,
situated in Chengde City, Hebei Province (42◦02′N–42◦36′N, 116◦51′E–117◦39′E), with
abundant forest resources and vigorous vegetation growth. The Saihanba Forest has an
85% forest coverage rate, with coniferous forests covering more than 80% of the forest. Larix
principis-rupprechtii Mayr, Pinus sylvestris var. mongholica Litv and Picea asperata Mast make
up the majority of the tree species. Therefore, the accurate estimation of forest parameters
in Saihanba Forest can meet the needs of estimating the status of and changes in the forest
carbon sink, which is of great significance for maintaining and improving the benefits of
forest products, ecological benefits, and social benefits.

To ensure that the selected sample plots represent the real situation of the forest as
much as possible, this study selected sample plots in relatively central locations in the forest
as much as possible, avoiding forest edges and empty window locations, and selecting
stands with low, dense, sparse and tall characteristics. Sixty-five artificial coniferous forest
sample plots with an area of 0.06 ha were established (Figure 1). The field survey included
the tree species composition, DBH, and canopy closure. CC was measured using the
systematic sample point head-up observation method and using the number of trees per
hectare as the S. The BA is the cross-sectional area of the trunk measured at 1.3 m above the
ground and was estimated according to Equation (1). Aboveground biomass per tree was
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calculated using the allometric equation for local tree species (Table 1), summed to obtain
the AGB of the sample plot, and extrapolated to obtain the AGB per unit area (t/ha).

BA =
π

4 ∑DBH2 (1)
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Figure 1. Location map of the study area, with the actual sample locations indicated by green dots.
The image of the study area is a true color image of Sentinel-2A.

Table 1. Summary of allometric growth equations for tree species in the sample site. The table shows
the tree species recorded during the field work and the tree species allometric equations used to
estimate biomass.

Tree Species Academic Name Allometric Equation

Larch Larix gmelinii (Rupr.) Kuzen. AGB = 0.1431 × DBH2.2193 [43]
Sphagnum pine Pinus sylvestris var. mongholica Litv. AGB = 0.093 × DBH2.3429 [44]

Spruce Picea asperata Mast. AGB = 0.1199 × DBH2.2931 [45]

Table 2 shows the details of the measured data in the sample plots, including the
maximum, minimum, mean, and standard deviation of the mean DBH, CC, S, BA, and
AGB. Table 3 shows the Pearson correlation coefficients between the data, and Figure 2
expresses the scatter plot distribution between the sample data in which the DBH and S
had a strong inverse relationship; S declined exponentially as DBH grew, but the range of S
varied considerably around 10 cm DBH, and AGB increased with increasing DBH. Overall,
despite the fact that there was only a slight positive correlation between the two variables,
the BA increased as the CC increased. Along with increasing CC, the AGB increased as well.

Table 2. Sample plot information including maximum (Max), minimum (Min), mean, and standard
deviation (STD) of mean DBH, CC, S, BA, and AGB.

Parameter Max Min Mean STD

Mean DBH (cm) 33.1 7.2 22.74 7.33
Canopy closure (%) 1 0 0.69 0.23

Forest stand density (stems/ha) 5100 133.33 960.26 1083.45
Basal Area (m2/ha) 47.97 1.19 24.74 9.69

AGB (t/ha) 228.64 12.27 90.57 35.75
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Table 3. Correlation coefficients between forest parameters (mean DBH, CC, S, BA, and AGB) were
measured and derived at the stand level.

Parameter
Pearson Correlation Coefficient

Mean DBH Canopy
Closure

Forest Stand
Density Basal Area AGB

Mean DBH 1 - - - -
Canopy closure −0.333 1 - - -

Forest stand density −0.804 0.573 1 - -
Basal Area −0.094 0.642 0.207 1 -

AGB 0.129 0.572 0.026 0.871 1
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2.2. Satellite Data
2.2.1. Optical Data

The free availability, global coverage, frequent updates, and longer time scales of
Landsat 8 and Sentinel-2 make them valuable data sources for the persistent monitoring of
forest carbon dynamics [46]. Landsat 8 (L8) is outfitted with two sensors, OLI and TIRS.
Among them, OLI passively senses solar radiation reflected from the Earth’s surface and
emitted thermal radiation emitted, with nine bands covering visible, NIR, short-wave
infrared (SWIR), and panchromatic band, providing multispectral data with a spatial
resolution of 30 m. Sentinel-2A (S2A), the second satellite launched by the European Space
Agency in June 2015, offers 13 spectral bands with three spatial resolutions, such as the
visible and near-infrared regions at 10 m and the infrared band at 20 m. Sentinel-2 data
are the only remaining multispectral data with three bands in the red edge spectral range.
These data are frequently utilized in studies to track vegetation growth, since the increased
number of bands offers better detail on the spectral properties of the forest and also enables
the calculation of more precise vegetation indices that may be used to characterize the forest.
The data from Sentinel-2A obtained from Copernicus Open Access Center in this study
constitute a Level-2A product, so only radiometric calibration, atmospheric correction,
and topographic correction were performed on L8 data in this study, and the bands with
different spatial resolutions of the S2A were resampled to 30 m using the nearest neighbor
interpolation method, so as to ensure that the pixel size of S2A images corresponded to the
size of L8 image elements. Table 4 shows the selected optical data acquisition times and
their resolutions.

Table 4. Table of optical data acquisition information.

Sensor Time Spatial Resolution (m)

Landsat 8 16 June 2020 30
Sentinel-2A 21 June 2020 10, 20
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2.2.2. Extraction Features

(1) Band: The spectral features recorded by optical remote sensing are complementary
to the structural features of the forest canopy. Based on the spectral characteristics of the
vegetation, vegetation will have different absorbance and reflectance for different bands,
which will be reflected in the image, producing different gray values of image elements,
and thus the amount of information contained within each single band image element is not
consistent, and the signal that can reflect vegetation information needs to be extracted from
each band as much as possible. The L8 and S2A spectral bands used in this study are shown
in Table 5. Bands 1, 9, and 10 of the Sentinel-2A MSI were excluded from the investigation
since they are mostly linked to atmospheric and water elements. Ten remaining bands of
the Sentinel-2A MSI were selected for this study.

Table 5. The band information and the resolutions of S2A and L8 used in this paper.

Sentinel-2A Landsat 8

Band Spectral Region Wavelength (µm) Resolution (M) Spectral Region Wavelength (µm) Resolution (M)

Band2 Blue 0.46–0.52 10 Blue 0.45–0.51 30
Band3 Green 0.54–0.58 10 Green 0.53–0.59 30
Band4 Red 0.65–0.68 10 Red 0.64–0.67 30
Band5 Red edge1 0.70–0.71 20 NIR 0.85–0.88 30
Band6 Red edge2 0.73–0.75 20 SWIR1 1.57–1.65 30
Band7 Red edge3 0.76–0.78 20 SWIR2 2.11–2.29 30
Band8 NIR 0.78–0.90 10

Band8A Narrow Near Infrared 0.85–0.87 20
Band11 SWIR1 1.56–1.65 20
Band12 SWIR2 2.10–2.28 20

(2) Vegetation index: Vegetation indices, which are created by adding together two or
more bands that are related to the spectral properties of vegetation, are frequently used
in different fields like vegetation classification and vegetation parameter estimation [47].
Vegetation indices use visible and near-infrared radiation reflected from the forest canopy to
model biophysical and chemical characteristics, such as biomass [48]. Band combinations
are used to quantify and maximize reflectance contrast in selected spectral regions of
the band and to relate it to plant characteristics. By synthesizing the relevant spectral
signals, vegetation indices that represent more “pure” vegetation properties may be created.
This synthesis method helps to increase pixel contrast and efficiently minimize spectral
noise, which helps to improve the prediction of forest parameters. The vegetation indices
extracted in this study are shown in Table 6.

Table 6. A summary table of the popular vegetation indices selected for this study, containing
vegetation index formulas and references.

Vegetation Index Formula

Difference Vegetation Index [49]
DVI = NIR− RED
DVI1 = RE− RED

DVI2 = SWIR− RED

Enhanced Vegetation Index [50]
EVI = 2.5× NIR−RED

NIR+6RED−7.5BLUE+1
EVI1 = 2.5× RE−RED

RE+6RED−7.5BLUE+1
EVI2 = 2.5× SWIR−RED

SWIR+6RED−7.5BLUE+1

Ratio Difference Vegetation Index [51]

RDVI = NIR−RED√
NIR+RED

RDVI1 = RE−RED√
RE+RED

RDVI2 = SWIR−RED√
SWIR+RED

Soil Adjusted Vegetation Index [52] SAVI =
( NIR−RED

NIR+RED+L

)
(1 + L)

Optimization of Soil-Adjusted Vegetation Index [53] OSAVI = NIR−RED
NIR+RED+0.16
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Table 6. Cont.

Vegetation Index Formula

Atmospherically Resistant Vegetation Index [54] ARVI = NIR−2RED+BLUE
NIR+2RED−BLUE

Infrared Percentage Vegetation Index [55] IPVI = NIR
NIR+RED

Modified Simple Ratio [56]

MSR =
( NIR

RED − 1
)
/
√

NIR
RED + 1

MSR1 =
( RE

RED − 1
)
/
√

RE
RED + 1

MSR2 =
( SWIR

RED − 1
)
/
√

SWIR
RED + 1

Non-Linear Index [57]
NLI =

(
NIR2 − RED

)
/
(
NIR2 + RED

)
NLI1 =

(
RE2 − RED

)
/
(
RE2 + RED

)
NLI2 =

(
SWIR2 − RED

)
/
(
SWIR2 + RED

)
(3) Texture: Texture information, which is the pattern of intensity variation in remote

sensing photographs and based on a grayscale co-occurrence matrix, is a useful resource
that can be employed to characterize the spatial distribution and structural information of
the forest [6]. Texture measurements can better capture different forest canopy structures as
they are very sensitive to canopy shading aspects [4]. Many aspects should be considered
when determining the appropriate texture measurement, including the selection of the
appropriate shift window size, direction, and band. Because the canopy size does not
correspond to the pixel size, window size has a major influence on the estimation of
forest metrics. A window that is too small or too large cannot properly extract texture
information because it exaggerates the differences within the window or over-smooths
texture variations [58]. Texture measurements are extracted based on GLCM for different
windows (3× 3, 5× 5, 7× 7, 9× 9, 11× 11, 13× 13) in each band, with the shift set to
1 pixel. This offset summarizes the relationship between each neighboring pixel within
the window, enables the texture metric to compute texture features in four directions
(0
◦
, 45

◦
, 90

◦
, 135

◦
), abbreviated as BTE, and then averages the results to provide a single

texture unoriented metric, abbreviated as MTE [59,60]. Meanwhile, principal component
analysis (PCA) was carried out for bands of L8 and S2A sensors, and the first principal
component was selected for texture feature extraction, abbreviated as PTE [61,62]. The eight
GLCM textures can be subdivided into three categories [63] (Table 7): contrast (contrast,
dissimilarity, homogeneity), orderliness (second moment, entropy), and statistically (mean,
variance, correlation).

Table 7. Equation of the GLCM texture metric.

Texture [64] Formula

Variance ∑N−1
i=0 ∑N−1

j=0 (i−Mean)2p(i, j)

Homogeneity ∑N−1
i=0 ∑N−1

j=0
p(i,j)

1+(i−j)2

Contrast ∑N−1
i=0 ∑N−1

j=0 (i− j)2p(i, j)
Dissimilarity ∑N−1

|i−j|=0|i− j|
{

∑N−1
i=1 ∑N−1

j=1 p(i, j)
}

Entropy −∑N−1
i=0 ∑N−1

j=0 p(i, j) log(p(i, j))
Second Moment ∑N−1

i=0 ∑N−1
j=0 p(i, j)2

Correlation ∑N−1
i=0 ∑N−1

j=0 (i×j)p(i,j)−µxµy

σxσy

Mean ∑N−1
i=0 ∑N−1

j=0 ip(i, j)

Notes: p(i, j) is the (i, j) element of the GLCM, which represents the probability of two gray values (i and j) with
certain distance and direction. The sum of all values in GLCM is 1. N is the number of gray levels, i.e., the
dimension of the GLCM [64].
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3. Proposed Method of the Research

Figure 3 shows the flow chart of the proposed method.
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3.1. Establishment of the Vegetation Index (VI)

The single band reflectance is susceptible to the influence of the atmosphere and
the surrounding environment and has limitations in obtaining vegetation information.
The vegetation index can make full use of the dominant band and eliminate the errors
caused by partial single band reflectance, thus obtaining higher quality vegetation infor-
mation [65]. All green plants strongly absorb visible electromagnetic radiation and reflect
near-infrared radiation, and the spectral vegetation index emphasizes this difference by
mathematically combining different spectral regions, which can represent the amount and
condition of vegetation within a pixel [66]. Existing studies have used exhaustive methods
to build vegetation indices to avoid the problems of existing vegetation indices ignoring
important information that may be contained in other spectral bands and that different
study areas and data producing different responses to different spectral bands [38]. It has
been demonstrated that the weighting of the NIR band in the vegetation index affects
the saturation point and that indices with higher weighting coefficients in the NIR band
favor an increase in the sensitivity of the vegetation index [67]. However, there are fewer
studies on the other bands included in different vegetation indices and the differences
in response between different bands. Therefore, this study used the exhaustive method
to establish the Normalized Vegetation Index (NDVI) and Ratio Vegetation Index (RVI),
treating each band as the main band and the remaining bands as the secondary bands, and
establishing weight m for each main band, analyzing the contribution of each band to the
vegetation index under different weights, and the response of different forest parameters to
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different bands to establish the vegetation index. After that, the relative sensitivity among
vegetation indices and the sensitivity analysis with forest parameters are used to determine
the optimal weight occupied by each main band and its vegetation index form.

mNDVIij =
m× Bandi − Bandj

m× Bandi + Bandj
(2)

mRVIij =
m× Bandi

Bandj
(3)

where m is the weight value, set at 0.1–1 with an interval of 0.1, i is each band of the sensor,
and j is the other bands except i.

3.2. Establishment of the Texture Index (TI)

Using spectral features alone leads to a large loss of spatial information in the image,
while adding texture features makes full use of the spatial information of the image.
One of the key characteristics of remote sensing images is texture, which is a crucial
factor in reflecting the spatial variation in ground cover type and not only conveys the
degree of roughness, but also reveals the structural details of the features as well as their
relationship with the environment [68]. Different canopy regions may have various textural
characteristics in the same category of remote sensing images. The canopy texture is more
consistent with canopy closure and the more irregular it is, the lower the canopy closure is.
The accuracy of canopy estimation will be substantially increased by selecting the right type
of texture features. GLCM is the most commonly used texture analysis method to describe
the correlation and spatial structure of pixel pairs according to the spatial relationship of
image gray values [69]. The characteristics utilized to identify the texture cannot be directly
provided by GLCM, but they can offer the gray direction and interval changes connected to
the image. Therefore, it is necessary to extract the statistical attributes used to quantitatively
describe the texture features based on GLCM. Textures represent the spatial arrangement
of image colors or intensities, rather than image pixel values, and are more capable of
expressing spatial information on the basis of vegetation indices. Texture carries significant
spatial information about the arrangement of vegetation and non-vegetation surfaces in the
picture and its relationship with the surrounding environment and is sensitive to canopy
structural features. Vegetation indices can be used as an indicator of vegetation content,
and the combination of the two provides additional information for prediction models.
Therefore, the texture indices are built based on GLCM extracting texture measurements
in four directions and six windows. Normalization and the ratio of bands can reduce the
effects of soil background, sun angle, and sensor perspective to some extent, and texture
indices combine texture measurements and normalization or ratio techniques to improve
the estimation of forest parameters [58,70,71]. The texture indices following the NDVI
and RVI forms, named the Normalized Texture Index (NDTI) and Ratio Texture Index
(RTI), are calculated to combine the same texture features of different bands extracted
from same windows with same directions. Based on the same window size and the same
direction, a texture feature (A) of a single band (i) is taken as the main feature and the
texture feature (A) of another band (j) is taken as the secondary feature, and weight m is
established for the main feature to analyze the response differences of extracted textures
between different bands, and the optimal weights and texture features are determined via
the sensitivity analysis.

mNDTIij =
m× TAi − TAj

m× TAi + TAj
(4)

mRTIij =
m× TAi

TAj
(5)
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where, m is the weight value, set 0.1–1 with an interval of 0.1, and Ai and Aj denote the
same GLCM texture (texture feature A) extracted from different bands (i and j) in the same
window with the same direction.

Because textures differ greatly depending on the environment, texture measurements,
and associated characteristics (such as window size, orientation, and offset), integrating
texture information for forest regions is difficult. Furthermore, texture processing might
result in a significant volume of unmanageable data [72]. Therefore, this study establishes
texture indices generated in three ways based on different window sizes:

1. Corresponding Texture Index (CTI): Based on the same window size and the same
direction, all of the texture features of each band are used as main features, and the
texture features of the remaining bands that are the same as the main features are
used as secondary features to establish the texture index.

2. Mean Texture Index (MTI): In order to reduce the influence of the direction parameters
and the dimensionality of the input variables on the modeling, the same texture
features in four directions for each window of each band are averaged to avoid the
influence of feature differences arising from different directions [60]. Therefore, based
on the same window, all texture features of each band are used as main features, and
the remaining band texture features corresponding to them are used as secondary
features to build texture indices.

3. Principal Component Analysis Texture Index (PTI): Since there are many textures
generated in this study and there is a certain correlation between the sensor bands
themselves, the correlational analysis of the texture information obtained from each
band reveals that there is a relatively obvious correlation between the texture informa-
tion. Therefore, the texture features obtained from each band are subjected to principal
component dimensionality reduction analysis, which ensures the original information
of the image texture and improves the efficiency of data computation at the same time.
Based on the same window size and the same direction, the eight texture features
extracted from the same band are subjected to principal component analysis, and
only the first principal component is selected. Therefore, based on the same window
and the same direction, the first principal component features obtained from a single
band are used as the main features and the first principal component features of the
remaining bands are used as secondary features to build texture indices.

3.3. Sensitivity Analysis
3.3.1. Relative Sensitivity

The results of the sensitivity analysis are more intuitive, and the vegetation index has
a visual graphical and numerical expression of the magnitude of the forest parameters,
which can not only evaluate the indicativeness of the vegetation index itself and between
vegetation indices in general but also more accurately express the ability of the vegetation
index to reflect the forest parameters. The relative sensitivity index Sr is used to quantita-
tively compare the sensitivity of the improved index (the index with weight included in
the main band) with the original index (the index with a weight of 1 in the main band) for
different structural descriptors [73].

Sr =
dy
dx

∆x
∆y

(6)

∆y = ymax − ymin

∆x = xmax − xmin

where x and y represent the new and original vegetation indices, respectively, and d(y)/d(x)
is the first-order derivative with respect to the forest parameter under analysis. The relative
change sensitivity of the two vegetation indices is analyzed using Sr, and Sr < 1, = 1, > 1
indicate that the relative sensitivity of y is less than, equal to, or greater than x, respectively.
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The weight occupied by each main band for Sr < 1, i.e., the m value, is chosen to ensure
that the new vegetation index has the best sensitivity.

3.3.2. Noise Equivalent Sensitivity Model

The vegetation index and texture are saturated for each forest parameter, and the veg-
etation index reaches saturation mainly via canopy background reflection and atmospheric
effects, and this property constrains the use of the vegetation index [74]. Existing studies
mostly use single evaluation indexes such as R2 and RMSE, which cannot reflect the influ-
ence of changes in vegetation canopy on vegetation indices and only describe the overall
relationship between current model variables and cannot reflect the specific influence of
changes in independent variables on dependent variables, specific to the estimation of
forest parameters. Therefore, some researchers have proposed vegetation index sensitivity
models to further evaluate the indicative significance of vegetation indices. In this study,
a noise equivalent (NE) sensitivity model is introduced to further evaluate the inversion
ability of the vegetation index. The optimal main and secondary bands corresponding to
each forest parameter and their weights obtained in (1) are summarized and linearly fitted
to filter the optimal vegetation index using NE [75,76].

NE =
RMSE

d(VI)/d(y)
(7)

where d(VI)/d(y) is the first-order derivative of the vegetation index with respect to the
forest parameter, and the numerator is the RMSE of the fitted relationship between the two.

In addition to taking into account the RMSE of vegetation parameter estimates and
the sensitivity of the vegetation index to the vegetation parameters, NE also considers
the point scatter and slope of the best-fit function, providing the degree of response to
vegetation parameters over the entire range of variation of the vegetation index [77]. Since
weight is established for each main band texture feature, numerous texture indices are
obtained. Pearson correlation coefficients are used to obtain the optimal weight values for
each window corresponding to each forest parameter and the texture features of the bands.
After that, the same method as that used for vegetation indices is used to filter the texture
indices using NE to select the optimal window size, direction, and band corresponding
texture features for each forest parameter.

4. Results
4.1. Relationship between Raw Band, Vegetation Index, Texture, and Forest Parameters

The right variables must be chosen in order to estimate various forest parameters. The
linear correlation found between the characteristic variables and the forest parameters,
which is the most simple and clear indicator of the relationship between these variables, is
typically used to describe the availability of variables. In this study, the Pearson correlation
coefficient was used to extract the bands, vegetation indices, and texture features of L8 and
S2A with the best correlation with forest parameters (Table S1). The optimal results obtained
for each forest parameter are shown in Table 8, and a linear relationship was established.

The results show that all forest parameters except S were significantly correlated
with the SWIR bands of L8 and S2A, while S was more strongly correlated with the green
band. And all forest parameters were strongly correlated with the vegetation index con-
taining the SWIR bands [60,78]. Because the SWIR band is less susceptible to disturbances
such as atmospheric absorption and scattering and has better resistance to atmospheric
perturbations than the visible and NIR bands, vegetation indices that include the SWIR
band have a stronger correlation with forest parameters [79]. EVI, DVI, and RDVI have a
significant advantage among the many vegetation indices and accurately well the changes
in vegetation cover [80]. For the CC, BA, and AGB, the texture features extracted using
BTE, MTE, and PTE were mainly related to mean and correlation features, which was the
same as the results in [60]. While S has different optimal texture features extracted using
different methods, the texture feature that has the best correlation with S was entropy in
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the blue band. For textures extracted using BTE and MTE, it was mainly the medium
and small window sizes that expressed better information, because the small window
size is more sensitive to highly localized surface features and better captures changes
in vegetation features [81]. For texture features extracted using PTE, the large window
correlates better with forest parameters and is mainly associated with correlation features.
The first principal component obtained after principal component analysis of the bands
contains more than 80% of the valid information of all the bands, and its extracted texture
contains more information about the bands. Small windows often exaggerate the variance
within the moving window, increasing the noise content on the texture image, and may not
contain enough information about the region to best represent texture features with more
information [82,83].

Table 8. Pearson correlation coefficients and R2 between CC, S, BA, and AGB and variables derived
from L8 and S2A data. The order of variables in the table are bands, vegetation indices, BTE, MTE,
and PTE of L8 and S2A. Textures are defined and labeled using window_direction_band_texture
features. Correlation is the correlation obtained by the Pearson method, and the value with ____ in
the R2 column is the optimal solution.

Parameter Sensor Variables Correlation R2

CC

L8 B6 −0.57 *** 0.3293
S2A RDVI2 −0.54 *** 0.3156
L8 BTE_3_0_B6_mean −0.47 *** 0.2214
L8 MTE_3_B6_mean −0.45 *** 0.2020
L8 PTE_13_90_correlation 0.35 ** 0.1192

S

S2A B3 0.74 *** 0.5472
S2A RDVI2 −0.4 *** 0.4003
S2A BTE_3_0_B2_entropy 0.83 *** 0.6846
S2A MTE_3_B2_homogeneity −0.8 *** 0.6360
S2A PTE_13_0_correlation −0.55 *** 0.2974

BA

S2A B11 0.48 *** 0.2312
S2A DVI2 −0.48 *** 0.2949
S2A BTE_3_0_B11_mean −0.48 *** 0.2339
S2A MTE_3_B11_mean −0.46 *** 0.2109
L8 PTE_13_45_correlation 0.47 *** 0.2189

AGB

S2A B11 −0.55 *** 0.3054
S2A DVI2 −0.46 *** 0.3199
S2A BTE_3_0_B11_mean −0.52 *** 0.2755
S2A MTE_5_B11_mean −0.45 *** 0.1984
L8 PTE_11_45_correlation 0.45 *** 0.2004

*** Correlation is significant at the 0.001 level. ** Correlation is significant at the 0.01 level.

For CC, BA, and AGB, the correlation between band and vegetation indices was
higher. For S, the correlation of texture features extracted using S2A was significantly
higher than the other variables. Overall, S2A performed significantly better than L8, except
for CC, but the optimal correlation between the two sensors and CC was not significantly
different. From the scatter plot (Figure 4), although the highest R2 was obtained for S, it was
mainly limited by low forest stand density and homogeneous forest, and the texture values
obtained from low forest stand density were mostly the same, limiting the estimation of S.
Overall, the 3× 3 window was more sensitive to changes in forest parameters, and the best
coefficient of determination was obtained for the texture features extracted in the direction
0
◦

for forest parameters.
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4.2. Relationship between New Vegetation Indices and Forest Parameters

The vegetation indices containing the optimal weights were screened by means of
relative sensitivity and NE sensitivity analysis, and linear models were established and
compared with the corresponding forest parameters for the determination coefficients,
respectively (Table S2). The results showed that the ratio index obtained by the S2A sensor
gave better results with the forest parameters (Table 9). And since the SWIR band is more
sensitive to vegetation information and has great potential to reflect vegetation water
content and stand structure complexity, it exists in the ratio band of each parameter [84].
The SWIR is sensitive to shadows and can be a good representation of vegetation cover
changes [85]. The optimal solution of S2A obtained by forest parameters contain green and
red edge bands, where the green band is sensitive to canopy reflectance and the red edge, as
a band specific to Sentinel-2, is sensitive to chlorophyll as well as leaf structure, providing
more information for the characterization of vegetation [22,86]. A sudden increase in
the reflectance of healthy vegetation can be observed in the red edge band, which can
distinguish healthy vegetation from other surface features and better respond to vegetation
information [87].

Table 9. Summary of the results of the optimal vegetation indices obtained using screening different
sensors after adding weights to the bands.

Parameter Sensor BAND_VI m R2 RMSE

CC S2A RVI12-3 0.3 0.3639 0.0460
S S2A RVI3-11 0.1 0.5570 0.0038

BA S2A RVI12-5 0.3 0.6766 0.0219
AGB S2A RVI12-5 0.7 0.6987 0.0489

As can be seen from Table S2, the optimal bands extracted by the same sensor were
the same for the same forest parameter, indicating that the response information of the
optimal bands and the forest parameter was fixed regardless of the form of the vegetation
index, but the optimal weights obtained from the bands in different forms were different,
indicating that the response and the complementary relationship between the bands in
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different forms were different from each other, and the linear relationship with the same
forest parameter was also different. Figure 5 shows the linear plot of forest parameters and
the optimal vegetation index. As can be seen from Figure 6, CC, BA, and AGB achieved
better results for the estimated map of the study area and generally lower results for S.
Because most of the measured sample plots were concentrated in low forest stand density
areas and sample plots with higher forest stand density were not explored enough, these
factors limited the prediction results in the study area.
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4.3. Relationship between New Texture Indices and Forest Parameters
4.3.1. CTI

The optimal texture indices for different windows, directions, and features were
obtained using Pearson correlation coefficients and NE analysis, and a linear relationship
was established between texture indices and forest parameters, which were then analyzed
using the R2 statistic (Table S3). The optimal results obtained for each forest parameter
are shown in Table 10. The results obtained from the analysis of the CTIs showed better
results for CC, S, and BA with RTIs and better results for NDTI with AGB. Except for S,
the L8 sensor provides stronger information on forest parameters and mainly uses small
windows because texture measurements obtained from small windows are more sensitive
to fine-scale changes in pixel brightness [35]. Both CC and BA selected mean features
acquired with a 3× 3 window and the direction angle of 45

◦
in SWIR. The second moment

texture obtained in the 0
◦

direction in the 3× 3 window achieves better results with S,
while the AGB has better results with the correlation texture extracted at the 135

◦
direction

in the 5× 5 window. From the results, it is clear that the forest parameters were selected
in completely different bands from the vegetation index bands, and the optimal weights
established were different because of the inclusion of texture feature information.

Table 10. Summary table of optimal CTI results.

Parameter Sensor BAND_TI m Size Angle Feature R2 RMSE

CC L8 RTI6-5 0.7 3 45 Mean 0.5800 0.0479

S S2A RTI3-2 0.9 3 0 Second
Moment 0.6937 0.0535

BA L8 RTI7-4 0.6 3 45 Mean 0.5425 0.0722
AGB L8 NDTI6-3 0.1 5 135 Correlation 0.2628 1.0329

4.3.2. MTI

The obtained MTIs were subjected to NE screening analysis, and the best MTI results
screened for each sensor are shown in Table S4. The obtained optimal results are shown in
Table 11. From the results, it was clear that the forest parameters were better for RTIs, and
all of them were selected for the texture feature information obtained from small windows.
The optimal R2 valuses of CC, BA, and AGB were all for RTIs obtained from L8, the selected
texture features were all mean textures, and the selected bands included red, NIR, and
SWIR bands. These bands have enhanced reflection and absorption in the green vegetation
region, and the NIR band is the peak of reflection and expresses more information. S
selected the green and SWIR bands, and the selected texture was entropy. Green vegetation
has a strong reflection in the green band of the electromagnetic spectrum, which better
reflects the vegetation cover information [88] and SWIR can show the strongest contrast
between the forest canopy and crevices (soil, apoplast) [81].

Table 11. Summary table of optimal MTI results.

Parameter Sensor BAND_TI m Size Feature R2 RMSE

CC L8 RTI6-5 0.3 3 Mean 0.5924 0.0202
S S2A RTI3-11 0.9 3 Entropy 0.6437 0.0513

BA L8 RTI7-4 0.3 3 Mean 0.6227 0.0377
AGB L8 RTI7-4 0.7 3 Mean 0.6233 0.0941

Comparative analysis with the CTI results revealed that both CC and BA selected the
same bands, window sizes, and texture features, indicating that the information of both
was less influenced by the direction. It can be seen that the information on CC is mainly
contained in the mean texture obtained from the 3× 3 window of SWIR and NIR, and
the information on BA is mainly contained in the mean texture of the 3× 3 window of
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red and SWIR. This shows that the mean features obtained by using the 3× 3 window of
SWIR can effectively extract vegetation information for L8 derived textures in terms of CC
and BA prediction. However, the amount of information contained in the existing texture
features is different from the original texture features because the information differences
in each direction are eliminated, so the optimal weights obtained are not the same, even
though the corresponding bands and texture features are chosen to be the same. Both
S and AGB chose different bands and texture features, indicating that S and AGB were
influenced by the direction of texture feature extraction. Combined with R2, it is found
that AGB is more suitable for the texture features obtained after averaging in multiple
directions, which can better express the case of AGB, while S is more capable of obtaining
information with a direction angle of 0

◦
and obtains better results, indicating that the

variation of texture features in its single direction is stronger, and the combination with
other directions weakens the information obtained in the 0

◦
direction.

4.3.3. PTI

It was found that the best results were obtained by subjecting each band texture
feature to principal component analysis and then establishing the RTIs, and the optimal
results were obtained with all of the secondary features containing more than 80% of
the information, and the amount of information contained in the main features mainly
influenced R2, in contrast, the amount of information contained in the secondary features
did not have as strong an effect on the coefficient of determination as the main features
(Table 12). This study showed that the results obtained from PTIs were better than those
obtained from CTIs and MTIs, indicating that individual texture features do not fully
express the information on forest parameters, and that the method of principal component
analysis of texture features better expresses the information contained in each texture
feature, and the results obtained are significantly better than those obtained from other
methods. The results show that the amount of information obtained after L8 texture PCA
was less than that obtained after S2A texture PCA (Table S5). The optimal window for
forest parameters was a medium window size because it is more sensitive to inter-pixel
differences in the observed proportions of forest parameters than the minimum window
size, which is the same as the results of Santa Pandit [89]. However, the optimal directions
of each forest parameter were different, and the selected bands include green, red, NIR,
and SWIR bands, which are sensitive to vegetation changes due to their strong absorption
and reflection abilities of vegetation chlorophyll.

Table 12. Summary of the results of the optimal PTIs. Per1 and Per2 contain the amount of information
after principal component analysis for the main and secondary texture features, respectively.

Parameter Sensor BAND_TI m Size Angle Per1 (%) Per2 (%) R2 RMSE

CC S2A RTI8A-3 0.9 7 135 74.6949 88.0945 0.7344 4.0799
S S2A RTI4-8 0.1 5 45 92.7594 83.2894 0.7435 0.0942

BA S2A RTI11-3 0.5 7 135 67.4230 88.0945 0.6544 0.8214
AGB S2A RTI11-4 0.7 9 90 68.1722 89.1878 0.6991 3.2687

4.3.4. Image Illustration of TI Results

As can be seen from Figure 7, the R2 values obtained by MTIs were better than those
obtained by CTIs, except for S. This may be due to the fact that the average value removes
the different directional differences and contains information about texture features in
multiple directions. However, in terms of S, because the measured data in this study were
concentrated in low forest stand density areas and all were artificial coniferous forests,
the texture values may be relatively constant for artificial forests with single-storey forests
of the same species, so the texture eigenvalues are more concentrated in low forest stand
density areas, which may be the reason for limiting its poor results [90]. Although the
R2 of S obtained by CTI was better, its fitted straight line apparently had saturation at
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low stand densities, and most of the stand density estimates were the same, which did
not correctly reflect the growth of stand density. The fit of AGB obtained from CTI was
similar to that of S. As shown by the linear relationship between PTI and AGB, the biomass
estimates of 50–100 t/ha had the same texture index values. Overall, the R2 and linear fit
results obtained by PTI for each vegetation parameter were better and showed a significant
improvement in the saturated underestimation of S and AGB. As can be seen from Figure 8,
the results of each forest parameter map generated using the optimal PTIs were better, and
the obtained S map demonstrates a significant improvement in underestimation compared
with the results estimated using the vegetation index.
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5. Discussion
5.1. Sensitivity Analysis

The NE method allows the direct comparison of vegetation indices at different ranges
and scales, and since this study uses linear fitting methods, the noise equivalence is
constant, which is more conducive to observing the sensitivity across the entire range of
forest parameters [91]. According to the meaning of the model, the smaller the NE value,
the stronger the sensitivity of the vegetation index, the less affected it is by noise, and the
more indicative and stable the forest parameters are [75]. The NE diagram is analyzed
using CC as an example. The optimal results obtained using CC for each index were also
summarized for further analysis (Table 13). Based on the NE plots of the optimal vegetation
indices of CC (Figure 9), it can be seen that the ratio indices extracted with CC using S2A
suffers from the lowest noise equivalent. However, according to Table 9, it can be seen
that the R2 of the RVI of L8 is better than the NDVI results obtained using S2A, but it is
obvious that the optimal RVI extracted using L8 (Figure 9b) suffers from higher noise than
the NDVI extracted using S2A (Figure 9c). This is because the NE considers the RMSE
factor, so the NE method selects the result with the smallest RMSE rather than the largest
R2. According to the results of each optimal index obtained by CC (Table 13), it can be seen
that the RMSE of the MTI < the RMSE of the VI < the RMSE of the CTI < the RMSE of the
PTI, which corresponds to the influence of the minimum noise equivalent in each NE map
(Figure 10), indicating that it is feasible to select the optimal variables for the estimation
of forest parameters using NE noise maps. From the NE diagrams of vegetation indices
(Figure 10a), the main bands are selected to express vegetation information in the SWIR and
green bands, which can better contain vegetation cover information. The small window
is subjected to less noise equivalent for CTIs (Figure 10b) and MTIs (Figure 10c), but the
medium window is subjected to less noise for PTIs (Figure 10d). Most of the features
extracted from the CTIs (Figure 10b) and the MTIs (Figure 10c) are means, thus indicating
that the mean contains the majority of the CC information and can more accurately express
the information about the vegetative changes, which also confirms the results that we
obtained in Section 4.3. From the CTI diagram (Figure 10b), it can be seen that different
windows of different sizes are chosen with different directions under the same band and
feature conditions. From the MTI diagram (Figure 10c), the band and texture selected are
exactly the same without the interference of the direction included, which indicates that
different window sizes and textures affect the selection of directions differently, and also
indicates that direction has less influence on the selection of band and texture.
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Table 13. Summary table of optimal results for each index obtained using CC.

Parameter Index Sensor BAND m R2 RMSE

CC

VI S2A RVI12-3 0.3 0.3639 0.0460
CTI L8 RTI6-5 0.7 0.5800 0.0479
MTI L8 RTI6-5 0.3 0.5924 0.0202
PTI S2A RTI8A-3 0.9 0.7344 4.0799
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Figure 9. NE diagrams of optimal vegetation index obtained using CC. (a) NDVI extracted from L8,
(b) RVI extracted from L8, (c) NDVI extracted from S2A, and (d) RVI extracted from S2A. The vertical
axis of each graph is marked with the minimum NE value, and the line subject to the minimum NE
value is emboldened in the graph.

Relative sensitivity analysis was performed using the S2A optimal vegetation index
obtained from CC to analyze the causes of CC saturation by establishing the relationship
between NDVI, RVI, and its components, Band3 and Band12 reflectance (Figure 11). A
quadratic equation was used here for estimation, so as to better observe the saturation
trend. Moreover, as quadratic equation estimation was used here, and first-order equation
estimation was used in the Results section, the two results are slightly different). Band12
and CC are negatively correlated (not listed in the text), with Band12 decreasing as the
forest increased. When the Band3 value is greater than 0.08, the change in Band12 value
gradually becomes insensitive and reaches the asymptote at around 0.14 (Figure 11a,b).
Compared with Band3, NDVI and RVI are positively correlated with Band12, without a
very obvious saturation trend (Figure 11c,d). However, it can still be seen that the sensitivity
of NDVI changes in Band12 starts to decrease at around 0.12. As seen in Figure 11c, the
sensitivity of NDVI after adding weight is significantly better than that of the original
NDVI in the CC range of 0–0.4. Comparing the results before and after increasing the
weight, it is found that the value of the RMSE has improved more significantly compared
to R2. The RVI was chosen for this study because its R2 results were better than those of
the NDVI and the improvement in RMSE was more pronounced. Meanwhile, compared
to the NDVI, the RVI before and after the improvement was not significantly affected by
Band12, and there was no significant saturation trend. The results show that the method of
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adding weight to the band of VI can effectively improve the estimated R2 and RMSE and
has a significant improvement effect on the saturation trend of NDVI.
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5.2. Relationship between Raw Band, Vegetation Index, Texture Index, and Forest Parameters

The results show that the results obtained with S2A were significantly better than those
obtained with L8, which is the same as the results found in existing studies [92–94]. The
bands of each vegetation index and texture index selected by S2A are mostly concentrated
in the red edge band because the leaf information of vegetation changes greatly within this
range and is more sensitive to changes in the growth of vegetation. In addition, the texture
and spectral bands extracted in this band range are less influenced by the surrounding
environment, especially the soil factor and climate factor. The addition of the red edge
band therefore plays a significant role in increasing the accuracy of the model for areas with
a complicated forest stand structure [95]. Additionally, the SWIR band, green band, and
red band are better predictors [94]. It was found that the SWIR band, green band, and red
band were also the main selection bands for the vegetation index and texture index of L8,
while the NIR band was also the main selection band for the L8 sensor. In this study, the
vegetation index obtained by the Landsat 8 sensor was found to perform weakly, probably
due to the presence of tall forests, whose consequent shadow effect negatively impacts the
sensor’s ability to measure spectral reflectance, resulting in poor performance [35]. The
results of the study in Section 4.2 show that the weight of the normalized vegetation indices
was mostly 0.1, and the reason for the low sensitivity to medium and high forest stand
density for NDVI is the mathematical formula of this index: the ratio of the difference
to sum. The sensitivity of the NDVI depends on the ratio of the two bands, and when
either band is significantly larger than the other, the numerator and denominator are nearly
equivalent, and the sensitivity of the index is negligible. Therefore, creating a weighting
factor for the bands in the index can narrow the gap between the contributions of the two
bands to the vegetation index and improve the sensitivity to the forest parameters. The
RVI uses the ratio of the two bands to determine the sensitivity. When either band is too
large or too small, it affects the degree of information contribution of the other band to the
RVI and reduces the sensitivity of the index.

The results of the study show that texture indices were more effective than vegetation
indices in extracting vegetation information and expressing forest structure better than
vegetation indices [4]. Texture features are independent of the color and brightness of the
object surface and reflect the frequency of hue changes in a given window size. As a result,
they are more sensitive to canopy space, which can distinguish the vegetation structure
in great detail and detect different forest canopy structural characteristics [96]. The use
of texture measurements that can distinguish spatial information reduces forest structure
differences independent of forest parameters, and the use of complementary information
for texture parameters in both bands simultaneously improves performance compared to
any single texture datum. This is the same as the conclusion of previous studies [35,59,90].
The research results show that mean matches the patterns within the pixels reflecting
the forest CC, BA, and AGB and reflects the texture regularity of pixels, and the larger
the value is, the more obvious and easy to describe the texture pattern is [97]. Entropy
and second moment are more reflective of the regularities of S, and there is a negative
correlation between them which is a measure of the uniformity of grayscale distribution
and represents the roughness of the texture. Second moment is a measure of the uniformity
of gray distribution, indicating the roughness of the texture. The texture will be more coarse
as the second moment value increases. Entropy measures the disorder or randomness of the
image values, and when the gray distribution is more uneven, texture mixing is disordered,
second moment is smaller, and entropy is larger [98,99]. Correlation is a measure of
the linear relationship between neighboring pixels and measures the dependence of the
grayscale on neighboring pixels, which implies that there is a predictable relationship
between two neighboring pixels within the window and is more relevant to the distribution
pattern of AGB. Combining the results of CTI and MTI shows that the optimal results
for CC, BA, and AGB all come from the texture features extracted using L8, whose good
performance regarding its texture metrics can be attributed to its push-scan design, which
perfects the signal-to-noise ratio, and its high radiometric resolution of 12 bits makes it
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more sensitive and robust in detecting vegetation structures. At the same time, the refined
spectral band of L8 eliminates the absorption effect of water vapor, thus allowing accurate
surface spectroscopic detection [35].

This study found that the best results were obtained for the ratio indices, either VIs or
TIs. The use of the ratio technique provides us with complementarity and advantages in
reducing other effects such as forest structure differences, incidence angle differences, and
topographic effects. Because of the heterogeneity of species and forest structure and the
complexity of topography, using these advantages of ratio techniques may be particularly
effective in the study area [100,101]. The results of this study show that the CTI and the
MTI focus more on representing variation within objects (within crowns and shadows),
as their results are selected for smaller windows, while the PTI focuses on representing
variation between objects (between crown or canopy objects and canopy shadows), and
therefore texture features are selected for larger windows [102].

6. Conclusions

In this study, the response characteristics between different bands and textures are
used and combined with normalization and ratio techniques to effectively extend the
linear relationship between variables and forest parameters, avoiding to some extent
the saturation problem arising between optical sensors and forest parameters. The newly
developed indices and forest parameters produced better results when compared to spectral
bands, popular vegetation indices, and textures. The results show that the form of the
vegetation index has no effect on the response information between spectral bands and
vegetation characteristics, but that it does have an impact on the weight. The vegetation
ratio index and texture ratio index developed using S2A produced the best results. The
ratio technique better eliminated sensor and terrain effects, and adding weight to the
ratio index based on band and texture sensitivity can effectively improve the response
differences in the bands and textures, enhancing the sensitivity of the index. However,
different bands and texture features contain different information, which will affect the
magnitude of the weight. In this paper, by combining the principal component analysis
with the texture ratio technique and adding appropriate weight according to the sensitivity
between different texture features, more valid information can be retained while reducing
the dimensionality of the data. The results show that variables containing more information
amount of texture features have better estimation performance, and using a single texture
feature does not reflect the variation of each forest parameter well. In addition, the selection
of different windows and texture features can affect the selection direction differently. The
results demonstrate that CC, BA, and AGB are less affected by direction, and removing the
differences in direction can improve the estimation performance of forest parameters, but S
is more affected by direction and has the strongest response to the texture features in the 0

◦

direction. S is also associated with the orderliness based texture features, and CC, BA, and
AGB are associated with statistically based texture features.

The study area comprises artificial coniferous forests, and the main tree species are
Larix principis-rupprechtii Mayr and Pinus sylvestris var. mongholica Litv, so most of the areas
have similar spectral characteristics. Because optical canopy reflectance depends on a
complex interaction of internal and external factors and most stand features are spatially
and temporally dependent, and because the remote sensing data and sample site data in
this study are not perfectly matched in time, which may vary significantly in time and
space. Therefore, empirical relationships will vary by location, time, and species type and
are not directly applicable to large-scale operational use. In addition, this study uses only
optical data, which can only obtain surface features of forest structure, and it is expected
that combining SAR or LiDAR data to combine vertical structure information can obtain
better results.
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