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Abstract: Crack inspection is important to monitor the structural health of pavement structures and
make the repair process easier. Currently, pavement crack inspection is conducted manually, which
is inefficient and costly at the same time. To solve the problem, this work has developed a robotic
system for automated data collection and analysis in real-time. The robotic system navigates the
pavement and collects visual images from the surface. A deep-learning-based semantic segmentation
framework named RCDNet was proposed. The RCDNet was implemented on the onboard computer
of the robot to identify cracks from the visual images. The encoder-decoder architecture was utilized
as the base framework of the proposed RCDNet. The RCDNet comprises a dual-channel encoder and
a decoder module. The encoder and decoder parts contain a context-embedded channel attention
(CECA) module and a global attention module (GAM), respectively. Simulation results show that
the deep learning model obtained 96.29% accuracy for predicting the images. The proposed robotic
system was tested in both indoor and outdoor environments. The robot was observed to complete the
inspection of a 3 m× 2 m grid within 10 min and a 2.5 m× 1 m grid within 6 min. This outcome shows
that the proposed robotic method can drastically reduce the time of manual inspection. Furthermore,
a severity map was generated using the visual image results. This map highlights areas that require
greater attention for repair in the test grid.

Keywords: crack detection; deep learning; mobile robotic system; NDE analysis; pavement inspection

1. Introduction

Roads in South Korea have a length of 105,673 Km, of which 89,701 are paved roads
(91.6%) [1]. These paved roads can be damaged for various reasons, including surface
cracking, delamination, honeycomb, etc. Cracks in paved roads are one of the most potent
indicators of pavement damage. Cracking in the pavement is quite unavoidable, and there
are many underlying factors (e.g., exposure to the sun, rain erosion, natural weathering,
and long-term driving of vehicles) that accelerate the cracking of the pavement’s surface.
If these cracks cannot be localized and repaired in time, they will have a negative impact
on the safe driving of vehicles. Consequently, it can cause deadly accidents, as well as
expenditure of a huge amount of money for the maintenance and repair of pavements.
Therefore, crack detection at an early stage is essential to maintain the structural integrity
and serviceability of paved roads. In past decades, manual crack detection was a very
common practice for localizing cracks on paved roads. However, the manual method lacks
efficiency and accuracy; it is expensive because of the necessary expertise. Moreover, it
is considerably tedious, arduous, and time-consuming because experts must monitor the
cracks with the naked eye by roaming the roads. Therefore, to lessen the workload of
experts and make the system fast and cost-effective, researchers are bringing automation to
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crack detection. With the advancement of computer vision (CV) technology, various vision-
based methodologies have already been developed to perform automatic crack detection.
Early implementation of the CV techniques for crack detection was to some extent limited
to threshold-based approaches (e.g., pixel intensity was used as the feature) [2,3], and
other hand-crafted feature-based approaches. Some of the prominent hand-crafted feature-
extraction techniques are wavelet features [4], Local Binary Pattern (LBP) [5], Digital Image
Co-relation [6], Gabor filters [7], and so on. But these methods can only extract local
patterns instead of global patterns, which pulls the detection results backward. Some
research [8–10] has used model-based, traditional CV algorithms, which use geometric
characteristics of images to perform crack detection globally. The advantages of model-
based techniques over feature-based techniques are that model-based techniques can detect
cracks in adverse conditions such as noisy environments, poor illumination conditions, and
shadow problems. Though these model-based methods can partially solve noise problems
and can detect cracks more continuously, their performance is not satisfactory enough
when detecting cracks with complex patterns or intensity inhomogeneity.

In recent years, Deep Learning has been extensively applied in CV tasks for its note-
worthy representation ability. DL models do not need hand-crafted features; rather, they
can extract valuable features (both local and global) automatically from the input data. A
few research works have already devoted their efforts to utilizing the properties of deep
learning mentioned above to learn robust feature representation and detect cracks with
more precision. Zhang et al. introduced a Convolutional Neural Network (CNN) classifier
for the first time in 2016 to detect cracks in concrete structures [11]. The primary objective
of this study was to develop a patch-based classifier to detect cracks in concrete structures.
Later on, Cha et al. [12] and Eisenbach et al. [13] also performed patch-based classification,
which can only identify the presence or absence of cracks in a corresponding image patch.
Researchers also utilized another deep learning scheme called object detection for localizing
the cracks, along with identifying them in an image [14,15]. However, these models can
only classify and localize the cracks in a concrete structure instead of detecting cracks
at a pixel level. So to solve this issue, Yang et al. incorporated an image segmentation
technique for detecting concrete cracks at pixel level [16]. Crack segmentation involves
classifying each of the pixels in an image as ’crack’ or ’non-crack’. Instead of detecting
the class only in an image, crack segmentation detects an output image, highlighting the
pixels containing the cracks, which localizes the cracks and extracts the original shape
of the cracks. Moreover, the segmented images can later be used for the important task
of extracting length, width, and area of cracks, which provides information about crack
severity in concrete structures. Considering the advantages of crack segmentation over
crack detection and classification, researchers from all over the world are devoting their
efforts to developing crack-segmentation methods and quantifying the cracks to present an
automated crack-detection system [17,18].

However, along with the automated detection of cracks, automatic data collection
is also necessary for developing a fully automated pavement inspection system. While
automated crack detection increases accuracy, automated data collection can save time
and also handle safety issues. As a whole, many researchers have already utilized robotic
vehicles as well as unmanned aerial vehicles to collect the images automatically [19,20].
However, most researchers collect the data with their vehicle and transfer them to another
computer for analysis, which cannot be considered a real-time detection method for saving
time. So, considering the above-mentioned issues, this work develops a robotic-assisted
pavement inspection system that collects image data automatically and detects cracks
from images in real time using our proposed deep learning models. Furthermore, after
generating the images, this work will quantify the cracks to present severity maps of the
cracks. This work will solve the problems of manual crack detection techniques through
our proposed system. The automatic data collection saves time and also handles safety
issues. The detection using our proposed deep learning model increases the accuracy, and
finally, as this work is proposing a totally automated pavement inspection system, it will
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not need experts’ involvement, which will reduce the expenses as well. This work thereby
develops a robotic-assisted pavement-inspection system. The main contributions of this
study are as follows.

• Developing a robotics platform that will collect visual data automatically;
• Presenting a novel deep learning model to implement the platform on the robot’s

onboard computer to detect cracks from the RGB images in real-time;
• Presenting a crack quantification algorithm for finding out crack length, width,

and area;
• Finally, presenting a visualization of the crack severity map.

The rest of this research is organized as follows: Section 2 provides an overview of the
existing research works that focus on developing robotic vehicles for pavement inspection.
Section 3 presents the architecture of the robotic platform used in this work. Section 4
presents the crack segmentation technique from RGB images. Section 5 presents the
working principle of the robotic platform. Section 6 discusses the experimental procedure
and shows the obtained result of our proposed system. Section 7 discusses the drawbacks
of the proposed system. This work is concluded in Section 8. Our code is public at
https://github.com/Masrur02/AMSEL_robot (accessed on 16 July 2023).

2. Literature Review

In this section, this paper will briefly summarize the existing state-of-the-art related re-
search that focuses on developing robotic-assisted systems for inspecting cracks in concrete
structures in real-time.

2.1. Robotic System for Crack Inspection
2.1.1. Traditional Methods

In past decades, various researchers have developed robotic vehicles to automatically
inspect cracks. The first study, dating back to 2007 [19], designed an automated inspection
system for cracks in concrete tunnels using a mobile robot. They collected the images using
a CCD camera, which was interfaced with the robot, and stored the images in the robot’s
brain. Later, they extracted cracks on a different computer using the Sobel edge-detection
algorithm. Oyekola et al. also designed a robotic system for detecting cracks on concrete
tank surfaces [21]. The authors also first collected the images and later detected cracks
using a thresholding algorithm developed using the MATLAB programming language. Li
et al. utilized the robotic platform developed by Guimu Robot Co Ltd., Shanghai, China
for detecting cracks on pavement structures [22]. The authors developed an unsupervised
algorithm named the Multiscale Fusion Crack Detection (MFCD) for inspecting the cracks.
However, in this research, the cracks are also not detected by the onboard computer. La et
al. developed a wall-climbing robot for detecting cracks on steel bridges [23]. The robot
was equipped with several sensors and a camera. Navigating through the steel bridges, it
collected data and passed them in real-time to the ground station for further processing
and for detecting cracks using a Hessian-matrix-based filter. In another work, La et al.
used the Seekur mobile robot platform and modified it by installing several NDE sensors
(e.g., GPR, USW, ER, IE) and a camera for the monitoring of a concrete bridge deck [24].
The authors collected the images and passed them to the remote computer to extract the
cracks using a Gradient-based algorithm. They also presented the delamination maps of
the cracking using NDE data. The robot could localize itself and maneuver automatically
on the bridge deck. However, this robotic system needed multiple onboard computers
for navigating and processing everything. In the studies [19,21–24], the researchers relied
on conventional methods for crack assessment, employing image-processing algorithms
and threshold-based approaches. While these methods provided initial insights, their
weaknesses lie in accurate detection as well as in the lack of post-processing techniques to
obtain comprehensive geometric information about the cracks. Additionally, the reliance
on external computers for crack detection introduced potential delays and limitations in
real-time assessment.

https://github.com/Masrur02/AMSEL_robot
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2.1.2. Learning-Based Methods

Hendrik et al. developed a legged robot named ANYmal for inspecting the crack
conditions in underground tunnels [25]. The researchers considered the tactile sensory
system instead of the vision data because of the presence of noise, water, etc., on the
surface. They collected signals from the footsteps of the robot and classified the crack
conditions using the Support Vector Machine (SVM) algorithm. The authors classified
five types of crack conditions, including good, satisfactory, fair, critical, and failure, to
provide information about the severity. Le et al. developed a mobile robotic system for
the in-line inspection of the pipes [26]. The authors integrated multiple sensors (e.g.,
LIDAR, optic sensors) on the robot and classified these combined sensory data using the
SVM algorithm for detecting cracks in pipes. Lei et al. developed a low-cost unmanned
aerial vehicle for inspecting cracks in concrete structures [20]. They collected images
using their UAV and classified cracks using the SVM classifier running on the onboard
computer. Pan et al. utilized low-altitude images collected from a UAV to detect cracks
on asphalt pavements [27]. The researchers collected centimeter-level spatial resolution
images and utilized a hybrid model (ANN+SVM) to inspect the cracks. In [20,25–27],
machine learning techniques were introduced for crack assessment, improving upon the
conventional methods. By using legged robots, mobile robots, and UAVs, these studies
leveraged tactile sensory systems, the fusion of camera data with other sensors, and image
analysis models such as Support Vector Machine (SVM), Random Forest (RF), and Artificial
Neural Network (ANN). The focus was on classifying cracks and achieving enhanced crack
detection using machine learning algorithms. However, weaknesses persisted in terms
of limited classification capabilities and the reliance on specific sensor data fusion. The
studies focused on crack classification rather than providing detailed geometric information,
and the machine learning models were not fully capable of accurately quantifying crack
properties such as depth and length. Montero et al. developed a mobile robotic system
for detecting cracks in concrete tunnels [28]. They designed the mobile robot with an
adjustable crane and a robotic arm. The adjustable crane carried the vision sensor and the
robotic arm, while the robotic arm carried an ultrasonic sensor. They designed the crane
to be adjustable so that it could reach different heights and directions for collecting data
accurately. They collected images and passed them to the host computer, which analyzed
the images using CNN, and they also contacted the ultrasonic sensor with the tunnel wall
to analyze the cracks. Li et al. developed a quadrotor flying robot for detecting cracks
in concrete bridges and tunnels [29]. The authors focused on reconstructing 3D metrics
to determine the location of the defects and severity information using a visual-inertial
fusion approach. They proposed a novel Deep Learning model named AdaNet to detect
cracks using their own crafted dataset named Concrete Structure Spalling and Cracking
(CSSC). Gui et al. developed a robotic system using the ARIR robotic platform for detecting
cracks on airport pavement [30]. They utilized one vision camera and a GPR sensor for
collecting surface and subsurface data. The data were passed to an analysis center to
process the collected data. They employed an intensity-based algorithm to detect cracks
from images and a voting-based CNN to predict the GPR data. Finally, the authors stitched
the collected data together to present a continuous grid for visualization. Ramalingam
et al. developed a mobile robotic platform named Panthera for segmenting cracks and
detecting garbage on the road [31]. The authors adopted SegNet for the segmenting task
and a DCNN-based object detector for detecting garbage. Furthermore, they also utilized
the Mobile Mapping System (MMS) for localizing the defects. He et al. developed an
unmanned surface vessel (USV) for inspecting cracks on the bottom part of bridges or
urban culverts [32]. The researchers installed both RGB cameras and LIDAR to collect
information from the environment. The authors proposed a novel Deep Learning model
named CenWholeNet for detecting cracks. The USV was controlled from a ground station
module, where the LIDAR and video information was also transmitted from the robot’s
brain (Intel NUc mini pc). In [28–32], advancements were made in crack assessment with
the integration of deep learning techniques. These studies utilized CCD cameras, UAVs,
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and mobile robots to collect images and employ deep-learning models such as CNN and
Adanet. The emphasis was on detecting cracks and estimating crack location. However,
limitations were observed in terms of limited crack parameter estimation and the need
for additional computational resources to handle the complex deep-learning algorithms.
Moreover, comprehensive datasets for training and evaluating deep learning models were
not extensively developed.

Yang et al. developed a wall-climbing robot for detecting cracks and spalling on
concrete structures [33]. The researchers collected data using an RGB-D camera and
estimated the cracks on the images by utilizing a novel deep learning model named
InspectionNet deployed in Intel Nuc Mini PC. They also developed a map-fusion module
for their work to highlight the detected cracks. Yuan et al. developed a mobile robotic
platform for detecting cracks in reinforced concrete structures [34]. The authors proposed a
Mask-RCNN-based model for segmenting the cracks on the images collected from a stereo
camera. They utilized an NVIDIA Jetson Xavier device to implement the edge computing
technique and pass the predicted frames to the host computer through the WebSocket
protocol. They designed a UI for successfully controlling the robot and collecting the
frames. Another important feature of this research is that after quantifying the damages, the
researchers presented information about the actual size in a 3D cloud point reconstruction of
the inspected structures. In [33,34], the research focused on real-time crack assessment using
robotic systems, incorporating RGB-D cameras, stereo cameras, and LIDAR sensors. The
integration of deep learning models on onboard computers demonstrated promising results.
However, weaknesses include the need for fine-tuning algorithms to handle variations in
lighting conditions and challenges associated with accurately reconstructing actual crack
sizes. Additionally, limited attention was given to automated crack quantification and
severity mapping. Table 1 presents a summary of the robotic platforms for crack inspection.
Although there have been numerous remarkable research works in the field of automatically
detecting pavement cracks, there is still a vast scope for improving existing methods. To the
best of our knowledge, previous works, except for [33,34], have not quantified the cracks
after real-time detection by a robotic system. Furthermore, none of the previous works
have explored the combination of indoor and outdoor environments for inspecting cracks
using a robotic-assisted system. Considering this research gap, our work aims to develop a
holistic robotic-assisted maintenance system for pavement structures in both indoor and
outdoor environments. The incorporation of both indoor and outdoor environments in our
robotic system plays a pivotal role due to the variations in brightness that can significantly
impact the accuracy of crack detection. By accommodating these differing conditions, our
robotic system achieves superior, comprehensive, and robust crack detection results. In
short, this system will integrate automated data acquisition, DL-based crack detection,
crack quantification, and severity mapping in both indoor and outdoor environments.
Moreover, we provide a UI-based system by which crack monitoring is possible with
limited technical knowledge.

Table 1. Summary of robotic platforms for crack inspection.

Researchers Inspected Structure Robot Platform Deep Learning Remarks

Yu et al. [19] Concrete Tunnel Mobile robot No

Images were collected
by the robotic system.
An image-processing

algorithm was utilized
in an external computer

for detecting cracks
and crack information.
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Table 1. Cont.

Researchers Inspected Structure Robot Platform Deep Learning Remarks

Oyekola et al. [21] Concrete Tank Mobile robot No

Images were collected
by the robotic system.

A threshold-based
algorithm was used in
another computer for
detecting the cracks.

Li et al. [22] Concrete pavement Guimi robot co ltd. No

Detected crack using an
unsupervised learning

algorithm named
MFCD. Detection was
not performed in the
onboard computer

La et al. [23] Steel bridge Wall climbing robot No

Images were collected
and passed to the
ground station in

real-time. Cracks were
detected using the

Hessian-matrix
algorithm.

La et al. [24] Bridge deck Seekur robot No

Combined visual
sensor and NDE
sensors for crack

inspection. Presented
stitched images after
crack detection and a

delamination map.

Hendrik et al. [25] Concrete sewers ANYmal (legged robot) Yes (Machine learning)

Tactile sensory system
were used to collect

time-series signals from
the footstep of

ANYmal, and Support
Vector Machine (SVM)

was used to classify
types of cracks.

Le et al. [26] Concrete pipe Mobile robot Yes (Machine Learning)

Data from the camera
and other sensors were
fused to classify using

SVM for detecting
cracks.

Pan et al. [27] Asphalt pavement UAV Yes (Machine learning)

Collected images using
the UAV and the cracks

were detected using
Random Forest (RF),
SVM, and Artificial

Neural Network
(ANN) models.
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Table 1. Cont.

Researchers Inspected Structure Robot Platform Deep Learning Remarks

Montero et al. [28] Concrete Tunnel Mobile robot Yes

Collected RGB images
using a camera and

ultrasound data by an
ultrasonic sensor. A

CNN model was used
for detecting cracks

from the images, and a
traditional method was

used for estimating
crack depth from the

ultrasonic data.

Li et al. [29] Concrete Bridge Flying robot Yes

A deep learning model
named Adanet was

developed for detecting
cracks. Crack location

and severity
information was
provided as well.

Gui et al. [30] Airport pavement ARIR robot Yes

Both surface and
subsurface data were
collected by a camera
and a GPR interfaced

into the robotic system.
An intensity-based

algorithm and
voting-based CNN

were applied for
processing image and

GPR data.

Ramalingam et al. [31] Concrete pavement Panthera robot Yes

A SegNet-based model
was developed to
detect cracks and
garbage using the

onboard computer. A
Mobile Mapping
System was also

utilized to localize the
cracks.

He et al. [32] Concrete Bridge USV Yes

A USV with an
onboard computer was
applied to detect cracks

in the bottom of a
concrete bridge using a

model named
cenWholeNet.

Yang et al. [33] Concrete wall Climbing robot Yes

A network named
InspectionNet was

used for detecting the
cracks from the RGB-D
camera on the onboard
computer of a robotic
system. A map-fusion

module was also
proposed to highlight

the cracks.
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Table 1. Cont.

Researchers Inspected Structure Robot Platform Deep Learning Remarks

Yuan et al. [34] Reinforced concrete Mobile robot Yes

This robotic system
used a stereo camera
for collecting pictures
and utilized a Mask
RCNN model on the
onboard computer to
detect cracks. A 3D

point cloud was
reconstructed from the

actual size of
the cracks.

3. Architecture of the AMSEL Robot

The design and configuration of the AMSEL robot developed for inspecting pave-
ment cracks are described in this Section. Figure 1 displays the configuration in the lab
environment, and Table 2 presents the specifications of the robot.

(a) Top view (b) Front view

Figure 1. AMSEL robot configuration on the lab environment.

Table 2. AMSEL robot specifications.

Parameter Dimension Unit

AMSEL Height 21 cm
AMSEL Width 48.5 cm

AMSEL Length (with sensor
frame) 91 cm

AMSEL Length (without
sensor frame) 74 cm

Sensor frame height 35.3 cm
Sensor frame length 17 cm
Sensor frame width 36 cm

Wheel numbers 4 -
Wheel radius 13.25 cm

Continuous driving time >4 h
Power source Lipo battery 22 V

Sensor RGB camera, vibration sensor -

3.1. Mechanical Unit

The mechanical system of the AMSEL robot comprises two different components:
(a) a Chassis module unit and (b) a reconfigurable sensory frame. Figure 2 displays the
mechanical components of the AMSEL platform.
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AMSEL Mechanical and Functional Units

Chassis Module Unit
Reconfigurable 

Sensory Frame

i ii iii iv

(a) AMSEL Robot chassis with and without 

metal cover plate

(b) Sensor frame in normal mode and 

extended mode

Figure 2. Mechanical components of AMSEL.

3.1.1. Chassis Module

The chassis module is the physical frame of the AMSEL robotic platform that gives
the vehicle a distinct shape. Figure 2a (i) and (ii) display the chassis of the AMSEL robot
with and without the metal cover. The shape of the AMSEL chassis is a rectangle like a
mobile robot. The chassis is made of lightweight steel. The dimensions of the chassis are
21 × 48.5 × 71 cm. The motors, motor drivers, power source, and other electrical and
controller components are accommodated on the left and right rails and the center of the
chassis box. The box is covered with a metal plate, which carries the WiFi router and keeps
the components secure from rain and dust inside the chassis box.

3.1.2. Reconfigurable Sensory Frame

The sensor frame carries the vibration sensors, solenoids, and vision sensors. The sen-
sor frame has a reconfiguration mechanism that goes down to make contact between the vi-
bration sensors and the ground and goes up during the navigation time.
Figure 2b (iii) and (iv) show the sensor frame in two different modes. The height, width,
and length of the frames are 35, 36, and 17 cm, respectively, when the sensors are not
touching the ground. The stepper motor is also attached to the frame for moving it up
and down.

3.2. Electrical and Functional Unit

The electrical and programming unit of the AMSEL robot consists of three different
types of components; (a) sensory units, (b) electrical units, and (c) control units. Figure 3
illustrates the electrical and sensory components.
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AMSEL Electrical and other Units

Sensory and Electrical 

Units

(a) Sensory and Electrical components

Programming and 

Control Units

i
ii iii

iv
v vi

vii

(b) Intel Nuc and Python for control

Figure 3. Sensory, electrical, programming, and control units in AMSEL.

3.2.1. Electrical Units

The AMSEL robot’s electrical block consists of various devices, including a camera,
battery, power supply board, DC motors, etc. A list and short description of the utilized
electronic devices are provided below:

• Vision System: A Logitech c922 Pro HD Stream Webcam is been utilized as the vision
system of the AMSEL robotic platform (Figure 3a (i)).

• Power source: In the AMSEL robot, a Polytronics Lithium-Polymer (Li-Po) battery is
used as the power source. The model number of the utilized battery is PT-B16-Fx30
(Figure 3a (ii)).

• Power supply board: A custom-designed power supply board is utilized to split the
power from the Li-Po battery among the other electronic devices used in the robotic
platform (Figure 3a (iii)).

• DC motors: For navigating the robot, four DC motors are used in the AMSEL robot
(Figure 3a (iv)). The DC motors used in this robot are 200W Brushless DC (BLDC)
motors. The model number of these motors is TM90-D0231.

• BLDC motor controller: For driving and controlling the motors in the AMSEL robot,
four BLDC motor controllers are used (Figure 3a (v)). The model number of the
utilized controller is TMC-MD02.

• Serial communication adapter: The AMSEL robotic platform uses multiple serial com-
munication adapters for converting the RS485 communication to USB communication,
as the system’s main controller uses USB communication protocol (Figure 3a (vi)).

• Router: A Tplink Archer Ax73 outer is used in the AMSEL robot for communicating
with the host PC in the ground station (Figure 3a (vii)).

3.2.2. Control Unit

The control system of the AMSEL robotic platform is divided into two parts: one
is the software control unit, and the other one is the hardware control unit. For the
software control, a graphical user interface (GUI) (Figure 4) is designed using the Python
programming language and implemented on a host computer in the ground station.
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Figure 4. Illustration of the graphical user interface for controlling the AMSEL robot.

The GUI communicates with the primary hardware controller of the AMSEL robot
using socket communication technology, where the robotic platform works as the server
and the host PC works as the client. The GUI has various buttons that are used to send
commands to the robotic platform. The vehicle executes the corresponding commands
and sends the image data to the host PC through the socket communication channel. The
primary controller in the hardware is an Intel Nuc mini PC, with six cores and 8GB RAM,
and it runs on Windows 10. The control unit in the hardware architecture comprises two
control blocks, and all of them are controlled by the primary controller. Figure 5 displays
the control blocks and the hardware architecture of the AMSEL platform.

B
at

et
ry

 2
2
V

P
o
w

er
 S

u
p
p
ly

 B
o
ar

d

2
4
V

, 
1
2
V

, 
5
V

Intel Nuc Mini PC

Router BLDC Motor Driver

BLDC Motors

Navigation Control Unit

Primary Control System

C922 Pro Webcam

Vision System Control

Figure 5. Hardware architecture of the AMSEL robot.

From Figure 5, it can be seen that the hardware architecture of the AMSEL robot is
composed of three control blocks, including a vision system unit associated with Deep
Learning and a navigation control unit. The vision block comprises a Logitech C922 Pro
HD webstream camera. The camera is powered by the intel nuc mini PC and communicates
with it by using a USB 3.0 communication interface. For processing the images, deep
learning frameworks (Tensorflow, Keras) were installed in the primary controller. This
control block captures the images, detects cracks using deep learning technology, and
passes the images to the host computer using server-client communication technology.
The navigation control unit comprises the motor controllers and the motors, which are
powered via the power supply board. The primary controller communicates with the
motor controllers using serial communication technology. The primary controller sends
the commands to the motor controller, and they drive the motors as per the commands.
The motor controllers can also send the spatial encoder data to the primary controller for
making decisions on navigation and generating the next commands.
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4. Crack Detection and Quantification from Image
4.1. Proposed Architecture for Crack Segmentation

Crack detection can be considered a semantic segmentation [35,36] problem where the
‘crack’ and ‘non-crack’ pixels are assigned as two different classes. This paper proposes a
novel lightweight (number of parameters: 981,723) crack-detection method named ‘RCD-
Net: Real-Time Crack Detection Network’ based on deep learning. This work has utilized
the encoder-decoder architecture [37,38] as the base framework of our proposed model.
The model was designed in such a way that it can exploit all the necessary information
for good prediction with few model parameters and less computational complexity. The
main purpose of reducing the model size is to make it compatible with implementing it
on the onboard computer of the robotic platform and detecting cracks in real-time. The
overall architecture of the proposed model is shown in Figure 6. As illustrated in Figure 6,
our proposed model has two major parts, including a dual channel encoder module and a
decoder module, while the encoder and the decoder parts contain attention modules [39],
namely the context-embedded channel attention (CECA) module and the global attention
module (GAM), respectively. The encoder part of our model extracts different levels of
feature information (low-level to high-level) from the RGB images of size 512 × 512 in each
of the encoder stages. This work utilizes a dual-channel encoder module for extracting
information of different scales. Later, this paper fuses this multi-scale information at the
beginning of the CECA module, which ensures the availability of more detailed and rich
contextual information from the original images. After this multi-scale feature fusion,
the CECA module passes the aggregated features through a channel attention branch to
provide more weights to the most important channels of the feature map and thus pro-
duces a new channel-refined feature map. Then, the GAM in the decoder part collects the
low-level features from the CECA modules and the upsampled high-level features from
the convolution blocks of the decoder. GAM utilizes the high-level feature maps as the
guide to weigh the low-level features and later fuses them with the high-level features.
After that, the GAM module passes this weighted channel’s refined feature to a spatial
attention branch to produce spatially refined features. The spatially refined features give
more weight to important pixels of a channel for accurately predicting the cracks. Finally,
after repeating the process in each stage of the decode block, our model gradually restores
the feature maps and produces the segmentation map with the same resolution, as it is
good to have the same resolution. The design of each branch of our model is discussed
briefly in the following subsections.

4.1.1. Encoder Module

This work has designed a symmetric dual-channel encoder module for extracting
information on different scales from pavement images. The purpose of using a dual-channel
encoder module is to collect maximum information from the images by performing multi-
scale feature fusion. The literature shows that in CNN convolution, the kernel size can
be divided into two groups: small kernel size (1 × 1, 2 × 2, 3 × 3) and large kernel size
(5 × 5, 7 × 7, 11 × 11). These two groups have different types of characteristics in the
case of extracting features. The small kernels are more likely to extract local, complex, and
fine-grained features. On the other hand, the large kernels have a larger receptive field
and can extract widespread and global features. Conventional CNN models usually use
either small kernels or large kernels in their network. However, many important pieces
of information are overlooked and missed with this strategy, which hampers the accurate
detection of cracks. To overcome this problem, in our network, this paper proposes a
dual-channel encoder scheme so that the feature maps from each encoder stage can contain
both rich spatial information and the precise location information of the cracks in pavement
images. The kernel size utilized in the encoder channels of our network is 3 × 3 and
7 × 7. Both of the encoder channels of our proposed network consist of five encoder blocks,
where each of the blocks is followed by a 2× 2 maxpooling layer. The encoder blocks in our
model consist of a convolution layer with the same number of filters for encoder channel 1
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and encoder channel 2. The first two blocks used 16 filters, and the later ones utilized 32, 64,
and 128 filters, respectively, to perform the convolution operation and extract feature maps
of different numbers from every stage. The first encoder block of our network receives the
original RGB images with the size of H ×W × C, where H is the height, W is the weight
of the images, and C represents the number of channels. After going through each of
the encoder blocks, the images were downsampled by half due to the maxpooling layers,
and the blocks produced feature maps as the number of utilized filters. So after the first
encoder block in both of the channels, the output feature size becomes H/2 ×W/2 × 16.
And finally, at the end of the encoder module, this research obtains a feature map of size
H/32 ×W/32 × 128.

CECA CECA CECA CECA CECA

GAMGAMGAMGAM

Decoder

Encoder
Input Data

Result

H×W×3

H×W×3

H/2×W/2×16 H/4×W/4×16 H/8×W/8×32 H/16×W/16×64 H/32×W/32×128

H/2×W/2×16 H/4×W/4×16 H/8×W/8×32 H/16×W/16×64 H/32×W/32×128

H×W×16 H/2×W/2×16 H/4×W/4×32 H/8×W/8×64 H/16×W/16×128

1
×

1
 C

o
n
v

Figure 6. Structure of the proposed model.

4.1.2. Context Embedded Channel Attention Module

After extracting features from the encoder channels, this research designs a context-
embedded channel attention (CECA) module for fusing the information of the corre-
sponding stages of every channel and recalibrating the extracted features based on the
inter-channel relationships and dependencies. The main purpose of the CECA module is to
give more weight to the important channels of a feature map and overlook the unnecessary
ones to improve the feature representation. The structure of the proposed CECA module is
shown in Figure 7.

As shown in Figure 7, our CECA module first takes the feature maps of the en-
coder channels f3×3, f7×7 ∈ RH×W×C as inputs and aggregates them to generate a context-
embedded feature map F∈ RH×W×C. In the later part of the CECA module, the embedded
feature map F is passed through two parallel branches of the global average pooling (Gap)
layer and the global maxpooling (Gmp) layer. The Gap layer produces a descriptor feature
da ∈ RC×1×1 that contains the information of channel statistics by consolidating the spatial
information. And the feature dm ∈RC×1×1 produced from the Gmp layer contains important
information about the object features. Mathematically,

da = Gap(F)

dm = Gmp(F)
(1)



Remote Sens. 2023, 15, 3573 14 of 34

GAP

GMP

C
o

n
v

 3
×

3
C

o
n
v

 7
×

7

+

MLP

MLP

+ ×Shared

H×W×C

C×1×1

C×1×1 H×W×C

Figure 7. CECA module structure.

The descriptor features da and dm are then fed to a shared MLP layer for attaining the
degree of association among the channels. For reducing the computational complexities,
the number of hidden layers was selected as RC/r×1×1, where r is the reduction ratio. At
the end of the parallelly branched MLP layers, the outputs are fused and passed through a
sigmoid activation function to generate a feature map V.

V = σ{MLP[da] + MLP[dm]} (2)

Finally, the output of our CECA module B ∈ RH×W×C is obtained by multiplying the
original feature maps from the encoder stages with the feature map V. So the CECA is
defined as follows:

B = V ⊗ f3×3 ⊗ f7×7 (3)

Therefore, using the CECA blocks, this work obtains refined activation maps that
focus more on important channels and suppress the unnecessary ones. The size of the
refined activation maps is the same as the intermediate activation maps extracted from the
encoder stages.

4.1.3. Decoder with Global Attention Module

The decoder module of our proposed model consists of five convolution blocks and
four global attention module (GAM) blocks. Each of the convolution blocks consists of two
convolution layers, which have the same number of filters corresponding to the encoder
blocks. The convolutional layers are followed by a Rectified Linear Unit (ReLU) activation
function and a batch normalization layer. The size of the kernels utilized in the decoder
layers is 3 × 3. In the GAM blocks, this work fuses the upsampled high-level feature
Xh ∈ RH×W×2C generated by the convolution blocks in the previous decoder stage and the
low-level features Xl ∈ RH×W×C generated by the CECA module. However, as shown in
Figure 8, before fusing the features from different stages, the GAM module weighs the
low-level features based on the high-level features to put more focus on the key information.
To generate the weighted features, GAM first performs a 3× 3 convolution on the low-level
features. And the high-level features are passed through the channel attention block of
the CECA module to assign more weights to the important channels and recalibrate the
high-level features. Then, the low-level features and high-level features are multiplied
to generate weighted low-level features ∈ RH×W×C. Later, the original high-level feature
map xh is compressed by passing through a 1 × 1 convolution layer to achieve the same
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dimension as xl . At the end of this stage, the weighted low-level features and high-level
features are merged to produce a channel-refined feature y0 ∈ RH×W×C. Mathematically,

y0 = E + conv1×1(xh)

y0 = conv3×3(xl) + V(xh) + conv1×1(xh)
(4)

After obtaining the channel-refined feature, GAM performs spatial attention on the y0
to extract the spatial interpixel relations. The primary goal of utilizing spatial attention is
to focus on the important pixels of a channel that highlight meaningful features to provide
prospective crack information. To perform the spatial attention, the channel refined feature
y0 is passed through an average pooling and maxpooling layer along with the spatial
dimension. As a result, this process generates two feature maps:

qap = ap(y0)

qmp = mp(y0)
(5)

Then these two-dimensional outputs, qap ∈ R1×H×W and qmp ∈ R1×H×W , are concate-
nated as

Q = (qap, qmp) (6)

Low Level 

Feature

Xl

High Level 

Feature

Xh

Conv 3×3

CECA

×
×

Averagepolling

Concatenationσ

 Maxpooling

C
o
n
V

 7
×

7

Weighted Channel 

Refined Features

Weighted Spatial 

Refined Features

Figure 8. GAM module structure.

After this step, the concatenated feature map goes through a 7 × 7 convolution layer
followed by a sigmoid activation function. This work finally obtains the feature map
S ∈ RH×W×C. The output activation map S from the GAM block contains the most essential
pixel information for detecting cracks as it is filtered out in both the spatial and channel-
wise dimensions. This output is then fed into a convolutional layer of the next decoder
stage for reconstructing the pixels and predicting the cracks on road images. Following
this process in all the five decoder blocks, this process generates a feature map of size
H ×W × 16. Later, this process applies a 1 × 1 convolution to obtain the predicted image
with the same shape (H ×W × C) as the original image.



Remote Sens. 2023, 15, 3573 16 of 34

4.2. Dataset Description and Training of the Model
4.2.1. Dataset

The dataset utilized in this process for training the crack segmentation model is a
public benchmark dataset named the Crack500 dataset [40]. The dataset was collected using
smart mobile phones from the main campus of Temple University, USA. The researchers
initially collected 500 images with a resolution of 2000 × 1500 pixels. Considering the issue
of a small number of images and the large size of the images, each image was cropped into
16 non-overlapping parts. The researchers only kept the regions with resolutions of more
than 1000 pixels. Consequently, the final dataset contains 3368 images. The dataset also
provides annotated ground truth for each of the images.

4.2.2. Implementation Details

The crack-segmentation problem can be considered a class imbalance problem since
the number of pixels containing cracks can be very low. Therefore, to handle the class
imbalance problem during crack estimation, this work has used the dice loss function in
this work. The dice loss function can be calculated using the following formula:

DiceLoss = 1− 2 ∑i mini + γ

m2
i + n2

i + γ
(7)

where m represents the predicted probabilities of the classes, n denotes the ground truth
data, and γ denotes the smoothing factor. This work divided the dataset into 7:3 for
training and testing the model and resized input images and ground truths in the size of
(512 × 512 × 3) and (512 × 512 × 3), respectively. This work chose the Adam optimizer
to optimize our model. This work set the batch size to 2 and the learning rate to 0.001
and trained the model to the 100th epoch. This work utilized Python version 3.6.13 as
the development language and Keras version 2.6.0 as the Deep Learning framework.
We trained the model and conducted our experiments in a computer configured with a
Windows 10 operating system, 32 GB RAM, Intel core i9-11900k @ 3.50 GHz CPU processor,
and NVIDIA Geforce RTX 3080Ti graphics card.

4.3. Crack Severity Analysis

The proposed model provides us with the segmented cracks from the images. How-
ever, we also needed to determine the number of cracks and other morphological features
(e.g., length, maximum width, area, density) to analyze the severity of cracks in any par-
ticular sample picture. To do so, this work utilized the conventional image-processing
technique described below.
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4.3.1. Counting the Cracks

In the first step of our crack-severity-analysis section, this work calculated the number
of individual cracks in railway sleeper images. To count the cracks, this work utilized the
concept of contour detection in the images. Contour detection is a process that can be
explained as a closed curve with an orientation that joins all the continuous points (along
with the boundaries) with similar pixel intensities. Consider an image as a 2D function
f(x,y); then,

f (x, y) = c (8)

where c is the constant pixel value. So, using the contour detection process, this work
obtains the connected regions of the crack denoting pixels predicted by the proposed model
and crack boundaries. Thus, this work can calculate the number of detected contours, i.e.,
the number of individual crack objects.

4.3.2. Extracting Morphological Features

After extracting the individual crack objects from the previous step, this work calcu-
lated the cracks’ morphological features (length, width, area, and density). To calculate
the length and the maximum width of the cracks, this work applied Algorithm 1. From
the previous section, this work generated the boundaries of the contours, i.e., cracks.
Consider a contour C = [X,Y], which is an array of two columns with N length, where,
x0, x1,. . . . . . xn ∈ X denotes the rows of the image and y0, y1,. . . . . . yn ∈ Y denotes the
columns of the image. Let (x0, y0) and (xn, yn) be the starting point and the ending point of
the contour, i.e., crack, respectively. To find out the length of the crack, this work calculated
the distance between the starting point and the ending point of the crack boundary using
the distance formula. To calculate the maximum width of a crack, this work first decided
whether the crack is horizontal or longitudinal in nature based on the number of rows and
columns of the image inside the contour. If the crack has more columns than rows, then the
crack is horizontal as its length is toward the horizontal direction of the image frame. On
the other hand, a crack is longitudinal if the contour has more rows. To find the maximum
width of a horizontal crack, this work traversed from the starting column y0 to the ending
column yn of the crack boundary. During this process, this work located and stored the
rows where any particular column yj was examined in a list named occurs. This work
estimated the number of rows traveled by any column yj when this searching loop was
completed, and this work appended the results for each column to a list entitled widths.
Finally, this work searched for the maximum value in the list, and this work thus calculated
the maximum width of a crack. Furthermore, this work also estimated the location of the
maximum width of the crack. To do so, this work found the position of the first and last
rows of the column, which had been examined as maximum rows. To find the width of a
longitudinal crack, this work utilized the same process; however, this time, this work exam-
ined the rows from x0 to xn and stored the number of columns traversed by a particular
row xj. Later, on the basis of these, this work estimated the maximum number of columns
traversed by a particular row xj, which represents the maximum width of a longitudinal
crack. This work calculated the area of the contours as the area of the individual cracks.
After that, this work added the area of the individual cracks and calculated the total area
covered by the cracks in the image. Finally, this work divided the total area of the cracks by
the number of pixels to obtain the density of the cracks in an image.
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Algorithm 1: Algorithm for length and width calculation

1 contour=[X,Y]

Length =
√
(xn − x0)

2 + (yn − y0)
2

2 if Y > X then
3 Initialize an empty list named widths
4 for i←(y0, yn) do
5 Initialize an empty list occurs
6 for j← N do
7 if yj == i then
8 update occurs using xj

9 end
10 update widths using max(occurs)−min(occurs) +1
11 end
12 Maximum width = max(widths)

13 else if Y < X then
14 Initialize an empty list named widths
15 for i←(x0, xn) do
16 Initialize an empty list occurs
17 for j← N do
18 if xj == i then
19 update occurs using yj

20 end
21 update widths using max(occurs)−min(occurs) +1
22 end
23 Maximum width = max(widths)

5. AMSEL Robot Working Method

The AMSEL robot platform conducts data collection and data processing fully au-
tonomously. The working principle of the AMSEL platform is illustrated in Figure 9.

Navigation
Wheel 

encoders

Camera
Collect 

Images

Crack 

Segmentation

Crack 

Quantification

Crack severity 

Map

Robot Host PC Results

Figure 9. The working principle of the AMSEL robot navigation inspection system.

As can be seen from Figure 9, the robotic system is divided into two working stations,
i.e., the robot device and the host computer. The AMSEL robot navigates on the concrete
pavement and collects images from the surface. The robot collects images from a height of
30 cm, and the area covered by one image is 302 mm × 227 mm. After collecting the image
data with a resolution of 640 × 480 pixels, the onboard computer of the AMSEL platform
resizes the image to a resolution of 512× 512 pixels and segments the cracks in the collected
picture by utilizing the proposed deep-learning model described in Section 4.1. Then, the
robot transmits the processed image to the host computer in real time. Finally, the host
computer shows the image in the user interface of the robotic system and stores it on the
device to further analyze the crack severity using the algorithm described in Section 4.3.
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5.1. Manual Navigation and Pavement Inspection

In manual mode, the robot’s movement and pavement are inspected by a user with the
user interface of the AMSEL robot system. The user interface has four navigation buttons,
i.e., Forward, Backward, Right, and Left. The user navigates the robot using these buttons
to the place where they want to go. To navigate manually, the user can control the speed
of the robot as well by sending a specified velocity in RPM to the robot. The user has the
flexibility to place the robot in any position and orientation in this manual mode. Figure 10
shows the manual inspection process in both indoor and outdoor environments. During
the navigation, the user turns on the camera by pressing the “Video” button on the UI and
checks whether there is a crack or not in a certain location by monitoring the video display
portion of the UI.

(a) Image collection in indoor (b) Image collection in outdoor

Figure 10. Manual navigation and data collection in the indoor and outdoor environment.

5.2. Automated Navigation and Pavement Inspection

In the automated navigation process, the AMSEL robot navigates through a predefined
survey area. The navigation area is a rectangle with a width of a meters and a length of
b meters, where the robot takes a,b as input from the user interface at the host computer.
When the robot receives inputs and commands to move autonomously, it starts navigating
automatically and collecting data lane by lane. The number of lanes depends on the width
of the survey area. Figure 11 is a diagram of the survey area. The AMSEL robot follows
stop and go, a certain distance method for conducting the pavement inspection process. In
this work, the AMSEL robot goes for 25 cm and stops to collect NDE data. The distance of
25 cm between two consecutive lanes is also selected in this work. Algorithm 2 displays the
method of the AMSEL robot’s automated navigation and pavement procedure. Figure 12
shows the automated inspection process in the outdoor environment. From Algorithm 2, it
can be seen that, after obtaining the command of the automated navigation, the AMSEL
robot calculates the number of lanes nl and the number of steps ns in each lane. The number
of lanes nl is determined by dividing the width a of the survey area by 0.25, as the distance
between two lanes is 25 cm. And the number of steps ns is determined by dividing the
length of the survey area by 0.25, as the robot will move 25 cm in each step. Then, the robot
starts performing the assigned tasks in the steps. First, the robot captures one picture and
detects cracks in it. After cracks are detected in the picture, the picture is transferred to the
host computer along with the robot location on the survey grid and the density of cracks in
the image. Then, the robot moves directly to the next scanning location. To navigate the
correct distance and place the robot in the precise position, this work calibrated the spatial
encoder data of the motors. After calibration, this work found that to move 1 m, wheels
must change their position by 1176 points.
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Algorithm 2: Algorithm for automated navigation and inspection

1 nl=a/0.25
2 ns=b/0.25
3 for i←(1, nl) do
4 for i←(1, ns) do
5 Capture image
6 Detect Cracks
7 Send image
8 Calculate crack density d
9 Move 25cm forward

10 end
11 if i <nl then
12 if (i %2)!=0 then
13 Turn right
14 Move 25cm forward
15 Turn right
16 else if (i %2)=0 then
17 Turn left
18 Move 25cm forward
19 turn left
20 else
21 Scan is completed
22 end
23 end
24 if (a %1)!=0 then
25 Turn right
26 Move "a" meter forward
27 turn left
28 else if (a %1)=0 then
29 Turn left
30 Move "a" meter forward
31 Turn left
32 Move "b" meter forward
33 Turn left
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Figure 11. The diagram of the survey area for the AMSEL robot.
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(a) Image collection indoors (b) Image collection outdoors

Figure 12. Automated navigation and data collection in the indoor and outdoor environment.

On this basis, this work calculated the value to navigate 25 cm. By considering the
change in position of the wheels, this work also calibrated for the left and right turns by
90◦. When the robot completes all the steps on a lane, it checks whether it is an odd or
even lane. If it is an odd lane, the robot turns right, moves 25 cm, and turns right again to
place itself at the beginning of the next lane. On the other hand, if the lane is an even lane,
the robot turns left, moves 25 cm, and turns left again to place it at the beginning of the
next lane. The robot continues these processes till it completes the scanning of the last lane.
After the last lane is complete, it again checks whether the last is odd or even. If the last
lane is odd, the robot turns left and navigates the a meter distance, turns left again, and
navigates the b meter distance. After this, it makes a 360◦ turn to go back to the starting
position and orientation of the robot. On the contrary, if the final lane is even, the robot
turns right, navigates the a meter distance, and turns right again to go back to the starting
position and orientation of the robot.

6. Results and Discussion
6.1. Performance of the Deep Learning Model

This work has used one segmentation model named RCDNet to predict the images. To
evaluate the performance of our proposed RCDNet, this work used four metrics: accuracy,
intersection over union, Dice loss, and Dice coefficient. The percentage of successfully
categorized pixels is referred to as pixel accuracy while a binary segmentation task is being
performed. However, due to the class imbalance issue, pixel accuracy is not the best metric
to evaluate the segmentation task. For the majority of the non-lane pixels in the case of lane
detection, the images in the dataset are severely unbalanced. The Dice coefficient and the
IOU, on the other hand, are seen to be more useful metrics because they depend on the
overlap between the anticipated picture and the ground truth image. The metrics can be
mathematically represented using the following equation.

Dice Coefficient =
2 ∑ YpYt

∑ Yp + ∑ Yt

IoU =
∑ YpYt

(∑ Yp + ∑ Yt)− (∑ YpYg)

(9)

The calculation demonstrates that the Dice coefficient represents the sum of the pixels
in the two overlapping regions. The IOU also stands for the region of overlap between
the expected and actual images, which is delineated by the union area. Figure 13 displays
the accuracy, loss, Dice coefficient, and IoU trend for our proposed model over both the
training and test sets.
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(a) Pixel accuracy (b) Dice loss

(c) Dice coefficient (d) IoU

Figure 13. Curves of accuracy, loss, dice coefficient, and IoU while training and testing the models
for 100 epochs.

From Figure 13, it can be seen that our model was trained well. There is not much
difference between the curves of the training set and the test set, which indicates that the
model did not experience underfitting or overfitting. The training curves for all the metrics
did not fluctuate throughout all the epochs. Between the first and about the third epochs
of our model, the test curves began to rise quickly. But starting with the third epoch, it
gradually increased and began to stabilize. Around the 27th, 52nd, 84th, and 97th, they
went through four minor oscillations of varying degrees. However, our model was able to
handle this variation, and starting with the very next epochs, the curves stabilized once
more. Finally, our model showed promising results in terms of metrics. Table 3 presents the
result of our developed model from the perspective of the previously mentioned metrics
on both the training set and the test set.

Table 3. RCDNet model performance in both the training and testing set.

Accuracy (%) Dice Coefficient (%) IoU (%) Dice Loss (%)

Train set 96.35 97.40 97.35 0.0180
Test set 96.29 97.33 96.90 0.0214

6.2. Comparison with Other State-of-the-Art Methods

In this section, we discuss the performance comparison of the proposed RCDNet
with other popular semantic segmentation frameworks, namely FCN-8, SegNet, and U-
Net. These models were trained using the same dataset and on the same GPU card. The
performance comparison was based on standard evaluation metrics. According to Table 4,
the proposed RCDNet outperforms FCN and SegNet methods by 2–4% in terms of Dice and
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IoU scores. The parameter count of the proposed RCDNet is also less than that of the FCN
and SegNet. It is worth noting that U-Net achieves better performance than our model;
however, our model has fewer parameters compared to U-Net. This indicates that despite a
marginal difference in performance metrics, our model is a better choice for implementing
a real-time crack detection system due to its lower parameter count.

Table 4. Segmentation comparison of our RCDNet and other representative methods.

Network Accuracy (%) Dice Coefficient (%) IoU (%) Number of
Parameters (M)

FCN 93.20 93.16 92.93 134.27
SegNet 95.60 95.83 94.44 29.44
U-Net 96.33 98.40 97.92 13.40

RCDNet 96.29 97.33 96.90 0.91

6.3. Pavement Assessment in Manual Mode

For the manual assessment of the pavement, the AMSEL robotic platform was nav-
igated by an operator in both indoor and outdoor environments. The robot moved to
different places and collected pictures using its visual sensor. The onboard computer
segmented the crack pixels and sent the predicted images to the ground stations. After
generating the segmented results from the RCDNet, this work measured the length, width,
area, and density of the cracks. Though the crack measurement algorithm produces the
result in a pixel unit, the size of the cracks in the physical unit can be calculated easily. As
the vision sensor of the robotic system can cover an area of 302 mm × 227 mm with a pixel
resolution of 640 × 480, one pixel is about 0.47 mm both in height and width of the picture.
Furthermore, this work compared these results with manually measured data. In this study,
the severity of the cracks was also assessed. The density of the cracks was calculated as the
ratio of the cracked pixels and the total pixels of an image. The severity scale density used in
this work is shown in Table 5. Figure 14 and Figure 15 show the original images, estimated
black and white images, overlapped images, and the images after the crack-measurement
algorithm was performed in indoor and outdoor environments, respectively. Table 6 and Ta-
ble 7 show the comparison between the manually collected data and the digitally extracted
data and show the severity in indoor and outdoor environments, respectively.

From Figure 14, it can be seen that all the cracks are estimated well in the indoor
environment. Even in the presence of shadows (Image2, Image3, Image5) and external
noise (Image9), the RCDNet model detected the cracks accurately. However, if we observe
Image2, Image8, and Image10 very closely, it can be noticed that there is some discontinuity
in the detection. A very small portion of the cracks is not detected in the images. This work
manually measured the widths of those portions and found the limitation of our proposed
RCDNet, which is that it cannot detect cracks with widths less than 1mm from a 30 cm
height. From Table 6, it can be seen that the difference between the manually measured
data (length, width) and the digitally measured data of the cracks is very small for indoor
images. This work has found that the average error rate of the measurements is 2.219%
and 6.155%, respectively, for the length and maximum width. One finding is that the table
shows more errors in the case of width calculation. However, this study believes that
this large error was due to the ambiguity of determining cracks with the scale using the
naked eye.
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Figure 14. Manually collected images from indoors. (a) Original image. (b) Predicted black and
white images. (c) Overlapping images. (d) Images showing the location of maximum width.

Table 5. Assessing the severity of road cracks.

Measurements (M) Severity Limit

Area (mm) Fair M < 0.4%
Poor 0.4% ≤M < 1%

Severe M > 1%

For the outdoor environment, in Figure 15, it can be seen that all the images are
estimated accurately. However, if we take a closer look at Image12, Image13, Image14,
and Image19, there is some error. From Image12, the finding is that, when the sunshine is
extreme and there is a dark shadow, our model may interpret the shadow line as a crack. In
Image13 and Image19, small portions of the cracks are not detected. The problem is that the
depth between the edges of the cracks is very small, which looks not like a crack but rather
a scratch on the pavement. However, the overall prediction in the outdoor environment is
also quite accurate. From Table 7, it can be seen that the difference between the manually
measured data and the digitally measured data is also very small in the outdoor images,
similar to the indoor images. The relative error rates of these measurements are 6.703% and
5.631%, respectively. The unexpected finding from this table is the error rate in the length
calculation. However, we can observe that Image19, which has two cracks, is not predicted
accurately due to the lower depth and shows a large deviation in error. And this deviation
affects the average error rate.

We also performed a linear regression between the manually measured and digitally
measured length and width of the cracks to check the stability of the digitally measured
data for both indoor and outdoor data. The linear regression for both indoor data and
outdoor data in Figure 16a–d shows that the value of R2 in both cases (i.e., length and
width) is close to 1. In addition, the noteworthy finding is that the regression efficiency
for both data is also close to 1. This clearly indicates that the proposed system has good
absolute accuracy for the length and width measurement of cracks.
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19.ipg

20.ipg
(a) (b) (c) (d)

Figure 15. Manually collected images from the outdoor environment. (a) Original image. (b) Pre-
dicted black and white images. (c) Overlapping images. (d) Images showing the location of maxi-
mum width.

(a) (b)

(c) (d)

Figure 16. Manual measurement vs. digital measurement: (a) length in the indoor environment,
(b) width in the indoor environment, (c) length in the outdoor environment, (d) width in the out-
door environment.
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In the case of the severity of indoor images, this work found that among the ten images,
four images are in severe condition. Among the severe cracks, Image 5 is the most severe
(6% cracked). Of the other images, five images are in poor crack condition and one image is
in fair crack condition. Among the outdoor images, this work found that all the cracks are
in severe condition. Among them, Image4 has the highest rank (5.12% severe).

Table 6. Comparison between the manually measured and digitally measured crack size in the
indoor environment.

Picture Number
of Cracks

Manual
Length

Manual
Maxi-
mum

Width

No of
Cracks

after Pre-
diction

Digital
Length

Digital
Maxi-
mum

Width

Area Density Severity

1.jpg 1 227 mm 10 mm 1 227.45
mm 8.93 mm 1039.75

mm2 1.44%. Severe

2.jpg 2 72 mm,
187 mm

3 mm,
7 mm 2

72.04 mm,
178.75

mm

2.82 mm,
7.52 mm

484.675
mm2 0.67%. Poor

3.jpg 1 302 mm 17 mm 1 295.91
mm 15.97 mm 2123.575

mm2 2.94%. Severe

4.jpg 1 150 mm 5 mm 1 157.67
mm 5.11 mm 318.66

mm2 0.44%. Poor

5.jpg Web crack - - Web crack - - 4330.93
mm2 6%. Severe

6.jpg 1 240 mm 5 mm 1 232.56
mm 5.64 mm 344.98

mm2 0.47%. Poor

7.jpg 1 325 mm 8 mm 1 312.24
mm 7.82 mm 545.32

mm2 0.83%. Poor

8.jpg Web crack - - Web crack - mm - 599.83
mm2 0.88%. Poor

9.jpg 1 302 mm 9 mm 1 302 mm 8 mm 1227.775
mm2 1.70%. Severe

10.jpg 1 200 mm 3 mm 1 192.28
mm 2.82 mm 200.33

mm2 0.32%. Fair

6.4. Pavement Assessment in Automated Mode

The autonomous pavement assessment of the AMSEL robot was tested in both indoor
and outdoor environments. For the automated assessment of the AMSEL robot in the
indoor environment, this work chose a 3 m × 2 m grid in the parking lot of Dong-A
University, Busan, South Korea. The AMSEL robot took around 10 min to inspect the
3 m × 2 m grid. For the outdoor environment, this work chose a 2.5 m × 1 m grid in the
outdoor parking lot of Dong-A University, Busan, South Korea. The AMSEL robot took
around 6 min to inspect the 2.5 m × 1 m grid, which is faster than manual inspection. In
the indoor and outdoor environments, the robot collected and predicted 108 and 50 images,
respectively. Figure 17 and Figure 18 show the stitched picture after segmenting the cracks
of each location in indoor and outdoor environments, respectively.
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Table 7. Comparison between the manually measured and digitally measured crack size in the
outdoor environment.

Picture Number
of Cracks

Manual
Length

Manual
Maxi-
mum

Width

No of
Cracks

after Pre-
diction

Digital
Length

Digital
Maxi-
mum

Width

Area Density Severity

11.jpg 1 232 mm 8 mm 1 224.87
mm 7.52 mm 1144.09

mm2 1.59%. Severe

12.jpg 1 307 mm 10 mm 1 300.86
mm 10.81 mm 1912.665

mm2 2.65%. Severe

13.jpg Web crack - - Web crack - - 2747.5
mm2 3.81%. Severe

14.jpg Web crack - - Web crack - - 3699.37
mm2 5.12%. Severe

15.jpg 1 351 mm 17 mm 1 341.33
mm 15.81 mm 1713.26

mm2 2.37%. Severe

16.jpg 1 240 mm 9 mm 1 225.67
mm 18.33 mm 1712.32

mm2 2.37%. Severe

17.jpg 2 312 mm,
255 mm

9 mm,6
mm 2

305.15
mm,
238.87
mm

8 mm,
6.11 mm

2575.13
mm2 3.56%. Severe

18.jpg 1 323 mm 10 mm 1 306.92
mm 10.81 mm 1841.572

mm2 2.55%. Severe

19.jpg 2 268 mm,
98 mm

8 mm,18
mm 2 253 mm,

63.92 mm
8.46 mm,
17.86 mm

1487.54
mm2 2.06%. Severe

20.jpg 1 230 mm 9 mm 1 224.43
mm 10 mm 1179.81

mm2 1.63%. Severe

Figure 17. Stitched image collected from the indoor environment.
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Figure 18. Stitched image collected from the outdoor environment.

The AMSEL robot platform also calculates the area of the cracks in each image and the
density of the cracks to show the severity at each location. The area and severity of each
location in the indoor and outdoor environments are illustrated in Figure 19a–d, where
the horizontal and the vertical coordinates of the figure represent the distance of the grid
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blocks (a 3 m× 2 m grid for the indoor environment and a 2.5 m× 1 m grid for the outdoor
environment) from the initial position in units of meters.

(a) Area distribution in indoor grid (b) Density distribution in indoor grid

(c) Area distribution in outdoor grid (d) Density distribution in outdoor grid

Figure 19. Illustration of the severity of the cracks in the indoor and outdoor grids (the horizontal
and the vertical coordinates of the figure represent the distance of the grid blocks).

By analyzing Figure 19a–d, this work has found the severity statistics and the most
severe locations in both the indoor and outdoor grids. Table 8 and Table 9 show the statistics
of the detected cracks in the indoor and outdoor grid, respectively.

Table 8. Statistics of the detected cracks for indoor area shown in Figure 17.

Number of Cracks Maximum Area Minimum Area Total Area Total Density

43 3841.995 mm2, Loc.
(x = 0 m, y = 0.25 m)

38.305 mm2 , Loc.
(x = 2 m, y = 3 m) 22617.69 mm2 0.38%

Table 9. Statistics of the detected cracks for the outdoor area shown in Figure 18.

Number of Cracks Maximum Area Minimum Area Total Area Total Density

18 1741.35 mm2, Loc.
(x = 0.5 m, y = 0.25 m)

308.2025 mm2, Loc.
(x = 0.75 m, y = 0.5 m) 15231.88 mm2 0.68%

From Table 8, it can be seen that among the 108 images, a total of 43 images contain
cracks in the indoor grid. Among the cracks, for the crack in the location of the first lane,
the first stoppage has a maximum area of 3,841.995 mm2, and for the crack in the location
of the last lane, the last stoppage has a minimum area of 38.305 mm2. The total cracked area
is 22,617.69 mm2, and 0.38% of the grid’s total area is cracked. From Table 9, it can be seen
that among the 50 images total of 18 images contain cracks on the grid. Among the cracks,
for the crack in the location of the third lane, the first stoppage has a maximum area of
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1741.35 mm2, and for the crack in the location of the fourth lane, the second stoppage has
a minimum area of 308.20252. The total cracked area is 15,231.88 mm2, and 0.60% of the
grid’s total area is cracked.

7. Drawbacks of the Proposed System

Though the proposed system demonstrated promising results for estimating cracks in
concrete pavements in both indoor and outdoor environments, the current version of the
proposed system has a few drawbacks. The primary drawbacks are as follows.

• The proposed DL model named RCDNet cannot detect cracks with widths less than
1 mm from a 30 cm height.

• When the sunshine is extreme and there is a dark shadow in the outdoor environment,
the RCDNet may predict a shadow line as a crack.

• The RCDNet fails if the depth between the edges of the crack is very small, such that
it does not look like a crack but rather a scratch on the pavement.

• The robotic vehicle occasionally encounters a slight deviation from the linear path
during automated navigation, which poses challenges in reestablishing its initial pose
upon returning to the starting position.

• The camera’s frame size was slightly larger than the gap between the two consecutive
lanes, causing a small overlap in the captured images.

Despite some inherent drawbacks, the proposed robotic system exhibits promising
results and serves as a compelling solution for effectively monitoring pavement cracks,
thereby reducing human labor, costs, and inspection time.

8. Conclusions

In this work, a semi-automated robotic platform named AMSEL has inspected pave-
ment cracks in real-time. An encoder–decoder-based lightweight deep learning model
named RCDNet was proposed to detect pavement cracks. The robotic platform was de-
veloped for manual and automated navigation to complete the inspection. Both indoors
and outdoors, the robot was able to navigate and accurately collect and analyze the data.
Extensive testing and deployment of the AMSEL showed the advantage over manual
testing during pavement-crack inspection and evaluation. A crack severity map was also
generated based on the analysis of image data from the robot to provide a simple and
efficient way to monitor pavement cracks. In future work, this work plans to integrate
NDE sensors, including IE, GPR, USW, ER, etc. Future research will add multiple visual
sensors to cover a large area quickly to make the inspection process faster. Finally, our
plan is to fuse all sensor data and develop a deep-learning model to obtain various defect
information and construct a correlation model among the NDE sensors.
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