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Abstract: Accurate bathymetric data in shallow water is of increasing importance for navigation
safety, coastal management, and marine transportation. Satellite-derived bathymetry (SDB) is widely
accepted as an effective alternative to conventional acoustic measurements in coastal areas, providing
high spatial and temporal resolution combined with extensive repetitive coverage. Many previous
empirical SDB approaches are unsuitable for precision bathymetry mapping in various scenarios, due
to the assumption of homogeneous bottom over the whole region, as well as the neglect of various
interfering factors (e.g., turbidity) causing radiation attenuation. Therefore, this study proposes a
bottom-type adaption-based SDB approach (BA-SDB). Under the consideration of multiple factors
including suspended particulates and phytoplankton, it uses a particle swarm optimization improved
LightGBM algorithm (PSO-LightGBM) to derive depth of each pre-segmented bottom type. Based on
multispectral images of high spatial resolution and in situ observations of airborne laser bathymetry
and multi-beam echo sounder, the proposed approach is applied in shallow water around Yuanzhi
Island, and achieves the highest accuracy with an RMSE value of 0.85 m compared to log-ratio, multi-
band, and classical machine learning methods. The results of this study show that the introduction
of water-environment parameters improves the performance of the machine learning model for
bathymetric mapping.

Keywords: satellite-derived bathymetry; airborne laser bathymetry; seafloor substrates; coastal
bathymetry mapping

1. Introduction

Bathymetry in shallow coastal regions plays a decisive role in reconnaissance surveys,
marine spatial planning (MSP), urban development as well as scientific research, such as
the understanding of erosion dynamics and evolution, and estimates of fixed quantities for
terrestrially-derived carbon [1,2]. A range of modern techniques have been employed in
bathymetry determination benefited by the continuous development of Geo-Information
systems and remote sensing technology [3–5]. Among them, vessel-based acoustic sonars
(single- and multi-beam) are conventionally used for hydrographic surveying [6,7]. How-
ever, due to the inherent difficulties arising from the intricate and dynamic characteristics,
e.g., the presence of submerged obstacles and irregular bottom topography, vessel-based
approaches are often prohibitive and disappointing when dealing with complex areas such
as littoral zones and massive hidden reefs with water depth less than 15 m. Airborne laser
bathymetry (ALB), developed rapidly in recent decades, is praised as the gold standard of
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coastal mapping, and able to generate high-resolution and accurate bottom topography
range from 0.5 m to 70 m over clear waters [8,9]. Such a method is generally logistically
unfeasible to adapt to semi-turbid and turbid waters due to the limitation of optical signal
transmitting in the water column. Neither shipborne nor airborne sensors are operable for
producing accurate large-scale bathymetry, as they are labor-intensive, prohibitively ex-
pensive, and time-consuming, restricting repetitive and cost-effective data acquisition [10].
Furthermore, synthetic aperture radar (SAR), an active microwave remote sensing system,
is able to achieve all-weather, all-day earth observation without being subject to cloud
cover. However, SAR has not been widely used in marine engineering due to its sensitivity
to wind and low accuracy of the derived depth [11,12]. By comparison, satellite-derived
bathymetry (SDB), another remote sensing tool, offers a more flexible, repeatable, efficient,
and cost-effective means to map coastal bathymetry [13–15].

A number of methods are employed to assess SDB [16–19], which fall into two broad
categories: statistical-based approaches and physics-based approaches [11]. Historically,
statistical-based approaches can be further subdivided into analytical, semi-analytical,
quasi-analytical, and semi-empirical methods [20]. In general, physics-based approaches
are used to obtain bathymetric information through inherent optical properties (IOPs)-
based radiative transfer model or its simplified version, as well as forward modeling
algorithms under the assumption of a fixed substrate and water quality [21,22]. The widely
applied physics-based models, including the flow radiative transfer model [23] and its
variation [2,24], possess satisfactory depth evaluation accuracy and physical universality
independent of ground-truthed data. However, intricate optical properties of the water
column are usually essential in the construction of these models, including but not limited
to the spectral characteristics of suspended solids and solutes and bottom reflectance,
such as chlorophyll-a (Chl-a) concentration, diffuse attenuation coefficient of the water
body, detritus concentration, spectral shape, absorption, and backscattering coefficient.
Subsequently, the physics-based models are further simplified and adjoined with empiri-
cal parameters to accomplish bathymetry mapping, and a variety of semi-analytical and
semi-empirical models are developed, such as single-band [25], dual-band [19], multi-
band generalized linear [26,27], and log-ratio method (LRM) [3,13,28–30]. Apart from
the fuzziness of a large number of estimated parameters, the limitation of assumptions
is considered as the major factor restricting the performance and accuracy of models, as-
suming that throughout the study area (1) the attenuation of a beam in the water column
follows the Beer law, which is an exponential function of bathymetry; (2) water turbidity
is uniform, and it is mainly assumed as Case 1 water; (3) the bottom cover reflection
characteristic is homogeneous; (4) atmospheric and wave conditions are uniform and simi-
lar [18,21,22]. Compared with the physics-based method, which constructs a theoretical
framework or general strategy based on the radiative transfer model of water, empiri-
cal methods drive advanced statistical approaches or regression approaches to confirm
the mapping relationship between spectral qualities and depth, without considering the
IOPs and water column properties, and have become the research emphasis in recent
decades [10,31,32].

These empirical methods have been accepted and integrated as a survey tool by
an increasing number of researchers [20]. Recently, machine learning (ML) has been
proven to be able to offer more satisfactory solutions such as random forest (RF) [14,31],
support vector machine (SVM) [14,33–35], bagging, least squares boosting (LSB), K-nearest
neighbor (KNN) [36], back propagation neural network (BPNN) [37], recursive neural
network (RNN), radial basis function (RBF) [38], and deep learning model (DP) [39–42].
However, the consideration factors of major models are limited to the blue-green band
reflectivity or visible spectrum, ignoring the water column properties as well as the nature
of the seafloor that influence the inversion quality of water depth. In addition, the deep-
water (more than 10 m) accuracy is sacrificed in seeking the optimal global solution. In
conclusion, to identify the limitations of most current models, which are preferentially
applied in shallow-water regions with specific water conditions and uniform substrate
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types, rather than being adaptive to different sea areas with various water qualities or
substrate types, we attempt to propose a new empirical SDB approach. It possesses the
following advantages: (1) adaptive segmentation of different substrates and construction of
corresponding mapping relationship; (2) in addition to the visible spectrum, main factors
affecting water-leaving radiance and the characteristics with specific mapping ability for
water depth are included in the discussion and adaptively screened based on different
substrate types; (3) the advanced regression analysis model LightGBM is used for SDB, and
the optimal parameters can be adaptively adjusted based on a particle swarm optimization
(PSO) algorithm to improve the accuracy of bathymetry derivation.

2. Materials and Methods
2.1. Study Site

We applied and tested our new approach to Yuanzhi Island, located in the western
part of the Yongle Atoll (Figure 1). The island of Yuanzhi has an approximate area of
0.3 km2 and an elliptical shape, spanning ~700 m in the north-south direction and ~500 m
in the east-west direction. It is one of the few islands with fresh water in the Xisha Islands,
making it of great research value.
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Figure 1. Locations of our study sites. (b) Water depth at the selected area in the box in (a), where the
area bounded by red is the water depth obtained by ALB, and the rest is the water depth obtained by
multi-beam sonar.

2.2. Methodology
2.2.1. Overview

Figure 2 shows that the radiance received by the detector is limited by various con-
founding factors in solar illumination. Solar illumination is subjected to absorption and
scattering from the atmosphere, water-body, and seafloor substrate. The principle states
that total radiative energy reflected by the receiver is a function of atmosphere, bottom
reflectance, water depth, and water column properties related to water turbidity, such as
Chl-a concentration, diffuse attenuation coefficient, suspended organic matter, reflectance
of the water column, as well as suspended sediment [16,43,44]. Obviously, it is necessary to
construct the corresponding relationship between water depth and reflectivity considering
the main influential factors, and it is theoretically imperfect to assume that coefficients for
the water column or bottom reflectivity spectra remain constant over the target scene.
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solar illumination.

This study attempts to determine the bathymetry over the study area with complex
and unknown substrate through a bottom-type adaption-based SDB approach (BA-SDB)
that possesses flexible adaptability and robust performance. The working draft of BA-SDB
is schematically shown in Figure 3.
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2.2.2. Satellite Images and Field Survey Data

The WorldView-2 (WV-2) image collected by Maxar Digital GlobeTM on November
18, 2014, provides radiance in 8 wavelengths (coastal, blue, green, yellow, red, red edge,
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NIR-1, and NIR-2) ranging from the visible to the near-infrared spectrum, with a spatial
resolution of 1.8 m.

Bathymetry data were collected by both multibeam echosounder (MBES) and airborne
laser bathymetry system (ALB). The data of ALB were acquired utilizing the Optech
Aquarius system in 2013. The ALB system employed in this study uses a pulsed Nd:YAG
laser head operating at a frequency of 70 kHz to generate a doubled green beam with a
wavelength of 532 nm. It possesses a root mean square error (RMSE) of 0.25 m for depth
measurements. The divergence of the laser beam was specified as 1 mrad, with a pulse
width of 8.3 ns. The scanning nadir angle of the laser beam was set at 20◦, while the
detection frequency was set to 550 kHz. A point density ranging from 5–10 points per
square meter was achieved through the measurement process. The MBES employed in this
study is the SONIC 2024 system. The system achieves a span resolution of 1.25 cm, covers
a width ranging from 10◦ to 160◦, and encompasses 256 beams for data acquisition. The
resulting point density for measurements obtained is within the range of 10–20 points per
square meter. However, due to the extreme shallowness of the water and safety concerns,
which prohibited the boat from approaching the survey area, no MBES data were available
for the nearshore region of Yuanzhi Island.

2.2.3. Preprocessing

Image processing consists of refined geo-referencing through measured DEM, radio-
metric calibration, de-lighting, atmospheric correction, and land–water segmentation to
standardize all WV-2 images for precision comparison and analysis.

WV-2 image processing includes radiometric and geometric correction, utilizing pro-
cessing software or programming to generate subsurface remote sensing reflectance. Sub-
sequently, the Hedley model [45] was applied to rectify glinted pixels and normalize all
images. Figure 4a,b illustrate the RGB images prior to and after preprocessing, respectively.
Two detailed views in Figure 4 further illustrate the effectiveness of the process for sun
glint caused by specular reflection. Image division of land, invalid waters, and effective
waters is completed using NDWI coefficients, blue and green band reflectance. The results
of this division are then superimposed in Figure 4, with the blue closed curve representing
the land area and the red curve corresponding to the invalid water area.
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2.2.4. Inversion of Bottom Reflectance

Most empirical models for bottom reflectance inversion rely on complex pre-parameters
such as seafloor type, diffuse attenuation coefficient, bathymetry, etc. [46]. Given all this,
Ma et al. constructed an exponential algorithm for bottom reflectance inversion, the LR-S
model, with no need for ground data. On the basis of the log-ratio model proposed by
Stumpf [30], the LR-S model randomly selects each self-inference point on the corrected
images through spectral features to obtain its bottom reflectance [47]. In the LR-S model,
the bottom reflectance at 550 nm is defined as:

Rbottom = α1 × exp
(
α2 × C′i

)
(1)

where C′i is the logarithmic value of the blue- and green-band subsurface reflectance after
rotation, rrs(Blue) and rrs(Green) correspond to subsurface reflectance after rotation in
blue and green bands, respectively, and α1 and α2 are parameters in the inversion function.
For a detailed description, please refer to the paper by Ma et al. [47].

2.2.5. Adaptive Bottom Substrate Partitioning

As a significant imaging factor in the SDB study, the bottom type needs to be con-
sidered. The ADFLICM method proposed by Zhang et al. is a new adaptive fuzzy local
information c-means clustering method, which enables the weight factor of the adjacent
pixel effect to adaptively determine and enhance the stability of the patchy homogeneous
classification, while reducing the edge blurring effect by merging local space and gray level
information constraints [48]. Rbottom is used instead of the grayscale image stretched to the
[0, 255] range as input for clustering.

Based on the novel local similarity measure Sir, the objective function Jm of the AD-
FLICM method is described as follows:

Jm = ∑N
i=1 ∑C

k=1 um
ki

[
‖pi − vk‖2 +

1
NR

∑r∈Ni
(1− Sir)‖pr − vk‖2

]
, (2)

vk =
∑N

i=1 um
ki

(
pi +

1
NR

∑r∈Ni
(1− Sir)× pr

)
∑N

i=1 um
ki

(
1 + 1

NR
∑r∈Ni

(1− Sir)
) . (3)

where pi denotes the reflectance of the ith pixel, vk is the prototype value of the kth cluster,
and uki is the degree of fuzzy membership of pi belonging to the kth cluster. In addition,

uki = ∑C
j=1

(
‖pi − vk‖2 + 1

NR
∑r∈Ni

(1− Sir)‖pr − vk‖2

‖pi − vj‖2 + 1
NR

∑r∈Ni
(1− Sir)‖pr − vj‖2

)− 1
m−1

, (4)

where m is the weight exponent for each fuzzy membership, NR represents its cardinality, Ni
denotes the set of neighborhood pixels in the window (0 < (xi − xr)

2 +(yi − yr)
2 ≤ 2L− 1),

where (xi, yi) and (xr, yr) are the coordinates of pixels i and r, respectively, and L represents
the level of the neighborhood) around pi, and pr is the neighborhood pixel that falls into Ni.

To further propel the adaptive determination of clustering parameters, we improve the
ADFLICM method by introducing the Calinski–Harabasz index to the original algorithm
framework [49]. The Calinski–Harabasz Index CHi(k) [49] is used to calculate the optimal
clustering number within a specific range (2 < k). Normalized reflectance before evaluation.
For a randomly selected set of data E of size NE after clustering, the CHi(k) is defined by:

CHi(k) =
tr(Bk)

tr(Wk)
×

ng − k
k− 1

, (5)

i.e., the ratio of the mean value of inter-cluster dispersion to the mean value of intra-cluster
dispersion. In the formula, tr(Bk) is the trace of the between-group dispersion matrix
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and tr(Wk) corresponds to the trace of the within-cluster dispersion matrix, which are
defined as:

Wk = ∑k
q=1 ∑p∈Cq

(
p− cq

)(
p− cq

)T , (6)

Bk = ∑k
q=1 nq

(
cq − cE

)(
cq − cE

)T . (7)

For cluster q, the corresponding point set is Cq with point number nq, and the center
is cq. Similarly, cE is the center of E. Theoretically, the higher the value of CHi, the more
optimal the number of clusters.

2.2.6. Bathymetry Algorithm

Constructing a regression model and taking into account water depth factors are
essential for optimizing the performance of empirical modeling. SDB approaches are in-
creasingly focusing on water turbidity and sub-bottom benthos or vegetation within the
limits of optical-derived bathymetry. This is because these factors have been found to affect
the accuracy of bathymetric maps created using remote sensing techniques. To create a
derived model for each substrate type that accounts for water turbidity, suspended sedi-
ment concentration (SSC) and chlorophyll-a concentration were included in the regression
model, together with the reflectance of each band. Table 1 lists the water depth factors fed
into the regression model.

Table 1. Statistical table of water depth factors.

No. Description Equation No. Description Equation

1 Suspended sediment
factor

rrs(Green)+rrs(Red)
rrs (Blue)

rrs (Green)

2 chlorophyll-a
concentration

Chl_a =
10(−0.4909+191.659∗w), w =

rrs(Green)− 0.46∗rrs(Red)−
0.54∗rrs(Coastal)

3 Coastal band reflectance rrs(Coastal) 4 Blue band reflectance rrs(Blue)
5 Green band reflectance rrs(Green) 6 Yellow band reflectance rrs(Yellow)

7 Red band reflectance rrs(Red) 8 Red edge band
reflectance rrs(Red edge)

9 NIR-1 band reflectance rrs(NIR-1) 10 NIR-2 band reflectance rrs(NIR-2)

11 ratio of rrs(Coastal) to
rrs(Blue)

rrs(Coastal)
rrs(Blue)

12 ratio of rrs(Coastal) to
rrs(Green)

rrs(Coastal)
rrs(Green)

13 ratio of rrs(Coastal) to
rrs(Yellow)

rrs(Coastal)
rrs(Yellow)

14 ratio of rrs(Blue) to
rrs(Green)

rrs(Blue)
rrs(Green)

15 ratio of rrs(Blue) to
rrs(Yellow)

rrs(Blue)
rrs(Yellow)

16 ratio of rrs(Green) to
rrs(Yellow)

rrs(Green)
rrs(Yellow)

17 log-ratio of rrs(Coastal)
to rrs(Green) ln rrs(Coastal)

rrs(Green)
18 log-ratio of rrs(Blue) to

rrs(Green) ln rrs(Blue)
rrs(Green)

Before deriving, it is necessary to calculate Spearman’s correlation coefficient ρ for each
reflectance of different bands and their combinations x and water depth d. For each type of
substrate, the characteristics corresponding to the ten principal correlation coefficients are
entered into the regression model. Here, ρ is obtained by Equation (8). x and d represent
the mean of x and d, respectively.

ρ =
∑i(xi − x)

(
di − d

)
√

∑i(xi − x)2 ∑i

(
di − d

)2
(8)

The LightGBM regression model [50], proposed by a Microsoft team in 2017, is an
ensemble algorithm based on a gradient-boosting decision tree (GBDT) that improves
the regression accuracy and arithmetic speed with the unique gradient-based one-side
sampling (GOSS) strategy and exclusive feature bundling (EFB) strategy. It is optimized by
a particle swarm optimization (PSO) algorithm [51] to obtain accurate derived bathymetry.
Under the GOSS strategy, all samples with more significant gradients are retained, while
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the remaining gradient samples are randomly sampled. This allows models with significant
training errors to get more attention without changing the data distribution.

The decision tree is a form of supervised learning that learns the function from the
feature vector xi to the gradient gi, and splits each node at the maximum information gain.
Assume that O is the train data on the fixed node of the decision tree, and the variance gain
V of split feature j at point d is defined as:

Vj|O(d) =
1

nO


(

∑〈xi∈O:xij≤d〉 gi

)2

nj
l|O(d)

+

(
∑〈xi∈O:xij>d〉 gi

)2

nj
r|O(d)

. (9)

In the formula, nO represents the total number of samples on the node, nj
l|O(d) denotes

the number of samples on the node less than the split point d, nj
r|O(d) is the sample quantity

on the node greater than d. The optimal split point corresponding to feature j is d∗j , and the

maximum gain Vj

(
d∗j
)

is then calculated.
Subset A consists of the top a × 100% of the data sorted in descending order of the

absolute value of the gradient, while subset Ac consists of the remaining data. Subset B is
formed by randomly sampling b × 100% of the data from Ac. Instances segmentation is
then performed on the union A ∪ B according to the variance gain Ṽj(d):

Ṽj(d) = 1
n

( (
∑xi∈Al

gi+
1−a

b ∑xi∈Bl
gi

)2

nj
l(d)

+

(
∑xi∈Ar gi+

1−a
b ∑xi∈Br gi

)2

nj
r(d)

)
. (10)

Among them, the coefficient (1− a)/b is used to increase the weight of small gradient
samples in the subset, with Al and Ar representing the left and right subsets of subset A
divided by the partition point, and Bl and Br corresponding to the left and right subsets of
subset B. Different from the traditional ensemble learning model, LightGBM dramatically
reduces the computational cost by calculating Ṽj(d) in a small instance subset.

The PSO algorithm is a reliable and effective optimization algorithm with few pa-
rameters, rapid convergence speed, and straightforward operation. Integrating the PSO
algorithm into the LightGBM framework enables the adaptive search for optimal parame-
ters, such as the learning_rate, max_depth, min_data_in_leaf, and feature_fraction.

We randomly initialize a group of particles with an initial speed v0 and position
x0, and define the fitness function. The speed vid and position xid of the ith particle in
d-dimensional space are then iteratively updated, and the optimal position pid,pbest and
pid,gbest are concurrently updated:{

vk+1
id = ωvk

id + c1r1

(
pk

id,pbest − xk
id

)
+ c2r2

(
pk

id,gbest − xk
id

)
xk+1

id = xk
id + vk+1

id

(11)

where ω is an inertia weight to balance the global convergence and convergence speed, k
represents the current number of iterations, c1 and c2 are positive learning factors, and r1
and r2 are two random digits generated in the range of [0, 1]. The procedure terminates
once the maximum iterations are met or the difference between the optimal solutions of the
two iterations is below the threshold.

2.2.7. Validation

To evaluate the efficacy of the new SDB method, the bathymetry is validated using
the determination coefficient (r2), root mean square error (RMSE), and mean absolute
error (MAE):

r2 = 1− ∑
(
yimage − yfield

)2

∑
(
yfield − yfield

)2 (12)
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RMSE =

√
∑
(
yimage − yfield

)2

N
(13)

MAE =
∑
∣∣yimage − yfield

∣∣
N

(14)

where yfield is the in situ measured depth, yimage is the derived depth, yfield is the mean of
yfield, and N is the size of the validation dataset. The r2 is widely applied to evaluate the
consistency between the predicted and actual values in regression models, and the closer
r2 is to 1, the greater is the model’s explanatory ability of factors influencing depth.

3. Results
3.1. Bottom Reflectance Inversion and Benthic Habitat Mapping

To generate a generic bottom reflectance for the study site, Ma’s bottom reflectance
inversion approach is used [47]. Figure 5a shows the pseudo-color image with range [0, 255]
generated by the bottom reflectance, which indicates that bottom reflectance changes
with offshore distance, thus suggesting different substrate types across the study area.
After graying the bottom reflectance image and inputting it into the improved ADFLICM
algorithm proposed in Section 2.2.5, a substrate segmentation map (Figure 5b) can be
generated in the absence of field measurements.
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Figure 5. Bottom reflectance and substrate segmentation results over the research region. (a) Scaled
seafloor reflectivity image, (b) segmentation result of substrate type derived from the proposed
model, and (c) results of the substrate type distribution survey conducted in the area.

The new algorithm creates prior information that is independent and parameter
adaptive, providing advantages over typical fuzzy c-means algorithms (FCMs). The results
of the bottom-type clustering are in agreement with the coral reef habitat mapping products
generated using field investigation, as shown in Figure 5c. A set of 100 sampling points
in the experimental area were randomly selected for statistical consistency relative to the
actual substrate profile (Table 2). Figure 5 and Table 2 demonstrate the consistency between
the substrate type clustering results based on bottom reflectance and the actual substrate
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distribution. Regions with relatively low reflectance have been independently classified as
type 5. In reality, both bioclastic and stony coral are present in the coverage of type 5, with
bioclastic being the more likely representative in this area. Table 2 confirms that the overall
fit degree (the ratio of the fit category sample to the total sample) for seafloor substrate
segmentation based on bottom reflectance without prior knowledge is 72%.

Table 2. Statistics of consistency between clustering results and actual substrate type distribution.

Category Sand Reefs Stony Coral Biodetritus Fit Category

Type 1 0.857 0.143 0.000 0.000 Sand
Type 2 0.000 0.700 0.200 0.100 Reefs
Type 3 0.039 0.115 0.769 0.077 Stony coral
Type 4 0.062 0.094 0.156 0.688 Biodetritus
Type 5 0.000 0.000 0.400 0.600 Biodetritus

3.2. Water Depth Factor

Corresponding to Table 1, the extraction of water depth factors in the study area
covering water turbidity parameters, and the reflectance recorded by different wavelengths
as well as their combinations has been completed. As shown in Figure 6, each parameter is
uniformly scaled to the range of 0 to 255 for pseudo-color display, with the label being con-
sistent with the numbers in Table 1, and the color bar interval being adjusted to emphasize
the details.
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Figure 6. Extracted water depth factors over the entire study area.

In this work, a strategy for constructing corresponding water depth regression models
for different substrate types was proposed to reduce the bottom type interference in the
process of SDB. Various water depth factors had different abilities to map water depth
in theory, so it was necessary to evaluate their importance before inputting them into
the regression model for training. After the bottom reflectivity clustering, the correlation
coefficients between the water depth factors and the measured water depth for each bottom
type were assessed, as shown in Figure 7.
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Figure 7. Correlation coefficients between characteristics and water depth under different substrate
types. Dotted lines of different colors represent the correlation coefficients between different water
depth factors in a random sampling operation.

Randomly selecting 400 water depth samples corresponding to each type of substrate,
the correlation coefficients between different water depth factors were counted and the
operation was repeated 10 times to minimize the interference of accidental errors. The
water depth factor correlation analysis results from bottom type 1 to 5 are represented by
(a) to (e) in Figure 7, respectively, with the mean of 10 outputs being plotted in bold. It can
be seen that for substrate type 4, suspended sediment and chlorophyll concentrations, with
the serial number 1 and 2 respectively, are the first two factors with the highest correlation.
For substrate type 1 and 2, the above two factors are also among the ten factors with strong
correlation. We further evaluated the correlation coefficient across the entire study area,
without considering the bottom type, by randomly selecting 600 sample data and repeating
the process ten times (Figure 7f). It was evident that the order of correlation of water
depth factors varied between different bottom types. Some factors were not affected by
the substrate type and were suitable for global inversion, while the performance of other
factors varied significantly between different substrates.

3.3. Estimate Bathymetric Maps with In Situ Depth Points

Calculations based on correlation coefficients give feature importance ranking for
derived depth, where the top ten features are input into a PSO-LightGBM regression model
for model training. The adaptive search for model parameters using the PSO algorithm and
bottom type classification with bottom reflectance provides the LightGBM method with
a distinct advantage in terms of regression accuracy. The bathymetric map of the entire
study area (Figure 8a) is generated based on the BA-SDB proposed in this paper. A set
of 4000 sample data distributed as shown in Figure 8b, of which 2000 are used for model
training and the remaining for model testing, are randomly selected to evaluate the water
depth derivation. A set of 4000 sample data distributed as shown in Figure 8b, of which
2000 are used for model training and the remaining for model testing, are randomly selected
to evaluate the water depth derivation accuracy of the BA-SDB model. The processing
includes adaptive clustering of substrate types and feature evaluation before inputting
the sample feature matrix and the corresponding actual water depth into the BA-SDB
model. This is followed by parameter optimization, model training, and testing. Figure 8c
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illustrates the error analysis of the derived water depth generated by the BA-SDB model
with an r2 value of 0.94, RMSE value of 0.85 m, and MAE value of 0.60 m.
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Figure 8. Comparison of derived water depth and measured bathymetry. (a) The derived bathymetry,
(b) the distribution of the samples, and (c) the error analysis of the derived water depth.

4. Discussion
4.1. Assessment of Substrate Clustering

The clustering parameters should be consistent with the total number of substrate
types in the study area given knowledge of the substrates. How to complete the bottom
type classification without prior information confuses the subsequent processing. In this
paper, the Calinski–Harabasz index is introduced into the ADFLICM approach to evaluate
the clustering results and determine the clustering parameters adaptively. We tried to
search the best clustering parameters from 3 to 7, and obtained the corresponding substrate
segmentation map as shown in Figure 9. Visually, the substrate type is refined with the in-
creased number of clustering parameters. However, when the clustering parameters exceed
the actual substrate types, no definite substrate will correspond to some of the categories.
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Figure 9. Bottom-type maps generated from different clustering parameters.

Table 3 provides statistics on the bottom type segmentation accuracy of 200 samples
selected randomly employing the Calinski–Harabasz index and fit degree for different
clustering parameters. The Calinski–Harabasz index (CHi) and fit degree showed a small
peak at 5 clusters, and reached the peak at 7 clusters. However, the final clustering
parameter is locked to 5, which balances the evaluation index and the actual substrate type,
and the fit degree tends to be stable at 72%, and the CHi reaches the relative high value
of 1354.
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Table 3. Segmentation precision of bottom type for different clusters.

Parameter/Evaluation Index Name Value

Clusters 3 4 5 6 7
CHi 368 641 1354 1317 1401

Fit degree 0.32 0.44 0.72 0.67 0.74

4.2. Evaluation of Bottom Type Clustering in Bathymetric Derivation

To further verify the effect of substrate division on water depth derivation, the water
depth derivation accuracy of BA-SDB, which combines PSO-LightGBM algorithm and
bottom type clustering, and the PSO-LightGBM model are designed and evaluated. The
difference between the two methods is in the emphasis placed on the bottom type, where
the former integrates bottom type classification and corresponding water depth factor
screening based on PSO-LightGBM. Figure 10 shows the deviation between the derived
water depth and the actual water depth tested on 100 samples randomly selected from
each bottom type. Comparing the derived water depth obtained by the two methods, it
was confirmed that the bottom category division plays a significant role in improving the
accuracy of water depth derivation. Constructing regression models for different substrate
types can better express the mapping relationship between water depth factors and water
depth, and obtain accurate underwater terrain products. This is consistent with the results
obtained, where the RMSE of the BA-SDB model in all bottom types is significantly lower
than that of the PSO-LightGBM model.
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Figure 10. Accuracy evaluation of water depth derived from different substrate types. For each type,
the result generated by the BA-SDB method is compared with that generated by the PSO-LightGBM
method, and the dots in different colors represent the extent of depth offset. The histogram in the
lower right corner counts the error analysis results of all substrate types for the two methods.
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However, problems that come with substrate division need to be faced as well. As
can be seen from Figures 5 and 8, there are inconsistencies in the water depth values at
the boundaries of different substrate types. For example, the boundary between substrate
type 1 and 3 on the south side is also the irregular line where water depth changes sharply.
The outliers in the northwest shoal of the island correspond to substrate type 3 scattered in
type 4. There may be some steps that can be taken to smooth the boundary and the adjacent
pixels, but currently we have not addressed the inconsistencies. This is the key point that
we need to pay further attention to.

4.3. Validity of the Depth Derivation Model

As the basic regression model of BA-SDB, the LightGBM framework is challenged
by its multi-parameter setting, so the PSO algorithm is utilized to search for the optimal
model parameters. The key parameters are initialized according to Table 4 and the default
settings are enabled for the parameters not considered. One thousand samples were ran-
domly selected to calculate the bathymetry derivation accuracy before and after the model
parameter optimization for a quantitative analysis of the optimization effect. The iterative
calculation to determine the optimal configuration of the approach employed the mean
relative error as the evaluation index and resulted in the selection of the primary param-
eters for LightGBM: “learning_rate” is set to 0.05, “max_depth” is 5, “min_data_in_leaf”
is 26, and “feature_fraction” is 0.6. Table 4 presents the changes in RMSE under different
parameter settings. The PSO-LightGBM prediction is characterized by a lower RMSE value,
indicating that parameter optimization is beneficial for improving the prediction accuracy
of the bathymetry-derived regression model. An appropriate learning rate can theoretically
lead to a stable and excellent model, while max_depth helps to prevent overfitting and
improves the model’s generalization ability, as does min_data_in_leaf. Feature_fraction is
related to the training speed.

Table 4. Comparison of LightGBM parameters before and after optimization and the associated water
depth accuracy.

Parameter Learning_Rate Max_Depth Min_Data_in_Leaf Feature_Fraction RMSE (m)

Before optimization 0.1 10 20 0.8 1.31
After optimization 0.05 5 26 0.6 1.16

Figure 11 compares the predicted bathymetry, obtained from various approaches such
as the Stumpf model, multiple linear regression model with reflectance of blue, green,
and blue/green, random forest (RF), LightGBM, PSO-LightGBM, and BA-SDB, with the
observed water depth. A set of 2000 samples is randomly selected and input into each
regression model for accuracy index calculation. The input matrix of RF, LightGBM, and
PSO-LightGBM is composed of the top 10 features in Figure 7f. Figure 11 displays that the
BA-SDB method has the highest accuracy in predicting the sample data in the research
area, while PSO-LightGBM, LightGBM, and RF follow in terms of accuracy. The results
in Figure 11 confirm that the LightGBM model has superior regression performance over
band ratio, polynomial fitting, and the RF model. Furthermore, parameter optimization
and substrate type division have been shown to be effective in improving the accuracy of
water depth estimation.
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Figure 11. Comparison of bathymetry derivative accuracy of different regression models.

For the Stumpf model, it is impossible to make full use of all the bands provided by
multispectral imagery. While multiple linear regression models can utilize all bands, the
Stumpf model is subject to its relatively fixed mode and little consideration of inhomoge-
neous water environments. Therefore, the machine learning models with variable structure
and multiple inputs always perform better than the conventional models. However, it
should not be ignored that although the proposed model realizes adaptive partition and
requires little manual intervention, it takes time for substrate segmentation and factor
selection, so the efficiency is inevitably lower than that of the conventional model.

5. Conclusions

Coastal bathymetry is vital for various fields, including marine transportation, marine
science research, and coastal zone planning and management. With rising sea levels and
changing coastal dynamics, the need for reliable coastal bathymetry data is even more
critical now than ever before. There is an urgent need to develop a more adaptive and
accurate SDB method to bridge the gap between data requirements, cost, and the ability to
map through shipborne- or airborne-based sensors. Previous studies on SDB aimed to re-
duce the impact of environmental factors and improve the quantitative level of bathymetry
remote sensing interpretation. However, the distinct distribution of water turbidity and
substrate in different water areas can result in different radiation and thus limit the accuracy
of water depth remote sensing. Achieving self-adaptability and derivation accuracy is
essential for SDB model migration and application. To this end, we strive to achieve a
balance between adaptability, cost, time, and accuracy and provide a highly automated and
accurate SDB method.

This study presents an adaptive and empirical SDB approach based on bottom type.
By constructing a nonlinear regression for each substrate type, this method eliminates the
adverse effects of substrate differences on SDB and can also screen the advantageous char-
acteristic matrix. Detailed comparative experiments and quantitative analysis demonstrate
the effectiveness and reliability of this new method.

Research has shown that water turbidity has a significant impact on the accuracy
of optically derived bathymetry from multispectral imagery. Different levels of turbid-
ity scatter incoming radiation differently, resulting in varying effects on the accuracy of
optically sensed water depth. The backscattering of incident light from water increases
with the increase in SSC level, resulting in higher pixel values. To address the limitation of
the conventional SDB model, which only considers reflectivity, the introduction of water
environment parameters in the inversion model is necessary to improve accuracy. There-
fore, the introduction of water environment parameters in the regression model makes
up for the confines of the conventional SDB model, which only considers reflectance. In
this research, water turbidity factors were used as general water depth factors in the map-
ping relationship with depth, which could limit their effectiveness in SDB. Therefore, in
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future studies, water turbidity should be given as much attention as the bottom type when
deriving optical depth.
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