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Abstract: A robust ionospheric model is indispensable for providing the atmospheric delay cor-
rections for global navigation satellite system (GNSS) navigation and positioning and forecasting
the space environment. The accuracy of ionospheric models is limited due to the simplified model
structures. Complicated spatiotemporal variations in total electron content (TEC) biases between
GNSS and international reference ionosphere (IRI) suggest a robust strategy to optimally combine
GNSS and IRI TEC for high-precision modeling. In this paper, we propose a novel ionospheric data
assimilation method, which is a local ensemble transform Kalman filter (LETKF), to construct an
ionospheric model over Yunnan in southwestern China. We used the LETKF method to assimilate
the ionospheric TEC extracted from GNSS observations in Yunnan into the IRI-2016 model. The
experimental results indicate that the ionospheric data assimilation has a more pronounced improve-
ment effect on the IRI empirical model during periods of geomagnetic quiet than during periods of
geomagnetic disturbance. On quiet magnetic days, the skill score (SKS) of the assimilation is 0.60 and
the root mean square error (RMSE) values before and after assimilation are 5.08 TECU and 2.02 TECU,
respectively. The correlation coefficient after assimilation increases from 0.94 to 0.99. On magnetic
storm days, the SKS of the assimilation is 0.42 and the RMSE values before and after assimilation are
5.99 TECU and 3.46 TECU, respectively. The correlation coefficient after assimilation increases from
0.98 to 0.99. The results suggest that the LETKF algorithm can be considered an effective method for
ionospheric data assimilation.

Keywords: ionospheric TEC; LETKF; GNSS; data assimilation

1. Introduction

In the near-Earth space environment, the ionosphere has an important impact on
human activities as a medium for radio wave propagation. Dramatic spatial and temporal
variations in the ionosphere can seriously reduce the quality of global short-wave commu-
nications and the accuracy of satellite navigation and positioning [1,2]. The ionospheric
total electron content (TEC) is one of the important parameters used to characterize the
spatial and temporal variability of the ionosphere [3]. The question of how to accurately
obtain the characteristics and variation patterns of ionospheric TEC distribution and es-
tablish a system that both contains intrinsic physics and reflects real observations while
satisfying the real-time monitoring of the space environment and providing high-precision
quasi-real-time ionospheric error correction information has become one of the key focuses
of research in the study of the ionosphere.

In recent years, ionospheric data assimilation has become an important method for
obtaining high-precision ionospheric TEC with the improvement of the global naviga-
tion satellite system (GNSS) and the increase in the number of ground-based observation
networks [4–13]. The commonly used assimilation methods are mainly divided into two
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categories: the variational method and the Kalman filter method. For the variational
method, Bust et al. [14] used a three-dimensional variational assimilation technique to
assimilate GNSS TEC into an empirical ionospheric model and constructed an ionospheric
data assimilation three-dimensional (lDA3D) model, which can handle a wide range of
observations such as of the altimeter, ground-based GNSS, and occultation data. The model
can process a variety of observations such as of the altimeter, ground-based GNSS, and
occultation data to obtain information on ionospheric variability in a uniform global grid.
Mengist et al. [15,16] investigated the performance of the four-dimensional technique for
ionospheric data assimilation using the empirical model of the international reference
ionosphere (IRI) as a background model in order to develop a regional ionospheric fore-
cast model. Performance was improved in regions with no observational data and also
improved by adding multi-source data. The system could operate in both calm and storm
conditions. Jeong et al. [17] evaluated the performance of the data assimilation model
(IDA4D) by introducing multiple types of data into the empirical model around the Korean
Peninsula and found that the IDA4D model can be used as a reliable nowcast model. For
the Kalman filter method, Schunk et al. [18] developed a data assimilation model, the
Global Assimilation of Ionospheric Measurements (GAIM), based on a physical model of
the ionospheric plasma, that uses Kalman filtering as the data assimilation algorithm. Lin
et al. [19] proposed a Gauss–Markov Kalman filter method to assimilate GPS receiver and
space radio occultation instrument observations into the IRI model. It was shown that
this method could better improve the accuracy of the data assimilation analysis, and it
was confirmed that this method could be used to reconstruct the three-dimensional iono-
spheric electron density. Yue et al. [20] used the ensemble Kalman filter (EnKF) algorithm
to assimilate the electron density data observed by the Millstone Hill incoherent scattering
radar. The results showed that the EnKF technique outperformed the 3DVAR technique,
especially in the region of data gaps. He et al. [21] used the EnKF algorithm to evaluate
the effectivenesses of various types of information for the nowcasting and forecasting of
ionospheric parameters in China and adjacent areas and found that the algorithm can
be considered a useful tool for the accurate specification of ionospheric nowcasts and
predictions. Kosary et al. [22] presented a sequential calibration approach, based on the
EnKF needed to calibrate model parameters, that uses a short period of GNSS network
measurements to improve TEC estimations. Tang et al. [23] presented a data assimilation
model for a regional ionosphere based on the local EnKF and found that the method could
allow effective regional ionospheric data assimilation. Forootan et al. [24] presented a data
assimilation method based on principal component analysis and the EnKF. The method
can be used to improve VTEC estimates for globally available ionospheric models using
IGS GIM products and can be easily applied to regional data assimilation by varying
the background model and the domain of the observed field. However, the deviation
between IRI and GNSS is not very clear at present, and the ionosphere varies greatly across
different times and spaces. It is difficult to accurately represent prior noise with simple
functional models.

The LETKF is an integrated square root filter that uses a low-rank estimate of the
forecast covariance matrix to compute the relevant analysis [25]. The analysis is computed
independently, grid point by grid point, by simultaneously absorbing nearby observations,
which allows the LETKF to be implemented efficiently on a cluster of parallel comput-
ers [26]. The local ensemble Kalman filter, an early version of the LETKF, has been applied
to global forecast models and has proven to be an effective data assimilation scheme in
the troposphere, especially in regions with sparse observation densities [27]. Yunnan is
located in a low latitude region, where the ionosphere overhead is very active. Establishing
a high-precision ionospheric assimilation model is beneficial to improve the performance
of satellite navigation and positioning. In this paper, we present the LETKF assimilation
method to assimilate GNSS ionospheric TEC observations into the IRI-2016 model over
Yunnan in China. Observations from 27 ground-based GNSS stations are applied to con-
struct the Yunnan regional ionospheric TEC assimilation model. Using the self-modelled
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data, a preliminary assessment of the assimilation results of the ionospheric TEC data from
day 121 to day 151 in 2017 is carried out.

2. Local Ensemble Transform Kalman Filter Assimilation Algorithm

Since the prediction error covariance matrix is not explicitly computed in the ETKF
method, but is implemented by passing the prediction ensemble perturbation matrix, the
matrix dimension will be inconsistent when using the Covariance Localization (CL) method
in the ETKF and performing the Schur product operation [28]. To solve this problem, the
CL method can approximate the Schur product operation between the prediction error
covariance matrix and the localization function by requiring a Schur product operation in
the square root matrix of the prediction ensemble perturbation matrix and the localization
function in the ETKF [29]. In this way, the CL method can also be used in the ETKF method
for localization.

The LETKF, like the LEnKF method, also roughly consists of three processes: predic-
tion, updating, and localization. Since the background model used in this experiment was
the empirical model IRI model, as in Experiments 1 and 2, the Gauss–Markov method
was used for temporal updating, and the predicted value at the current moment t was
calculated from the background and analytical values at moment t− 1.

The LETKF prediction process is as follows:

X f
t = Xb

t +
(

Xa
t−1 − Xb

t−1

)
e−∆t/τ =

(
x f

1 , x f
2 , · · · , x f

N

)
(1)

x f =
1
N

N

∑
i=1

x f
i (2)

X′ f =
1√

N − 1

(
x f

1 − x f , x f
2 − x f , · · · , x f

N − x f
)
= (u1, u2, · · · , uN) (3)

P f = X′ f
(

X′ f
)T

(4)

where X f
t is the set of predictions at the current moment. Xb is given by the background

model IRI. Xa
t−1 is the set of state analysis at the previous moment. N denotes the number

of ensemble members. x f denotes the average state of x f
i (i = 1 ∼ N). X′ f is the prediction

ensemble perturbation matrix. P f is the prediction error covariance matrix.
The LETKF localization process is as follows:

ρij = e−α(ϕ2
ij/L2

x)e−α(θ2
ij/L2

y) (5)

ρ = WWT = (w1, w2, · · · , wL)(w1, w2, · · · , wL)
T (6)

W = ρeigenvectors

(
ρeigenvalue

)1/2
(7)

P f
loc = P f ◦ρ = Z f

(
Z f
)T

(8)

Z f = WX′ f = [(w1 ◦ u1, w1 ◦ u2, · · · , w1 ◦ uN), · · · , (wL ◦ u1, wL ◦ u2, · · · , wL ◦ uN)] (9)

v f
k = x f +

√
Mzk, k = 1, 2, · · · , M, M = N × L (10)
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V f =
(

v f
1 , v f

2 , · · · , v f
M

)
(11)

P f
loc =

1
M

M

∑
i=1

(
v f

i − v f
)(

v f
i − v f

)T
= Z f

(
Z f
)T

(12)

Here, ρij is the correlation coefficient between point i and point j and α is the distance
correlation coefficient. ϕij and θij are the distances between two points in the longitude
and dimensional directions, respectively. Lx and Ly denote the correlation distances in the
longitude and dimensional directions, respectively. In this paper, the correlation coefficient
e−α is taken to be 0.75, the correlation distance in the dimensional direction is 10◦, and
the correlation distance in the longitude direction varies from about 40◦ in mid-latitudes
to about 20◦ in the equatorial region. W denotes the square root matrix of ρ, which is
obtained by decomposing the eigenvalues of ρ and arranging the obtained eigenvalues
in descending order, taking the first 10 eigenvalues and the eigenvector pair composition;
L is taken as 10. P f

loc is the prediction error covariance matrix after localization by the

CL method. Z f denotes the square root matrix of P f
loc, obtained by using the ensemble

expansion technique, with a matrix size of n× (N × L) where n denotes the number of
state values in a single ensemble. zk denotes the k column of matrix Z f . M is the size
of the set after localization expansion. V f is the reconstructed prediction ensemble after
localization. Equation (11) gives the reconstructed prediction error covariance matrix P f

loc
and its square root matrix Z f .

The LETKF update process is as follows:

Ŷ f = R−
1
2 HZ f (13)

Ŷ f = UΣVT (14)

Za = Z f U
(

ΣΣT + I
)− 1

2 UT (15)

va = v f + Z f UΣ
(

ΣTΣ + I
)−1

VT R−
1
2

[
y− H

(
v f
)]

(16)

Xa = va1T
N +
√

N − 1Zarandn(M, N) (17)

Here, Ŷ f is the annotated prediction–observation ensemble perturbation matrix. R is the
observation error covariance matrix. U and V are orthogonal matrices and Σ is the singular
value diagonal matrix of Ŷ f ; all three are derived from a singular value decomposition of
Ŷ f . Za is the square root matrix of the analysis error covariance matrix. va is the mean
of the assimilation analysis set. Xa is the assimilation analysis ensemble. 1T

N denotes an
1×N dimensional row vector in which all elements are 1s. randn(M, N) denotes an M×N
dimensional random matrix with elements obeying the standard normal distribution,
which completes the selection of the N column analysis set; the matrix Za is randomly
transformed into an n× N dimensional matrix. The implementation steps are based on
those used by Hunt et al. [25].

3. Experimental Data Accuracy Assessment
3.1. Experimental Data

In this experiment, data from 27 GNSS stations in the Crustal Movement Observation
Network of China (CMONOC) were used for a 31-day ionospheric assimilation experiment
that included the annual cumulative days from day 121 to day 151 in 2017 (i.e., 1 to 31 May
2017). The longitude of the region is from 97◦E to 107◦E and the latitude is from 21◦N to
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29◦N, with a latitude and longitude resolution of 0.5◦ × 0.5◦. As shown in Figure 1, the
black triangles indicate the GNSS station distribution.
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Figure 1. Geographical distribution of GNSS stations in Yunnan region.

Figure 2 shows the trends of the Dst index and Kp index during the period comprising
days 121 to 151 in 2017. It can be seen that a magnetic storm occurred from day 147 to day
148 in 2017. The Dst index reached a minimum value of −125 nT at 08:00 UT on day 148 in
2017, and the Kp index reached a maximum value of 7 between 04:00 UT and 06:00 UT on
day 148 in 2017.
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In this experiment, it was difficult to include comparative data in the experimental
analysis because of the large spatial resolution of Center for Orbit Determination in Europe
(CODE) TEC data and the small distribution of Massachusetts Institute of Technology
(MIT) TEC data in the region of Yunnan. In this study, TEC maps established by using
the low-degree spherical harmonic function were used as true values for comparative
analysis [30]. In the following sections, we refer to the TEC maps as self-modeling TECs.
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3.2. Accuracy Assessment

To assess the accuracy of assimilation results, the RMSE can be used as a criterion for
accuracy assessment; it is defined as follows:

RMSE =

√√√√ 1
N

N

∑
n=1

(TECass
n − TECrea

n )2 (18)

where N is the total number, TECass
n is the TEC value at point n obtained by data assimila-

tion, and TECrea
n is the truth data.

SKS is a common method for the quantitative assessment of assimilation effects,
allowing a comprehensive assessment of the performance of ionospheric data assimilation.
Three types of data are required for the calculation of SKS, namely the present or forecast
value to be compared, the reference value, and the true value, which are calculated as
follows [31]:

RMSEass = RMSE(TECass − TECtruth) (19)

RMSEre f = RMSE
(

TECre f − TECtruth

)
(20)

SKS = 1− RMSEass/RMSEre f (21)

where RMSEass and RMSEre f denote the root mean square errors of the present or forecast
and reference values to be compared, respectively, and TECass, TECre f , and TECtruth denote
the present or ionospheric TEC data to be compared with the forecast, reference, and true
values, respectively. From the equation, it can be derived that SKS ≤ 1, and the larger SKS
is, the better the value to be compared is. When SKS = 1, it means that the value to be
compared is exactly the same as the true value. When SKS = 0− 1, it indicates that the
value to be compared is better than the reference value. When SKS < 0, it indicates that the
value to be compared is worse than the reference value.

4. Results and Analysis
4.1. Ionospheric Geomagnetic Calm Conditions

To verify the reliability of the assimilation method, a comparison of the true TEC
and the TECs before and after assimilation for two GNSS stations, KMIN and XIAG, for
the 10-day period from day 125 to day 134 in 2017 is given in Figure 3. From Figure 3, it
can be seen that the assimilated TEC data is closer to the true value with good agreement
compared to the background model IRI data.

The daily average RMSE of the ionospheric TECs before and after the assimilation
of the data and the daily average SKS of the assimilated data from day 125 to day 134 in
2017—i.e., for a 10-day period—are given in Figure 4, with the self-modeled data included
as true values for comparison. As can be seen in Figure 4, the background data IRI TEC
RMSE before assimilation deviates more from the true value. After assimilation, it is closer
to the true value and the daily average RMSE decreases significantly. In Figure 4, all SKS
values are greater than 0 during the aforementioned 10 days. This result indicates a certain
improvement of IRI TEC relative to the background data.

The SKS values of the data-assimilated ionospheric TEC and the RMSEs before and
after assimilation over time are given in Figure 5 for 24 h on day 126, 2017. It can be seen
from Figure 5 that after data assimilation, the SKS values of the assimilated TEC are greater
than 0, which indicates that after data assimilation, the accuracy of the assimilated TEC has
a significant improvement compared to the IRI TEC. The greatest improvement relative
to the IRI model for this day occurred at 06:00 UT with an SKS of 0.92 and RMSEs of
8.19 TECU and 0.67 TECU for IRI TEC and the assimilated TEC, respectively. The average
SKS for this day was 0.72 and the average RMSE for the TECs before and after assimilation
was 4.19 TECU and 1.18 TECU, respectively.
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observatories during 10 days from day 125 to 134, 2017.
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Figure 6 shows the distribution of ionospheric TEC data in Yunnan and the surround-
ing regions for ionospheric pierce point (IPP) TEC, background model IRI TEC, assimilated
TEC, and true TEC for the observed data at 09:00 UT on day 132, 2017. As can be seen in
Figure 6, overall, the data in the background model IRI TEC is significantly overestimated
compared to the true value while the assimilated TEC is closer to the IRI TEC than the IRI
TEC is to both the true and IPP TECs. This suggests that the assimilated TEC has better
agreement with the true value compared to the IRI TEC.

Figure 7 gives the TECs before and after data assimilation compared to the true data
on day 127 in 2017. The histograms of the residuals of the background model IRI TEC and
assimilated TEC compared to the true values are given in Figure 7a,b, respectively, which
show that the residual distribution of the assimilated TEC data is closer to the unbiased
Gaussian distribution compared to the IRI TEC. The mean and RMSE values of the residuals
between the IRI TEC and the true value are −2.16 TECU and 5.08 TECU, respectively, while
the mean and RMSE values of the residuals between the assimilated TEC and the true
value drop to 0.25 TECU and 2.02 TECU, respectively. Figure 7c,d give scatter plots of the
TECs before and after assimilation compared with the true value, respectively, and it can
be seen that the correlation coefficient with the true value increases from 0.94 to 0.99 before
assimilation.

Figure 8 shows the background model IRI TEC, true TEC, and assimilated TEC distri-
butions for ionospheric TEC in Yunnan and the surrounding regions for 132 full days in
2017. As can be seen in Figure 8, the background model gives an obvious overestimation
of the ionospheric TEC compared to the true TEC distribution, especially at the 06:00 UT
and 10:00 UT moments, where the difference is obvious, with a maximum difference of
12 TECU, while the TEC distribution after assimilation is more consistent with the true TEC
distribution.
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Figure 6. Distribution of ionospheric TEC data for IPP, IRI, assimilation, and true values at 09:00 UT
on day 132, 2017.
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4.2. Under Ionospheric Geomagnetic Disturbance Conditions

Figure 9 gives a comparison of the true TEC and the TECs before and after assimilation
for the KMIN and XIAG observatories during the 10-day period from day 142 to 151 in
2017; a geomagnetic disturbance occurred on day 148. As can be seen in Figure 9, similar
to in Figure 3, the agreement between assimilated TEC and the true value is significantly
improved compared to IRI TEC on geomagnetically calm days while the agreement between
assimilated TEC and the true value is weakened on the perturbed days 147 to 148 but still
improved compared to IRI TEC.
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Figure 9. Comparison of true TEC and TECs before and after assimilation for KMIN and XIAG
observatories during 10 days from day 142 to day 151 in 2017.

The daily average SKS of the data assimilation and the daily average RMSE of the
ionospheric TECs before and after the assimilation are given in Figure 10 for days 142 to
148 during the 10-day period in 2017. It can be seen in Figure 10 that, similar to in Figure 4,
the RMSE values of the assimilated TEC during the 10-day period are reduced compared
to the pre-assimilation IRI TEC, and the SKS values are all greater than 0, indicating that
the assimilated TEC data are improved relative to the background model IRI TEC data. It
can also be seen that the SKS of the assimilated TEC on the 148th geomagnetic disturbance
day is reduced compared to the calm day, i.e., the difference between the RMSE of the
assimilated TEC and the IRI TEC is reduced.
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Figure 10. Average daily SKS of assimilated TEC and average daily RMSE of TECs before and after
assimilation during 10 days from day 142 to day 151, 2017.
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The SKS of the ionospheric TEC assimilated by the data and the RMSE values before
and after assimilation over the period of 24 h during the geomagnetic disturbance event
day in 2017, day 148, are given in Figure 11. As can be seen in Figure 11, the assimilated SKS
is greater than 0 for most moments, and only a few moments show negative values, i.e., the
RMSE of the assimilated TEC is greater than that of the IRI TEC, and the assimilation is not
as effective as the background data before assimilation. The maximum and minimum values
of SKS during this day were 0.85 and−0.21, respectively. The average SKS was 0.42, and the
average RMSE values before and after assimilation were 5.99 and 3.46, respectively. From
the daily average values of SKS and RMSE, we conclude that the data assimilation still had
some improvement effect on the background model on the geomagnetic disturbance day.
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on day 148, 2017.

Figure 12 shows the distribution of IPP TEC, the background model IRI TEC, as-
similated TEC, and true TEC for the observed data at 06:00 UT on day 148 in 2017, the
geomagnetic disturbance day, for the ionospheric TEC distribution in Yunnan and the
surrounding region. As can be seen in Figure 12, the values of the background model IRI
TEC are significantly lower compared to the true value, especially between 25◦N and 29◦N.
The assimilated TEC is closer to the real value. This shows that the assimilated TEC is in
better agreement with the true value than the IRI TEC on stormy days.

Figure 13 shows the TECs before and after data assimilation compared to the true data
for day 148 in 2017, the day of geomagnetic disturbance. The residual histograms of the
background model IRI TEC and assimilated TEC compared to the true value are given in
Figure 13a,b, respectively, which show that the residual distribution of the assimilated TEC
is closer to the unbiased Gaussian distribution compared to the IRI TEC. The mean and
RMSE values of the residuals between the IRI TEC and the true value are −5.32 TECU
and 5.99 TECU, respectively, while the mean and RMSE values of the residuals between
the assimilated TEC and the true value drop to −3.22 TECU and 3.46 TECU, respectively.
Figure 13c,d give the scatter plots of TEC before and after assimilation compared with the
true value, respectively, and it can be seen that the correlation coefficient with the true
value increases from 0.98 to 0.99 before assimilation.
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Figure 14 shows the background model IRI TEC, true TEC, and assimilated TEC
distributions of ionospheric TEC in Yunnan and the surrounding region throughout the
day on the geomagnetic disturbance day in 2017, day 148. It can be seen from Figure 14
that the background model gives a larger difference between the ionospheric TEC and the
true value compared to the true TEC distribution, especially at 10:00 UT, 14:00 UT, and
18:00 UT, where the IRI TEC is significantly underestimated, while the TEC distribution
after assimilation is not very different from the true value but is not as effective as the
assimilation distribution on geomagnetically calm days.
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5. Discussion

To make for a better statistical analysis, Figure 15 shows the average monthly RMSE
values of TEC before and after assimilation in 2017. The RMSE after assimilation is larger in
May and September 2017. The poor performance of these two months is due to the magnetic
storms that occurred in both months. In general, the assimilation method performs well on
different days, months, and times of the day under different geomagnetic conditions.
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The LETKF is an integrated square root filter that uses a low-rank estimate of the
forecast covariance matrix to compute its analysis. This analysis is computed independently,
grid point by grid point, by simultaneously absorbing nearby observations. First, the
background perturbation matrix in the model and observation space is computed globally.
Then, for each grid point, the observation vector mapped to the observation space and the
associated background perturbation matrix are restricted to include only observations from
the region surrounding the point [26]. Under quiet geomagnetic conditions, the residual
distribution before data assimilation is significantly eccentric and deviates from the self-
modeled TEC (Figure 7). Under disturbed geomagnetic conditions, the residual distribution
before data assimilation is significantly eccentric and deviates from the self-modeled TEC
(Figure 13). In Figure 4, the average daily SKS of assimilated TEC is 0.66 and the average
daily RMSE values of TEC before and after assimilation during the 10 days from day 125
to day 134 in 2017 are 5.33 TECU and 1.69 TECU, respectively. In Figure 10, the average
daily SKS of assimilated TEC is 0.64 and the average daily RMSE values of TEC before and
after assimilation during the 10 days from day 142 to day 151 in 2017 are 4.79 TECU and
1.68 TECU, respectively. For the 31 days from day 121 to day 151 in 2017, the average daily
SKS of assimilated TEC is 0.55 and the average daily RMSE values of TEC before and after
assimilation are 5.03 TECU and 2.13 TECU, respectively. These experimental results show a
generally good agreement between the self-modeled TEC and the assimilated TEC. The
LETKF model can be effectively used for ionospheric data assimilation.

6. Conclusions

In this paper, the first ionospheric TEC assimilation modeling using the LETKF as-
similation method was conducted to establish a regional ionospheric TEC assimilation
model for Yunnan using the IRI model as the background model and the observation data
from 27 ground-based GNSS stations. The results show that the improvement effect of
data assimilation on the IRI background model is more obvious in periods of geomagnetic
calm than in periods of geomagnetic disturbance. During the quiet period on day 127 in
2017, the SKS after assimilation is 0.60, the RMSE values before and after assimilation are
5.08 TECU and 2.02 TECU, respectively, and the correlation coefficients after assimilation
are 0.94 and 0.99. During the storm period on day 148 in 2017, the SKS after assimilation is
0.42, the RMSE values before and after assimilation are 5.99 TECU and 3.46 TECU, respec-
tively, and the correlation coefficients after assimilation are 0.98 and 0.99. The assimilation
method performs well on different days, months, and times of the day under different
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geomagnetic conditions. The data assimilation can effectively fuse the input observations
in both geomagnetic calm and geomagnetic disturbance periods, and the assimilated TEC
accuracy is significantly improved compared with the pre-assimilation IRI TEC.
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