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Abstract: Cyanobacterial blooms represent a significant environmental problem, threatening aquatic
ecosystems worldwide. Caused by the eutrophication of water bodies and global climate change,
these blooms have altered freshwater ecosystems worldwide during recent decades. Although
cyanobacterial blooms are typically caused by blue-green cyanobacteria, which derive their color from
the phycocyanin pigment, other pigmented cyanobacterial blooms have been frequently observed in
water bodies. These blooms pose a serious environmental threat to inland waters, endangering global
public health and aquatic ecosystems. Therefore, comprehending the mechanism of color variation in
cyanobacterial blooms is crucial for revealing the outbreak mechanism and implementing effective
prevention and control measures. This study developed a human–machine interactive workflow
for extracting cyanobacterial blooms and recognizing their colors based on the Forel-Ule index and
Sentinel-2 MultiSpectral Instrument data. Using this workflow, the authors conducted spatiotemporal
analysis and statistical analysis of bloom color for cyanobacterial blooms in four typical eutrophic
lakes from 2019 to 2022. The findings indicated a declining trend in cyanobacterial blooms across
the four studied lakes over the years, among which Hulun Lake experienced an annual increase in
cyanobacterial blooms and emerged as the lake with the most severe outbreak of such blooms in
2022. The yellowing status of cyanobacterial blooms varied among the four lakes, with Taihu Lake
and Dianchi Lake exhibiting a relatively high proportion of green-yellow and yellow cyanobacterial
blooms, followed by Chaohu Lake, whereas Hulun Lake had the lowest occurrence. The workflow
developed in this study was implemented in Google Earth Engine and provided an automated,
integrated, and rapid monitoring solution for the long-term monitoring and color recognition of
cyanobacterial blooms.

Keywords: cyanobacteria blooms; Google Earth Engine; cloud computing; Forel-Ule index

1. Introduction

Cyanobacterial blooms occur when water bodies that are rich in nitrogen and phosphorus
experience abundant growth of cyanobacteria under suitable environmental conditions, such
as temperature, light, and wind speed. These blooms may have deleterious effects on the
ecological environment of the water body. These cyanobacteria often aggregate into visible
clusters, resulting in a noticeable decrease in water column transparency. The coloration of
algal cells serves as a comprehensive representation of their photosynthetic pigments. Algal
photosynthetic pigments are a group of chemical substances that combine with proteins to
form pigment proteins in photosynthetic organs. They can be categorized into three categories
according to their molecular structures: chlorophylls, carotenoids, and phycobiliproteins.
During photosynthesis, these pigments capture light energy and transform it into chemical
energy. The primary pigments in cyanobacterial cells are chlorophyll, phycocyanin, and
phycoerythrin. These pigments absorb less blue-green light, resulting in a predominant
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blue-green appearance [1]. This is the reason why cyanobacterial blooms are characterized
by blue-green hues. With the advancement of monitoring and research on cyanobacterial
blooms, yellow-green and yellow cyanobacterial blooms have been observed in various bodies
of water. For example, in October 2012, Cai et al. reported a noteworthy example, where
the cyanobacterial blooms dominated by Microcystis in Lake Taihu underwent a transition
from blue-green to yellow during July [2]. In 2000, Lake Rotoehu, a eutrophic lake in New
Zealand, experienced a significant presence of Microcystis, resulting in the water turning
mustard yellow. While alternative hypotheses suggest that this color change may have been
attributed to different types of algae, the predominant presence of yellow Microcystis in live
samples supports this observation. This phenomenon has been observed to persist over an
extended period of time and has also been documented in Spain, where cyanobacterial blooms
dominated by the cyanobacterium Woronichinia naegliana of the phylum Cyanobacteria made
the water turn yellow. In addition, Lothar et al. observed yellow cyanobacterial blooms
dominated by Anabaena in Lake Victoria [3].

Cyanobacterial blooms are one of the most serious environmental problems faced by
inland waters, posing a significant threat to global public health and aquatic ecosystems [4].
The rapid economic development in China has led to the prevalent issue of eutrophication in
freshwater lakes, resulting in frequent occurrences of algal blooms. Not only do these blooms
affect the appearance of lakes, but the cyanotoxins they produce can also directly impact the
health of humans and animals [5]. Under specific conditions, high-density cyanobacterial
blooms have the potential to reduce dissolved oxygen, resulting in water discoloration and
foul odor [6,7]. Therefore, precise and efficient monitoring of their spatial and temporal
distribution is essential for prevention and management [8]. Satellites offer the advantages of
extensive coverage and high temporal resolution, facilitating long-term and dynamic monitor-
ing of cyanobacterial blooms. The identification of cyanobacterial blooms based on remote
sensing technology has been extensively investigated through single-band thresholding [9],
Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI) [10], Float-
ing Algae Index (FAI) [11,12], among others. The identification is primarily based on the
strong reflection of the green band in the presence of cyanobacterial blooms, resulting in their
visible appearances as green, as well as the strong reflection on the near-infrared reflectance
characteristics that exhibit red-edge features similar to those of terrestrial vegetation. However,
the varying qualities of satellite data and the limited robustness of a threshold, coupled with
interference from factors such as clouds, aquatic plants, and highly turbid water bodies, often
result in unsatisfactory results in practice. Therefore, further research is necessary to improve
the remote-sensing-based identification of cyanobacterial blooms. The application of the
Forel-Ule index (FUI) for identifying cyanobacterial blooms has made significant progress in
recent years. Hou [13] and Dai [14] used Landsat and MODIS satellite data to monitor global
lake and coastal blooms, demonstrating strong generalization capabilities. The MultiSpectral
Instrument (MSI) onboard the Sentinel-2 satellite has several advantages, including high
spatial resolution (10 m), short revisit period (less than five days), and a wide range of spectral
bands (13 spectral bands from visible, near-infrared to short-wave infrared). Therefore, the uti-
lization of the FUI and Sentinel-2 MSI was deemed appropriate for monitoring cyanobacterial
blooms in small- and medium-sized lakes.

Satellite imagery can be used to distinguish cyanobacterial blooms from other waterbod-
ies by employing various spectral bands to generate distinct colors. For instance, cyanobacteria
manifest as yellow-green in RGB true color and as bright green in SWIR/NIR/Red, facilitating
their differentiations from other land cover types. This study used the B11 (1613 nm)–B8
(833 nm)–B2 (442 nm) band combination of the Sentinel-2 MSI to construct the FUI, which was
then combined with the hue angle α to develop a decision tree for cyanobacterial blooms’ de-
tection. In addition, the B4 (665 nm)–B3 (559 nm)–B2 (442 nm) band combination of Sentinel-2
MSI was employed to construct the FUI and characterize, classify, and identify cyanobacterial
blooms based on ground-truthed, yellow-colored cyanobacterial bloom spectra.

Traditional remote sensing methods encounter numerous challenges, including the
need for large data downloads, extended processing times, and high storage require-
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ments [15], which impede automatic remote sensing monitoring of cyanobacterial blooms
over long time series. In large-scale satellite remote sensing data processing scenarios,
a specialized cloud platform can perform better. The Google Earth Engine (GEE) is a
cloud platform designed for geographic spatial data analysis. It offers an interactive web
development environment that stores petabyte-level remote sensing data and products,
encompassing MODIS, Landsat, and Sentinel [16]. Data’s online accessibility, rather than
traditional downloads and pre-processing locally, makes GEE especially suitable for long
time series and large-scale remote sensing applications. This study aims to address the
urgent need for long-term monitoring of cyanobacterial blooms in inland eutrophic lakes,
with the help of the latest development in cloud computing technology. To achieve this
goal, this study combined the FUI with ground-measured spectral data and Sentinel-2 MSI
multispectral data. An interactive and automated workflow was then developed on the
GEE platform, enabling the rapid extraction of cyanobacterial blooms in inland eutrophic
lakes, as well as characterizing, classifying, and identifying cyanobacterial blooms based on
their colors. Furthermore, the research investigated the temporal and spatial distribution
patterns of cyanobacterial blooms in four representative eutrophic lakes in China. To gain
deeper insights, an analysis was conducted to examine the distinct color characteristics
exhibited by cyanobacterial blooms in each lake, integrating the measured nutrient data of
the lakes with the color expressions of the blooms.

2. Data and Study Area
2.1. Study Area

Four eutrophic lakes with frequent cyanobacterial blooms were selected as represen-
tative study areas, i.e., Lake Hulun, Lake Chaohu, Lake Taihu, and Lake Dianchi. These
eutrophic lakes, selected for the purpose of studying the occurrences of cyanobacterial
blooms, exhibited variations in size, shape, and location, as depicted in Figure 1.
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2.2. Satellite Data

MSI Level-2A products were used in this study. They provided bottom-of-atmosphere
corrected reflectance data, which had been radiometric calibrated and atmospheric cor-
rected.

2.3. Field-Measured Data of Typical Yellow Cyanobacterial Blooms

On 28 July 2022, yellow cyanobacterial blooms emerged along the shore of Gonghu
Bay in Taihu Lake. In response, two sampling points were set up to collect on-site samples
for analysis.

On 2 August, two sampling points were established along the shore of the Meiliang
Bay in Taihu Lake to collect green algal bloom control samples. In areas with prominent
aggregations of cyanobacterial blooms, reflectance data from the water was captured using
an ASD FieldSpec HandHeld 2 spectroradiometer. Additionally, water quality monitoring
was conducted, and samples of algae were collected. Analysis revealed that Microcystis spp.
was the dominant species among four cyanobacterial bloom samples, with a dominance
exceeding 95%. Photos of the sampling sites are presented in Figure 2.
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3. Methods
3.1. Methodology and Analysis Framework

A rapid monitoring and color recognition system for cyanobacterial blooms using
Sentinel-2 MSI data was developed in this study, with the FUI serving as the primary
method. This system enabled quick bloom detection and assessment of their growth
statuses based on their colors. Figure 3 summarizes the overall process.
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Figure 3. The analysis flowchart comprises an input dataset, remote sensing data preprocessing, au-
tomated extraction of cyanobacterial blooms, color recognition, spatiotemporal analysis of cyanobac-
terial blooms, and assessment of growth status.

First, the remote sensing data were preprocessed to mask land and clouds, followed by
constructing a decision tree for the FUI using the B11 (1613 nm)—B8 (833 nm)—B2 (442 nm)
band combination of Sentinel-2 MSI to extract cyanobacterial blooms. Then, combining
the measured spectral data of ground samples, the FUI was reconstructed using the B4
(665 nm)—B3 (559 nm)—B2 (442 nm) band combination of Sentinel-2 MSI to characterize,
grade, and identify the colors of cyanobacterial blooms. Finally, spatial and temporal
analyses for cyanobacterial blooms were conducted on four representative eutrophic lakes
in China, and the growth statuses of cyanobacterial blooms in these lakes was evaluated
based on their color representations as well.

3.2. Processing of Satellite Data for Cyanobacterial Bloom Extraction
3.2.1. Land Masking

In order to ensure accurate land masking and minimize interference and errors caused
by terrestrial pixels, we used the latest Sentinel-2 MSI imagery to extract vector boundaries
of water bodies in Taihu Lake, Hulun Lake, Chaohu Lake, and Dianchi Lake using the
Modified Normalized Difference Water Index (MNDWI). Then, a 20 m inward buffer was
applied to the extracted vector, mitigating the impact of mixed land–water boundary pixels.
The MNDWI formula is as follows:

MNDWI = (R rs(green)− Rrs(swir))/(R rs(green) + Rrs(swir)) (1)

where Rrs(green) and Rrs(swir) represent the reflectances of the green and shortwave in-
frared bands, corresponding to Sentinel-2 MSI’s B3 (560 nm) and B11 (1613 nm), respectively.

3.2.2. Cloud Masking

This study employed a single-band threshold of Rrs(664nm), which was greater than
0.2, as a cloud mask to filter out most cloud interference. However, this method failed to
remove thin clouds and shadows effectively, leading to false positive results in cyanobacte-
rial bloom extraction. To address this issue, we developed three indexes, namely, Index1,
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Index2, and Index3, to eliminate false positives caused by thin clouds and shadows. The
formulas for the indexes were as follows:

Index1 = (R rs(green)− Rrs(blue))/(R rs(green) + Rrs(blue)) (2)

Index2 = (R rs(rede)− Rrs(red))/(R rs(rede) + Rrs(red)) (3)

Index3 = (R rs(green)− Rrs(red))/(R rs(green) + Rrs(red)) (4)

where Rrs(blue), R_Rrs(green), Rrs(red), and Rrs(rede) denote the reflectances of the blue,
green, red, and red-edge bands, respectively, corresponding to Sentinel-2 MSI’s B1 (442 nm),
B3 (559 nm), B4 (665 nm), and B5 (704 nm). Thresholds of Index1 (>0.1), Index2 (>0.15),
and Index3 (>0.13) were determined through a trial-and-error approach based on visual
assessment. Only the pixels that met all three criteria were classified as cyanobacterial
blooms.

3.2.3. Mask Processing of Other Factors

Even after masking land and clouds, water surface reflectance data may still exhibit
unusually high or low values. These values may be attributed to residual errors from the
atmospheric correction method. Therefore, to exclude these pixels, several thresholds have
been employed. Specifically, pixels with Rrs(green) greater than 0.02 and all visible band
reflectance values less than 0.5 are excluded [13]. Additionally, a turbidity index (TI) is
used to mask high-turbidity water bodies. The formula for TI is

TI = (R rs(red)− Rrs(green)− (Rrs(nir)− Rrs(green)× 0.5) (5)

where Rrs(green), Rrs(red), and Rrs(nir) correspond to Sentinel-2 MSI’s B3 (559 nm), B4
(665 nm), and B8 (833 nm) bands, respectively. Considering that high turbidity water
exhibited greater reflectance in the red band compared to the other two bands, a threshold
of TI > 0 was established for TI [17].

3.2.4. Forel-Ule Index

The CIE 1931 XYZ color space, developed by the International Commission on Illumi-
nation (CIE) in 1931, defines the overall impression of color perceived by the human eye
based on mathematical principles. In theory, the color parameters are calculated from three
visible spectral bands (red, green, and blue) of satellite imagery and transformed into the
CIE color space [18]. The goal of this color system is to simulate the integrated effect of the
X, Y, and Z tristimulus values perceived by human vision. The transformation from RGB to
X, Y, and Z can be expressed as follows:

X = 2.7689× R + 1.7517×G + 1.1302× B
Y = 1.0000× R + 4.5907×G + 0.0601× B
Z = 0.0000× R + 0.0565×G + 5.5934× B

(6)

In this study, the B11 (1613 nm)–B8 (833 nm)–B2 (442 nm) band combination of
Sentinel-2 MSI was assigned to the B, G, and R channels, respectively. The CIE chromaticity
coordinates (x, y) were then determined by normalizing X, Y, and Z values to a range
between 0 and 1. As x + y + z = 1, a specified color could be determined by the two
values of x and y. Therefore, the CIE-xy chromaticity diagram (Figure 4) could be used to
represent all colors within the visible range. The normalized simulated values x, y, and z
were calculated using Equation (7):

x =
X

X + Y + Z
; y =

Y
X + Y + Z

; z =
Z

X + Y + Z
(7)
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Finally, the hue angle α representing any pair of chromaticity coordinates (x′, y′) of
the radiance spectrum could be calculated as follows:

α =

(
ARCTAN2

y′

x′

)
× 180

π
=

(
ARCTAN2

x− 0.333
y− 0.333

)
× 180

π
(8)

Here, ARCTAN2 is a four-quadrant arctangent function that allows the range of α to
range from −180◦ to 180◦. The increase in hue angle α indicates a transition from blue to
red. In this study, the range of α was shifted from 0◦ to 360◦ by increasing it by180◦.

3.2.5. Construction of the Decision Tree for Extracting FUI of Cyanobacterial Blooms

To determine the threshold of the hue angle α for cyanobacterial blooms, this study
employed a random sampling method to collect 460 sample points from various water
bodies, including 254 samples obtained from Lake Taihu and Lake Ge, 104 samples from
Lake Chaohu, and 102 samples from Lake Hulun. The sampling excluded the eastern
aquatic plant growth area in Lake Taihu. Additionally, 129 aquatic plant samples were
collected using the same random sampling method to eliminate interference from cyanobac-
terial blooms. These samples were collected from the eastern part of Lake Taihu, where
aquatic plants grow. The objective of collecting these samples was to study the hue angle α

characteristics of aquatic plants (Figure 4).
First, a cloud mask was generated by applying a single-band threshold of Rrs(664nm)

> 0.2 to remove clouds. Then, the hue angle α and Floating Algae Index (FAI) values of
the Sentinel-2 MSI remote sensing images from January 2019 to March 2023 were extracted
from the bloom and aquatic plant samples. A sample was classified as either a bloom or
an aquatic plant when its FAI value exceeded 0.04. The hue angle α of the sample was
considered as the characteristic value of the bloom or aquatic plant. The FAI formula for
Sentinel-2 MSI was as follows:

FAI = Rrs(nir)− R′rs(nir)
R′rs(nir) = Rrs(red) + (Rrs(swir)− Rrs(red))× 833−664.5

1613.7−664.4
(9)
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where Rrs(red), Rrs(nir), and Rrs(swir) denote the reflectances of the red, near-infrared,
and shortwave infrared bands, respectively, corresponding to Sentinel-2 MSI B4 (664 nm),
B8 (833 nm), and B11 (1613 nm). After data screening, 4214 bloom samples and 6149 aquatic
plant samples were obtained, and the hue angle α histograms of both sample groups were
statistically analyzed (Figure 5). In this histogram, the x-axis represented the hue angle α,
and the y-axis represented the frequency distribution of corresponding sample count.
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As depicted in Figure 5, the hue angle α histograms of aquatic plants and bloom sam-
ples exhibited discernible differences. According to the distribution results, the hue angle α

range of 104◦ < α < 179◦ was identified as the distribution interval for the cyanobacterial
blooms and was classified as a bloom, whereas the hue angle α range of 179◦ ≤ α < 208◦

was identified as the distribution interval of aquatic plant hue angle α and was classified as
clouds or other phenomena. Other hue angle α values were classified as water bodies, and
the threshold and decision tree rules for extracting the cyanobacterial blooms’ FUI values
were constructed accordingly.

3.2.6. Time Series Analysis

To automatically merge data from the same day, the time attributes of Sentinel-2 MSI
data were utilized. Next, cloud cover, water bodies, and cyanobacterial blooms were
separately quantified based on classification results acquired from each satellite overflight
image. This enabled daily area of cyanobacterial bloom to be obtained for Hulun Lake,
Taihu Lake, Chaohu Lake, and Dianchi Lake. The annual average areas were calculated
based on these data.

To compute the annual cumulative value of each pixel, the classification results ob-
tained each time for cyanobacterial blooms and water bodies were binarized in each
iteration, with every pixel being categorized as either a cyanobacterial bloom or a water
body. The spatial distribution frequency index (SDFI) approach was employed to quan-
tify the variations in the spatial distribution frequencies of cyanobacterial blooms across
different regions within the study area. The formula used to calculate SDFI was:

SDFI = ∑n
i=1 Ri_bloom

∑n
i=1 Ri_bloom + ∑n

i=1 Ri_water
× 100% (10)

where Ri_bloom is the cyanobacterial bloom pixel value in the binary image of the i-th day,
and Ri_water is the water body pixel value in the binary image of the i-th day. Finally,
the annual frequency of cyanobacterial bloom occurrence in pixels was obtained, and the
results were visualized.
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3.3. Cyanobacterial Blooms Color Identification and Classification
3.3.1. Spectral Feature Analysis from Field Measurements

To analyze the spectral response characteristics of yellow and blue-green cyanobac-
terial blooms, ASD Field Spec Pro FR portable spectrometers were used to measure the
spectra of yellow blooms #1 and #2 and blue-green control blooms #3 and #4 (Figure 6).
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Figure 6. In situ measured cyanobacterial blooms of different colors: yellow blooms #1 and #2 and
blue-green control blooms #3 and #4.

Figure 6 shows that 1#, 2#, and 4# exhibit very clear vegetation characteristics, whereas
3# displays spectral characteristics more akin to highly pigmented water bodies, which is
consistent with the distribution of cyanobacterial blooms in the field. The low reflectance
of water within the range of 400–500 nm can be attributed primarily to the strong absorp-
tion of chlorophyll a and yellow substances within this band of light energy. The weak
absorption of chlorophyll and carotenoids, along with the scattering effect of cells, result in
a reflection peak within the 550–580 nm range. Meanwhile, the absorption of phycocyanin
at 620–630 nm creates a reflection trough, whereas the strong absorption of chlorophyll
a in the red band near 670 nm also produces a reflection trough. Bloom 3# exhibits the
fluorescence peak characteristics of chlorophyll in the 710 nm and beyond, with a rapid
increase in reflectance at other wavelengths, indicating distinct vegetation features. The
spectral characteristics of cyanobacterial blooms with different colors are primarily reflected
in the central wavelength of the reflection peak within the range of 550–580 nm. The yellow
cyanobacterial blooms 1# and 2# exhibit a reflection peak at a central wavelength of 566 nm,
whereas the blue-green control bloom 3# displays a reflection peak at a central wavelength
of 550 nm. The slightly yellowish control bloom 4#, on the other hand, reaches its reflection
peak at a wavelength of 555 nm. Therefore, it can be inferred that blooms with more yellow
colorations tend to exhibit a longer central wavelength position of the reflection peak in the
550–580 nm range, whereas those with greener colorations tend to show shorter central
wavelength positions.

3.3.2. Identification of Cyanobacterial Blooms Based on Color

To meet the requirements of operational applications, this study used the FUI based
on visible light to identify and classify cyanobacterial blooms by color. For Sentinel-2 MSI
images, the R, G, and B channels corresponded to bands B4 (665 nm), B3 (559 nm), and B2
(442 nm), respectively. To evaluate whether the color grading of the hue angle α conformed
to visual perception, the FUI was calculated for a typical yellow bloom sample spectrum.
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First, the in situ measured spectral data were processed using the spectral response function
of Sentinel-2 MSI to derive the equivalent reflectance of the corresponding channel as:

Rrs(bandi) =

∫ λ2
λ1 Rrs(λ)SRF(λ)d(λ)∫ λ2

λ1 SRF(λ)d(λ)
(11)

where Rrs(bandi) is the equivalent reflectance of the i-th band of the satellite, λ1 and λ2 are
the wavelength ranges of the band, Rrs(λ) is the measured spectral reflectance, and SRF(λ)
is the spectral response rate at the wavelength λ. Then, according to Equations (5)–(7), the
hue angle α was obtained for four ground samples.

Van der Woerd et al. found that the hue angle α calculated by the multi-spectral
channel exhibited a deviation ∆α of −5◦ to 20◦, which was not entirely random and could
be roughly described using a specific fifth-order equation for different satellite sensors [19].
For Sentinel-2 MSI, Equation (11) could be used for the approximate calculation of the hue
angle deviation ∆α:

∆α = −61.805a5 + 257.86a4 − 300.67a3 + 40.595a2 + 65.296a− 9.3398 (12)

where a is the hue angle α adjusted to be ranged from 0◦ to 360◦ and then divided by
100. Adding ∆α gives the color-corrected hue angle α for Sentinel-2 MSI. Combining the
research with [20], the FUI lookup Table was defined as depicted in Table 1.

Table 1. FUI lookup table.

FUI α Color Hex Code FUI α Color Hex Code

1 42.27 #7AC0F8 12 202.03 #C4F856
2 50.76 #02C7FE 13 204.04 #CBF951
3 64.87 #01E2FF 14 206.68 #D8F649
4 80.67 #03DAFD 15 209.67 #E1F14E
5 104.01 #00D9E5 16 213.32 #EBF23F
6 135.77 #01D7BD 17 217.89 #F5EE3E
7 160.08 #00D597 18 223.39 #FFEA39
8 174.86 #00D96F 19 228.28 #FEE236
9 186.54 #71E463 20 232.96 #FCDE22
10 195.34 #A5F258 21 239.00 #FFD521
11 200.33 #BBF757

In this study, the spectral data of four ground samples were corrected using the
Sentinel-2 MSI correction tone angle α. The correction tone angles α for samples 1#, 2#,
3#, and 4# were 208.78◦, 208.57◦, 162.83◦, and 193.74◦, respectively. Their corresponding
FUI levels were lv15, lv15, lv8, and lv10, which demonstrated consistency with visual
perception and affirmed the accuracy of the correction process. Based on these results, we
implemented the aforementioned color grading process and standards into a GEE script for
monitoring cyanobacterial blooms. This allowed us to automatically extract cyanobacterial
blooms and assess their growth statuses through color recognition.

4. Results and Analysis
4.1. Accuracy Verification

The Jiangsu Environmental Monitoring Center in China conducts daily monitoring of
cyanobacterial blooms in Lake Taihu using MODIS and NDVI in conjunction with visual
interpretation. The results of this monitoring undergo consultation with the meteorological
department and are publicly released at http://www.jsem.net.cn/mrygyt/thlz/ (accessed
on 11 May 2023). These results, which have undergone discussions and manual corrections
by multiple departments, are considered authoritative and accurately reflect the extent
of cyanobacterial blooms. This study includes a linear regression analysis to assess the
accuracy of the cyanobacterial bloom extraction method by comparing it with published

http://www.jsem.net.cn/mrygyt/thlz/
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results from the Jiangsu Environmental Monitoring Center. Samples of cyanobacterial
blooms were collected and analyzed during the period from 2019 to 2022. The results
demonstrate a significant concurrence between the extracted cyanobacterial bloom areas
and the published results from the Jiangsu Environmental Monitoring Center, with a linear
slope exceeding 0.85 and a coefficient of determination (R2) surpassing 0.7 (Figure 7).
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From Figure 7, it is evident that the cyanobacterial bloom areas extracted in this
study were slightly larger than the consulted results. This disparity could be attributed
to two primary factors. Firstly, the utilization of Sentinel-2 MSI in this study offered
superior spatial resolution compared to MODIS, enabling a more precise capture of spatial
characteristics and an enhanced ability to detect cyanobacterial blooms. Secondly, due to
algorithmic limitations, this study may be limited to completely exclude aquatic plants,
particularly in the eastern region of Lake Taihu, where aquatic plants are occasionally
misclassified partially as cyanobacterial blooms. In contrast, the consulted results employed
masking and underwent manual corrections specifically for this area, resulting in a slight
overestimation of cyanobacterial bloom extraction results in this study.

4.2. Time Series Analysis of Cyanobacterial Blooms in Lakes

Figure 8 illustrates the percentage of cyanobacterial bloom areas in four typical lakes,
namely, Hulun Lake, Taihu Lake, Chaohu Lake, and Dianchi Lake, during the period from
2019 to 2022. The seasonal succession pattern is evident in Taihu Lake and Chaohu Lake,
where cyanobacterial blooms rarely appear from January to April but significantly increase
in frequency and size from May to December. The annual trend exhibits a consistent decline
from 2019 to 2022. Chaohu Lake experiences a higher frequency of cyanobacterial blooms-
free months compared to Taihu Lake, primarily spanning from November through the
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subsequent May. The decreasing trend is more pronounced in comparison to Taihu Lake,
especially in 2022, when large-scale cyanobacterial bloom outbreaks were observed solely in
August and October. Dianchi Lake exhibits an irregular seasonal pattern, characterized by
sporadic occurrences of large-scale cyanobacterial bloom outbreaks in August, November,
and December 2019 and December 2020. However, since 2021, there has been almost no
such outbreaks of cyanobacterial bloom. The gradual reduction in cyanobacterial blooms
in Taihu Lake, Chaohu Lake, and Dianchi Lake to some extent indicates the significant
progress achieved in controlling eutrophication in these three lakes. In contrast, Hulun
Lake experienced mild cyanobacterial blooms outbreaks from 2019 to 2021, however, a
sudden outbreak in 2022, especially during July and August. During this period, the
cyanobacterial blooms covered over 30% of the lake area, with the maximum coverage
reaching close to 60%. This may be due to the increasing eutrophication level of the
lake, with nitrogen, phosphorus, and other nutrients gradually reaching the optimum
concentrations for cyanobacterial bloom growth.
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Figure 8. Percentage of cyanobacterial blooms in four typical eutrophic lakes from 2019 to 2022.

The maximum outbreak areas of cyanobacterial blooms during 2019–2022 are shown
in Figure 9. During the period of 2019–2022, the maximum outbreak area of cyanobacterial
blooms in Lake Hulun was 1423.30 km2, occurring on 19 July 2022; in Lake Taihu, the
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maximum outbreak area was 658.56 km2, occurring on 29 May 2019; in Lake Chaohu, the
maximum outbreak area was 261.55 km2, occurring on 19 October 2019; in Lake Dianchi, the
maximum outbreak area was 116.71 km2, occurring on 12 November 2020. We developed an
app (https://songting1207.users.earthengine.app/view/s2-bloom-lake-system (accessed
on 11 May 2023)), which provided the aforementioned results.
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Figure 9. Largest cyanobacterial blooms in four typical eutrophic lakes from 2019 to 2022. (Black rep-
resents clouds and other factors, blue represents water bodies, and yellow represents cyanobacterial
bloom).

By categorizing the lake area into three classifications (i.e., those affected by clouds
and other factors, water bodies, and cyanobacterial blooms), it was possible to carry out
a relevant analysis of the relationship between these categories. Figure 10 shows the
annual average area changes in each category for the four lakes. Approximately half of the
areas of Lake Hulun, Lake Taihu, and Lake Chaohu were impacted by clouds and other
factors but with much less interference in Lake Dianchi, which allowed for a more accurate
representation of cyanobacterial bloom extractions in relation to actual occurrences. In line
with the previous discussion, the annual average values of cyanobacterial blooms in Lake
Taihu, Lake Chaohu, and Lake Dianchi showed a downward trend over the years, whereas
that of Lake Hulun clearly increased. The annual average values of cyanobacterial blooms
in Lake Taihu, Lake Chaohu, and Lake Dianchi decreased from 53.10 km2, 30.25 km2, and
5.49 km2 in 2019 to 37.76 km2, 3.95 km2, and 0.19 km2 in 2022, respectively, representing
decreases of 28.89%, 86.95%, and 96.53%. The annual average value of cyanobacterial
blooms in Lake Hulun increased from 2.51 km2 in 2019 to 23.40 km2 in 2022, representing
an increase of 833.03%.

4.3. Spatial Analysis of Cyanobacterial Blooms in Lakes

Figure 11 shows the frequency of cyanobacterial bloom outbreaks in four typical
eutrophic lakes from 2019 to 2022, obtained by binarizing and overlaying the monitoring
results based on Equation (10).

https://songting1207.users.earthengine.app/view/s2-bloom-lake-system
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Figure 10. Annual average area changes in four typical eutrophic lakes in each category from 2019 to
2022.
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Cumulative annual frequencies of cyanobacterial blooms were analyzed for each lake.
The blooms in Hulun Lake showed a significant increase from 2019 to 2022, with the affected
area gradually extending from the lakeshore towards the center of the lake, eventually
covering almost the entire lake in 2022. Conversely, there has been a gradual reduction in
cyanobacterial blooms observed in Taihu Lake, Chaohu Lake, and Dianchi Lake over the
years. Meiliang Lake and the western region of Taihu Lake exhibited high frequencies of
cyanobacterial blooms from 2019 to 2022, whereas the frequencies in the lake centers of
Gonghu Lake and Zhushan Lake decreased over time. Cyanobacterial blooms in Chaohu
Lake mainly occurred in the western part of the lake, with relatively low frequencies in
the central and eastern lake areas, with a decreasing trend over the years. In Dianchi Lake,
high frequencies of bloom outbreaks were noted in the northern and eastern regions during
2019 and 2020, but the frequency significantly decreased during 2021 and 2022, with most
of the lake not experiencing cyanobacterial blooms.

4.4. Lake Cyanobacterial Blooms Color and Growth Analysis

The FUI was calculated using the R, G, and B channels combination of bands B4
(665 nm), B3 (559 nm), and B2 (442 nm) to extract cyanobacterial blooms. The corrected hue
angle α was obtained using Equation (11). Based on the color grading in Table 1, with the
combination of color grading results of ground monitoring yellow-green algae and control
samples, this study classified green cyanobacterial blooms as lv6–lv10, yellow-green algae
blooms as lv11–lv13, and yellow algae blooms as lv14 or higher. The maximum outbreak
areas of four lakes during the period from 2019 to 2022 were identified and classified based
on color recognition. The color recognition results are shown in Figure 12.
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The color grading results of the cyanobacterial blooms in Lake Hulun, Lake Taihu,
Lake Chaohu, and Lake Dianchi from 2019 to 2022 are shown in Figure 13. The figure
illustrates that the prevalence of yellow-green and yellow algae blooms was relatively high
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in both Lake Taihu and Lake Dianchi. In particular, in 2019, Lake Dianchi exhibited a
proportion of 24.67%, with a notably high percentage of 17.68% of yellow algae blooms.
Subsequently, as the intensity of cyanobacterial blooms decreased, the proportion of yellow-
green and yellow algae blooms also decreased significantly, reaching only 12.91% in 2022.
The proportion of yellow-green and yellow algae blooms in Lake Taihu remained stable
at a relatively high level, ranging from 15.76% to 26.24%, with the latter accounting for
3.1−5.07%. While there has been a gradual decrease in bloom intensity over time, this
decline was much less pronounced than that observed in Lake Dianchi. According to data
released by China’s environmental monitoring authorities, the concentrations of nitrogen
and phosphorus in Lake Taihu and Lake Dianchi have remained relatively low in recent
years compared to previous periods. Specifically, in 2022, the total nitrogen concentration
in Lake Taihu was measured at 1.25 mg/L, whereas the total phosphorus concentration was
recorded at 0.062 mg/L, respectively. For Lake Dianchi, the corresponding concentrations
were 2.23 mg/L for total nitrogen and 0.061 mg/L for total phosphorus. The lower levels
of phosphorus concentrations in these two lakes may result in “nitrogen limitation” or
“phosphorus limitation” for cyanobacterial growth, leading to more evident “yellowing”
characteristics of cyanobacterial blooms.
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Figure 13. Color classification of cyanobacterial blooms in four typical eutrophic lakes from 2019 to
2022.

The proportion of yellow-green and yellow algae blooms in Lake Chaohu was rel-
atively low, with the highest proportion in 2020 at 12.26% and the lowest proportion in
2021 at 6.52%. The intensity of algae blooms showed a gradual decreasing trend. The
concentrations of total nitrogen and total phosphorus in Lake Chaohu were 1.71 mg/L
and 0.082 mg/L, respectively, in 2022. Particularly, the phosphorus concentration was
significantly higher than that observed in Lake Taihu and Lake Dianchi. This disparity
may have resulted in a lesser degree of “yellowing” in cyanobacterial blooms in Lake
Chaohu compared to the other two lakes. Furthermore, the intensity of bloom outbreaks
in Lake Chaohu has gradually decreased over the years. This suggests that the nitrogen
and phosphorus concentrations in Lake Chaohu may not be limiting factors for cyanobac-
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terial growth, but rather other comprehensive factors have contributed to the decrease in
cyanobacterial bloom intensity.

The proportion of yellow-green and yellow algae blooms in Lake Hulun was the
lowest among the four lakes, with only 3.63% and 2.06% in 2021 and 2022, respectively.
There was a near absence of yellow algae blooms, whereas the intensity of algae blooms
exhibited an upward trend year by year. During the period from June to October 2022, the
Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, con-
ducted four sampling events in Lake Hulun. The average concentrations of nitrogen and
phosphorus were 2.85 mg/L and 0.236 mg/L, respectively. These levels were significantly
higher than those observed in the other three lakes, possibly due to the favorable growth
conditions for cyanobacterial in Lake Hulun, including the relatively high nitrogen and
phosphorus concentrations and other factors that resulted in a weak “yellowing” phe-
nomenon of cyanobacterial blooms. The predominant color observed was green, resulting
in a substantial escalation in the magnitude of cyanobacterial blooms in Lake Hulun.

5. Discussion
5.1. Limitations of Automatic Extraction Methods for Cyanobacterial Blooms

The validation results indicate that this study provides a workflow with relatively
accurate precision for automated, integrated, and rapid monitoring purposes. However,
there are some inevitable deviations that need consideration. Firstly, the surface reflectance
data of Sentinel-2 provided on GEE may be excessively corrected compared to the Raleigh
correction, which could potentially affect monitoring. Secondly, although this study used
a decision tree classification based on the hue angle alpha to remove aquatic plants, it is
not always feasible to completely distinguish between the hue angles of cyanobacterial
blooms and aquatic plants, resulting in incomplete removal of aquatic plants. In particular,
the presence of aquatic plants in the eastern part of Lake Taihu is occasionally included
in the assessment of cyanobacterial blooms, leading to an overestimation of the results of
cyanobacterial blooms. However, this analysis results of long time series remain unaffected
by this issue, and the affected area can be masked if necessary. Another factor that affects
accuracy is the adjacent effect of the ground surface. Scattered light from brighter land pix-
els near the water–land boundary will increase the reflectance values of the NIR band [21],
making the hue angle alphas of the water pixels similar to those of the cyanobacterial
blooms, resulting in misidentifications. The adjacent effect of the land surface can impact
several hundred meters off the shore; however, it is imperative that the land mask remains
at a sufficient size [22]. Clouds can also cause deviations, especially when processing
cyanobacterial bloom pixels covered by thin clouds. These areas can be visually identified
and classified into the final statistics of cyanobacterial bloom. However, the strict cloud
detection method used in this study may obscure these areas, leading to an underestimation
result of cyanobacterial bloom. In addition, compared to satellite sensors like MODIS (Mod-
erate Resolution Imaging Spectroradiometer) [22] and AGRI (Advanced Geosynchronous
Radiation Imager) [23], which enable high-frequency monitoring of cyanobacterial blooms,
the temporal resolution of Sentinel-2’s MSI is significantly inadequate for a comprehen-
sive and complete assessment of cyanobacterial bloom occurrences. However, its higher
spatial resolution (10 m) makes it effective in monitoring cyanobacterial blooms in smaller
water bodies.

5.2. Mechanism Analysis of Yellow Cyanobacterial Blooms

Yellow cyanobacterial blooms remain a phenomenon whose underlying causes have
yet to be fully comprehended. A primary point of contention is whether the cyanobacteria
undergo yellowing or not. Some scientists argue that yellow cyanobacterial blooms consist
of distinct algal particle groups, each with different pigment compositions, resulting in
varying colors [24]. Despite the dominance of cyanobacteria in the water, the yellow
color is then attributed to light refraction and the presence of red-associated diatoms.
Others believe that changes in the surrounding environment can cause a reduction in the
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synthesis of chlorophyll and phycocyanin in cyanobacteria, resulting in an increase in the
carotenoids and xanthophylls ratio, ultimately causing yellow appearance and a yellow
cyanobacterial bloom. Environmental factors that affect this include light and nutrient
elements, particularly nitrogen [25,26].

Light intensity exerts a significant impact on the pigment synthesis of cyanobacterial
cells [27]. Under intense sunlight, especially following a period of cloudy and rainy weather,
cyanobacteria may excessively decompose water and generate an excessive amount of
reactive oxygen. To prevent oxidative damage to the photosynthetic system, they syn-
thesize carotenoid light-protective pigments, increasing the proportion of carotenoids
in their pigment composition and a yellowish appearance. Conversely, the growth of
cyanobacteria can be negatively impacted by a lack of sunlight or nutrients, potentially
leading to their demise. Simulation experiments by Meng Zejing et al. suggested that
fresh green cyanobacteria gradually degrade into yellow-green, light yellow, and white
after three days of decline, during which a large amount of phycocyanin is released [28],
explaining the yellowing of cyanobacteria during the decline phase. Additionally, Sidler’s
research demonstrated different light qualities can alter the cell phycobiliprotein compo-
nents of cyanobacteria [29]. Cyanobacteria can be divided into three categories: (1) those
whose phycobiliprotein components remain unchanged under different light qualities when
they contain phycocyanin [30], (2) those whose chromoprotein types in phycobiliproteins
change under different light qualities, such as Calothrix sp. PCC 7601 cells, where the gene
encoding red-absorbing phycocyanin is replaced by the gene-encoding, blue-absorbing
phycoerythrin when the cells are cultured under red light [31], and (3) those whose relative
abundances of chromoproteins in phycobiliproteins change under different light quali-
ties [32], such as Phormidium sp. C86 cells, where the ratio of phycocyanin, phycoerythrin,
and phycoviolobilin in phycobiliproteins is 7.3:1:1 when cultured under green light but
changes to 1.2:3.3:1 under red light [33].

Nutrient limitation in non-nitrogen-fixing cyanobacteria induces a series of reactions,
including cessation of cellular division and significant morphological and physiological
alterations such as loss of photosynthetic membranes, an increase in glycogen, and pigment
degradation. Nitrogen limitation causes a reduction in chlorophyll and phycobiliprotein
content, resulting in a dramatic color shift from normal blue-green to yellow-green, known
as “bleaching.” Phycobiliprotein undergoes extensive degradation, leading to a reduction
in chlorophyll content. The degradation of phycobiliprotein may serve as a source for
peptide synthesis required to adapt to nitrogen-depleted conditions. This phenomenon is
also observed in certain cyanobacterial species when faced with limitations of sulfur, phos-
phorus, carbon, and iron nutrients. In these cases, degradation minimizes the absorption of
excess excitation energy under stress conditions. Collier and Grossman have demonstrated
that bleaching reactions differ under nitrogen or sulfur and phosphorus limitations [34].
In nitrogen- or sulfur-limited culture media, the degradation of phycobiliprotein occurs
more rapidly and extensively than in phosphorus-limited media, indicating differential
responses to nutrient limitations. In addition, Noel et al. found that the yellow cyanobacte-
rial bloom in Rotoehu Lake may have been due to nitrogen availability being the primary
limiting factor for the planktonic organism growth in the lake, as the lake contains a
considerable amount of active dissolved phosphorus due to its proximity to the springs
(TLp − TLn = 0.4) [35].

The yellow hue of cyanobacterial blooms may be related to the varying lifecycles of
cyanobacteria during bloom periods. Similar to plant leaves, cyanobacteria undergo a
seasonal lifecycle and enter a senescence period as solar radiation decreases in autumn and
winter. The degradation rate of the primary chlorophyll within the cell gradually increases,
leading to a corresponding increase in the proportion of other pigments, including yellow.
Furthermore, external factors such as nutrient concentration and weather conditions can
induce an accelerated growth cycle and senescence within a relatively short period of
time due to nutrient limitations causing bloom extinction. During this stage, on the
one hand, the synthesis of chlorophyll a and phycocyanin, which contains four nitrogen
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molecules, is affected by nitrogen limitations. On the other hand, chlorophyll a is relatively
photosensitive and prone to decomposition, whereas carotenoids are relatively stable. As a
result, there is a decrease in cell chlorophyll a concentration and an increase in carotenoid
content, leading to the yellow color of the cyanobacterial blooms.

Overall, a deficiency of soluble nutrients such as nitrogen, phosphorus, and sulfur, as
well as the production of photoprotective pigments due to alterations in light cycle and
light stress, can induce physiological and metabolic responses in cyanobacteria, leading
to changes in pigment composition and visual color perception. Based on the results
of color recognition of cyanobacterial blooms in four typical eutrophic lakes in China,
each lake exhibits unique characteristics in terms of the yellowing phenomena during
cyanobacterial blooms. In addition to the impact of intense solar radiation and the lifecy-
cle of cyanobacterial blooms, regional variations are reflected in nutrient concentration.
Different nutrient statuses lead to distinct “yellowing” phenomena and growth states of
cyanobacterial blooms in each lake. The yellowing of cyanobacterial blooms induced by
nitrogen or phosphorus limitation can, to a certain extent, predict changes in the intensity
of cyanobacterial blooms in the lakes of the study area.

5.3. Future Outlook

Inland water bodies possess complex inherent optical properties that make it difficult
to apply current methods across different regions. Nevertheless, this study implemented
relevant processing procedures into the GEE cloud platform, achieving acceptable accuracy
and obtaining spatial and temporal patterns of cyanobacterial blooms in eutrophic lakes.
We believe that the workflow developed in this study can help practitioners apply it to
other lakes, especially those of small-to-medium size. Notably, the cyanobacterial bloom
color recognition module, in particular, can assess the nutrient status of lakes and forecast
changes in bloom occurrence.

In future research, it is recommended to incorporate diverse atmospheric correction
algorithms and cyanobacterial bloom extraction methods for specific inland water bodies.
It should be noted that the cyanobacterial blooms extracted in this study only represent the
water body’s surface distribution and cannot be used to quantify cyanobacterial biomass.
Therefore, relevant remote sensing inversion algorithms may be embedded in the workflow
in the future to account for the vertical distribution of cyanobacterial biomass within the
water column. In addition, deep learning algorithms will improve the recognition and
processing for thin clouds, enabling better separate cyanobacterial blooms from aquatic
plants. Continued improvements in the cyanobacterial bloom monitoring and color recog-
nition algorithms and taking advantage of the cloud platform’s big data will provide
technical support for cyanobacterial bloom early warning monitoring and prevention and
control management.

6. Conclusions

This study developed an operational workflow for monitoring cyanobacterial blooms
using the GEE platform and Sentinel-2 MSI data. Over 7000 Sentinel-2 images were pro-
cessed to analyze the spatiotemporal distribution of cyanobacterial blooms in four typical
eutrophic lakes in China: Lake Hulun, Lake Taihu, Lake Chaohu, and Lake Dianchi. The
FUI was used to identify and evaluate the color of cyanobacterial blooms. The study
analyzed sources of inaccuracy in the workflow, including cyanobacterial extraction al-
gorithms, land adjacency effects, and cloud impacts. Despite these sources of error, the
workflow achieved acceptable accuracy when compared to cyanobacterial monitoring
results from the Jiangsu Environmental Monitoring Center. The study demonstrated that
the implementation of the workflow could improve the efficiency of automated monitoring
of cyanobacterial blooms in inland water bodies while revealing the spatiotemporal trends
in cyanobacterial blooms across the four lakes as well. Cyanobacterial blooms in Lake
Taihu, Lake Chaohu, and Lake Dianchi showed decreasing trends over time, whereas those
in Lake Hulun increased, reaching the most severe outbreak in 2022. Additionally, the study
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revealed that the color of cyanobacterial blooms varied among these four lakes. Specifically,
yellow-green and yellow blooms were more prevalent in Lake Taihu and Lake Dianchi
compared to Lake Chaohu and Lake Hulun. The geographical variation in the yellowing
status of cyanobacterial blooms was found to be primarily associated with nutrient concen-
tration, specifically “nitrogen limitation” or “phosphorus limitation”, which contribute to
the occurrence of the cyanobacterial bloom discolorations. This discovery can help predict
changes in the intensity of cyanobacterial blooms within study areas.
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