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Abstract: Sea surface temperature (SST) is a key factor in the marine environment, and its accurate
forecasting is important for climatic research, ecological preservation, and economic progression.
Existing methods mostly rely on convolutional networks, which encounter difficulties in encoding
irregular data. In this paper, allowing for comprehensive encoding of irregular data containing land
and islands, we construct a graph structure to represent SST data and propose a graph memory
neural network (GMNN). The GMNN includes a graph encoder built upon the iterative graph neural
network (GNN) idea to extract spatial relationships within SST data. It not only considers node
but also edge information, thereby adequately characterizing spatial correlations. Then, a long
short-term memory (LSTM) network is used to capture temporal dynamics in the SST variation
process. We choose the data from the Northwest Pacific Ocean to validate GMNN’s effectiveness for
SST prediction in different partitions, time scales, and prediction steps. The results show that our
model has better performance for both complete and incomplete sea areas compared to other models.

Keywords: sea surface temperature; spatiotemporal prediction; deep learning; graph neural network

1. Introduction

Sea surface temperature (SST) is a crucial variable in marine environments [1]. Changes
in SST can greatly impact the climate. Persistent anomalies in SST, characterized by
unusually warm or cold conditions, may give rise to phenomena such as El Niño and
La Niña [2,3]. Additionally, SST serves to guide marine activities by analyzing its influence
on fish migration, which in turn informs fishery distribution and policy formulation [4,5].
It also plays an important role in forecasting marine disasters such as storm surges and red
tides [6,7]. Thus, it is evident that accurate prediction of SST has great significance for the
marine economy, ecology, and disaster forecasting.

Existing SST prediction methods can be divided into two major categories: numer-
ical methods and data-driven methods. Numerical methods are based on a series of
physicochemical parameters, constructing complex equations according to the principles of
dynamics and thermodynamics [8–10]. However, they demand substantial computational
resources and accurate parameter selection for precise results. Data-driven methods, on
the other hand, learn patterns directly from the data [11] and have evolved from tradi-
tional statistical approaches to machine learning and deep learning techniques. Markov,
canonical correlation analysis (CCA), and other statistical approaches are widely used
to predict SST [12–14], but these models may lack accuracy when dealing with complex
nonlinear problems due to their weak nonlinear fitting ability [15]. Therefore, machine
learning approaches capable of addressing nonlinear problems are garnering attention in
SST prediction research. For example, researchers use support vector machine (SVM) and
artificial neural networks (ANN) and achieve promising results [16–18].
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Machine learning methods require manual feature engineering which can be time-
consuming, with their accuracy dependent on the quality of features. Furthermore, deep
learning methods automatically extract useful features from big data and can achieve higher
accuracy than traditional machine learning methods. As a result, deep learning techniques
are becoming increasingly popular for SST prediction. Recurrent neural networks (RNN),
including long short-term memory (LSTM) and gated recurrent unit (GRU) variants, excel
in processing sequences, making them suitable for time series prediction tasks. Zhang
et al. [19] pioneered the use of deep learning in SST prediction by developing an FC-
LSTM model, which combined an LSTM layer with a fully connected layer. This approach
outperformed support vector regression (SVR) and multilayer perceptron (MLP) in terms
of prediction accuracy.

In fact, SST is a variable with spatiotemporal properties, showing dynamic and non-
linear characteristics. However, previous works overlook the spatial features of SST, which
limits the prediction accuracy of SST [20]. To fully consider spatial information, researchers
generally adopt two approaches. The first one is to use spatial data, such as latitude,
longitude, and regional features, as input for the model [21,22]. The second approach is
to employ convolutional neural networks (CNN) to extract spatial features at different
scales, and integrates them with time series prediction models to form a comprehensive
spatiotemporal forecasting method [23–25].

Among methods based on convolutional idea, ConvLSTM and its variant, ConvGRU,
proposed by Shi et al. [26] in 2015 for precipitation forecasting are widely applied in
SST prediction tasks [21,27–29], owing to their effectiveness in capturing spatiotemporal
correlations. These methods treat SST data as regular images, but in actual research, areas
containing land or islands may lack valid data. Standard matrix convolution kernels cannot
directly extract information from these locations, and filling in missing values may impact
the prediction accuracy at the land-sea boundaries [30].

In recent years, graph neural networks (GNN) have succeeded in areas such as traffic
flow prediction, weather forecasting, and disease risk assessment [31]. Graph structures
are well-suited for irregular data, and GNNs’ message-passing mechanisms [32] capture
adjacency relationships better than CNN, effectively extracting data features. Therefore,
in SST prediction, researchers start to explore how to learn SST’s spatial relationships
based on graph structures [30,33–35]. Among them, most methods use graph convolutional
networks (GCN) to update and aggregate the representations of nodes along with their
neighboring nodes.

In this study, we propose a graph memory neural network (GMNN) for SST prediction
based on GNN idea. First, we develop an SST graph representation using distance threshold
and Pearson correlation coefficient to fully express spatial information in irregular regions.
An innovation of our model lies in adequately expressing spatial information for these
incomplete areas using graph representations. Next, we design a graph encoder using
iterative GNN to encode spatial relationships that take into account not only node but also
edge features.

Finally, a GMNN model consisting of a graph encoder, a temporal encoder, and a
decoder is constructed, offering a novel perspective for SST prediction. We validate the
effectiveness of our model through diverse experiments in the Northwest Pacific region,
considering different partitions, time scales, and prediction steps.

The remainder of this paper is organized as follows. Section 2 shows the data used
in the study. Section 3 describes the details of the proposed method. Section 4 presents
the experimental results. Section 4 provides the discussion of the results. Finally, Section 5
offers the conclusion of the paper.

2. Materials
2.1. Datasets

As shown in Figure 1, the study area is the Northwest Pacific, from 0◦ to 60◦N and
100◦ to 180◦E. The Northwest Pacific Ocean exhibits an intricate array of climate features,
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including tropical, subtropical, and temperate climates. The marine environment in this
area is influenced by various natural factors, such as monsoons, ocean currents, and
typhoons. Due to its diverse climate conditions and complex oceanic processes, this region
is representative in SST prediction research.
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Figure 1. Study area and heat map of SST on 1 January 1993.

The SST data used in this study is from the optimum interpolation sea surface tem-
perature (OISST) v2.1 product, produced by the United States National Oceanic and At-
mospheric Administration (NOAA), with a spatial resolution of 1/4◦ latitude by 1/4◦

longitude. The time scale of the predictions is daily, weekly, and monthly. The OISST for
the study area covers temporal range from 1 January 1993 to 31 December 2020.

More information can be found at the following link: https://psl.noaa.gov/data/
gridded/data.noaa.oisst.v2.highres.html, accessed on 11 May 2023.

2.2. Pre-Processing

The data has a spatial resolution of 0.25◦, with a corresponding grid size of 320 × 240
(8◦ × 6◦) for the study area. Considering model parameter size, hardware and software
environments, as well as the limited accuracy at large scales, we divide the study area
into 8 × 6 subregions, each with a 40 × 40 (10◦ × 10◦) grid. Subregions without ocean are
excluded, leaving 41 subregions as experimental data, numbered sequentially (Figure 2).
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Figure 2. Division of the study area.

Among the 41 subregions, 19 of them (1, 2, 3, 9, 10, 11, 17, 18, 19, 25, 26, 27, 28, 32, 33,
37, 38, 39, and 40) contain land or islands, forming incomplete sea areas. Therefore, the
constructed subregion samples are representative.

Then, we divide the datasets into daily, weekly, and monthly mean. We allocate 60%
of the data for training, 20% for testing, and 20% for validation to prevent overfitting. The
specific time ranges for each set are presented in Table 1.

https://psl.noaa.gov/data/gridded/data.noaa.oisst.v2.highres.html
https://psl.noaa.gov/data/gridded/data.noaa.oisst.v2.highres.html
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Table 1. Datasets.

Temporal
Resolution Dataset Time Range

Daily Mean
Training Set 1 January 1993~31 December 2010

Validation Set 1 January 2011~31 December 2015
Testing Set 1 January 2016~31 December 2020

Weekly Mean
Training Set 3 January 1993~26 December 2010

Validation Set 2 January 2011~27 December 2015
Testing Set 3 January 2016~27 December 2020

Monthly Mean
Training Set January 1993~December 2010

Validation Set January 2011~December 2015
Testing Set January 2016~December 2020

3. Methods

The complete framework of the graph memory neural network (GMNN) is presented
in Figure 3. Initially, historical SST data are preprocessed and transformed into a series of
time-sorted graphs with fixed time intervals. These graphs encompass temporal, spatial,
and attribute features as the model input. Next, a neural network is constructed for the
graph sequence, featuring an encoder with both graph and temporal encoder modules to
learn spatial and temporal patterns. The graph encoder is composed of multiple iterative
GNN layers, each aggregating and updating the graph’s nodes and edges to extract spatial
features. The temporal encoder employs LSTM to capture temporal dynamics. Finally, by
integrating the multi-output strategy and a fully connected layer decoder, the extracted
spatiotemporal features are transformed into future SST prediction results.
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3.1. Graph Representation

In research with defined coordinate systems, locations are represented by longitude
and latitude pairs. For SST data, each point at the sea surface defined by a coordinate pair
generates an SST record at each time step. Records from different locations form a spatially
correlated snapshot, and a series of snapshots over time create a temporally connected
sequence. An SST image sequence of length T can be denoted as S = (S1, S2, . . . , ST).

In the study area with land and islands, some locations lack SST observations, leading
to empty pixels. Consequently, each image in the time series contains N valid pixels, where
N ≤ row ∗ col, row and col represent the number of rows and columns in the image,
respectively.

To express the connectivity between pixels, we construct edges for each valid pixel
based on distance threshold and Pearson correlation coefficient.

As shown in Equation (1), eij represents the connectivity between points i and j based
on distance threshold, where 1 means connected and 0 means unconnected. dij represents
the Euclidean distance between points i and j, with dmin being the set distance threshold.
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When dij is greater than dmin, the spatial association between points i and j is considered
weak, and no edge is formed between them.

eij =

{
1, i f dij ≤ dmin
0, otherwise

(1)

Figure 4 demonstrates the effect of edge construction based on distance threshold.
Thicker solid lines represent edges with a distance threshold dmin of 1, while thinner solid
lines correspond to edges with a dmin of

√
2.
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The Pearson correlation coefficient (PCC) measures the linear relationship between
two variables. Its value lies between −1 and 1, with larger absolute values indicating
stronger correlations. The formula for the PCC, r, is shown in Equation (2).

rij =
∑T

t=1
(

It − I
)(

Jt − J
)√

∑T
t=1
(

It − I
)2
√

∑T
t=1
(

Jt − J
)2

(2)

For SST prediction, I and J represent the SST value sets for points i and j on the sea
surface, each containing T samples corresponding to the time series length. It and Jt denote
the SST values at time t, and I and J are the average SST values of the two sets.

Equation (3) shows the edge construction based on the Pearson correlation coefficient,
where eij represents the connectivity between points i and j based on Pearson correla-
tion coefficient threshold, where 1 means connected and 0 means unconnected. rmin is
the threshold.

eij =

{
1, i f

∣∣rij
∣∣ > rmin

0, otherwise
(3)

The distance threshold and Pearson correlation coefficient evaluate the spatial rela-
tionship between any two points on the graph from the perspectives of position relation
and attribute correlation. By combining these two factors, we create an edge construction
method, as shown in Equation (4).

eij =

{
1, i f dij ≤ dmin and

∣∣rij
∣∣ > rmin

0, otherwise
(4)

Figure 5 illustrates the edge construction process for a node in an SST image. The
left image shows the edge connections when dmin =

√
5 grid (grid equals 1/4◦). Next, we

calculate the Pearson correlation coefficient between the connected nodes, as depicted in
the middle image. Solid lines represent calculations exceeding rmin, while dashed lines
represent calculations less than or equal to rmin. By removing the dashed lines, we achieve
the final result in the right image.
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The values of dmin and rmin in our study are 1.5 grid and 0.8 grid, respectively. By
applying the edge construction method to each node, we obtain the node and edge repre-
sentation of SST data.

The SST image sequence S = (S1, S2, . . . , ST) is converted into a graph sequence
G = (G1, G2, . . . , GT). Each graph G in the sequence is represented as a collection of
nodes V and edges E connecting them, denoted as G = (V, E), where vi ∈ V represents
node i, and eij =

(
vi, vj

)
∈ E represents the edge from i to j.

Compared to the pixel image representation, the graph representation offers greater
flexibility, as it directly omits points corresponding to missing values.

3.2. Graph Encoder

GNN is a neural network that learns target objects by propagating neighbor informa-
tion based on graph structures [36]. Compared to CNN, GNN excels at handling irregular
data and is better suited for tasks with strong interdependencies [37,38], making them
applicable for encoding SST variation process.

To incorporate features of nodes, edges, and their relationships, we adopt the multi-
stage aggregation-update framework by Sanchez-Gonzalez et al. [39] and design a GNN
module consisting of edge update, edge aggregation, and node update, as shown in
Figure 6.
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Figure 6. GNN module. hl
e represents the hidden state of node e at layer l.

Here, ϕ is the aggregation function, designed to transfer edge states to nodes, thereby
extracting more neighborhood information. f is the update function, responsible for further
updating the aggregated representations.

Then, we embed the GNN module into the model to form a graph encoder. Figure 7
displays its structure. The features shown are for a node and its neighborhood in the graph
Gt at time t.
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Figure 7. Graph encoder. The feature indicated in the graph is an example of a certain node and its
neighborhood in the graph Gt at time t. The static image encoder encodes all nodes and edges in the
graph in the same way.

For graph Gt, the node feature matrix is X ∈ Rn×3, with xi ∈ R3 as the feature vector
for node vi. The edge feature matrix is Y ∈ Rm×2, and yij ∈ R2 is the feature vector for edge
eij. Here, n is the number of nodes in Gt, and m denotes the number of edges. Node features
have three dimensions, SST, longitude, and latitude. Edge features have two dimensions:
direction and length, length represents the shortest path between two edges, and direction
is a measure of its angle to the North. The hidden state of vi at layer l is hl

vi
∈ R1, and the

hidden state of eij at layer l is hl
eij
∈ R2. Thus, the initial value is h0

vi
= xi and h0

eij
= yij.

• Edge update: As shown in Equation (5), we gather the current edge state and the states
of its adjacent nodes, and pass them through the edge update function f e to obtain
the updated result. This output will be used in the edge aggregation and the next
iteration. The f e is a multilayer perceptron and a ReLU activation function to capture
nonlinear features.

hl+1
eij

= f e
(

hl
eij

, hl
vi

, hl
vj

)
(5)

• Edge aggregation: Next, as shown in Equation (6), we use the function ϕe to aggregate
the updated edge states of all connected edges for each node. Common aggregation
methods include sum, mean, and max. Considering that for a point on the sea surface,
heat changes manifest as a convergence or dissipation process, we choose the sum
aggregation method.

h
l+1
ei

= ϕe→v
vj∈N(vi)

(
hl+1

eij

)
(6)

• Node update: Finally, we gather the previous aggregation outputs and their current
states and put them into the update function f v. Similar to f e, f v is also a combination
of a multilayer perceptron and a ReLU activation function.

hl+1
vi

= f v
(

h
l+1
ei

, hl
vi

)
(7)

The three stages described above constitute a single iteration. By stacking multiple
GNN layers and performing iterative updates, information can propagate within the graph,
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enabling the model to learn more abstract and complex features. In this study, we set the
iteration times to 3.

3.3. Temporal Encoder

Figure 8 shows the structure and encoding process of the temporal encoder. A sequence
of graphs with extracted spatial features is obtained after the graph encoder, which contains
updated node and edge states. Then, we use the node state sequence as the input for the
LSTM layer, and the encoded hidden state ht is acquired after temporal feature extraction.
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Figure 8. Temporal encoder. Xt, ht and Ct represent the input, output and memory cell state at
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gate, respectively.

The LSTM layer contains multiple LSTM units, which have the ability to selectively
remember important information while filtering out noise [40]. This ability is attributed
to the gating mechanism, which includes forget gate f t, input gate it, and output gate
Ot, helps control gradients and addresses the vanishing and exploding gradient problems
in RNNs.

3.4. Decoder and Loss Function

After the graph and temporal encoders, we obtain the node state ht. In this study, we
aim to predict multi-step future SST values based on historical observations. Accordingly,
we apply a direct multi-output prediction strategy to convert ht into a prediction sequence
with a length equal to the prediction steps. The prediction steps are consistent with the time
scale of the input data, for example, the time scale of the input data is daily, the prediction
for each step is one day.

Then, we use the mean squared error (MSE) as the loss function in this study, as shown
in Equation (8). T denotes the total prediction steps, yt represents the actual value at time t,
and ŷt is the predicted value.

Lsup =
∑T

t=1(yt − ŷt)
2

T
(8)
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4. Experiments
4.1. Metrics

SST prediction is inherently a regression task. To accurately assess the performance
of each model, we consider two perspectives: the deviation between predictions and
observations, and data fitting. We choose three evaluation metrics: Root Mean Squared
Error (RMSE), Mean Absolute Error (MAE), and R-squared. For a sequence of length T,
with yt as the observations at time t and ŷt as the predictions, and y as the average of
observations, the formulas for each metric are provided below.

RMSE =

√
∑T

t=1(yt − ŷt)
2

T
(9)

MAE =
∑T

t=1|yt − ŷt|
T

(10)

R2 =
∑T

t=1(ŷt − y)2

∑T
t=1(yt − y)2 (11)

4.2. Compared Models

To evaluate the performance of GMNN, we selected three types of comparison models:

• FC-LSTM and FC-GRU: They are time series prediction models, which integrate
LSTM or GRU layers with fully connected layers for feature extraction and improved
representation capability.

• ConvLSTM: This is a spatiotemporal model utilizing CNN idea with LSTM, which
incorporates convolution operations into input data and hidden states, allowing for
the capture of spatial information and complex spatiotemporal features.

• GCN-LSTM: This is a spatiotemporal model employing GNN idea, which combines
graph convolutional networks (GCN) with LSTM for graph sequence prediction, effec-
tively extracting features from nodes and their multi-order neighbors and integrating
them into the LSTM layer for temporal information processing.

4.3. Results of Different Subregions

To verify the generalization ability of GMNN in different regions, we select several
subregions in the daily mean dataset and predict the SST for the next 1, 3, and 7 days.

GMNN is applicable to both complete and incomplete sea areas (with land or islands).
In contrast, ConvLSTM based on CNN idea, is suitable only for complete sea areas, the
missing values in incomplete sea areas must be filled using interpolation, which introduces
noise and can affect model accuracy. Therefore, we select data from three incomplete sea
area subregions (No. 1, 2, and 3) and three complete sea area subregions (No. 4, 5, and 6) at
the same latitude for comparison (Figure 2). The models for incomplete sea area subregions
include FC-LSTM, FC-GRU, and GCN-LSTM. For complete sea area subregions, FC-LSTM,
FC-GRU, ConvLSTM, and GCN-LSTM are used.

4.3.1. Results of Incomplete Sea Areas

We analyze the effectiveness of our model in incomplete sea areas, taking subregion 1
as an example. The constructed graph in this region contains 1245 nodes. Table 2 shows
the experiment results.
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Table 2. Daily prediction results on the incomplete sea area dataset (subregion 1).

Method Metric
Daily

1 3 7

FC-LSTM
RMSE 0.084 0.184 0.311
MAE 0.020 0.071 0.160

R-squared 0.993 0.952 0.911

FC-GRU
RMSE 0.084 0.186 0.312
MAE 0.209 0.074 0.163

R-squared 0.994 0.933 0.909

GCN-LSTM
RMSE 0.081 0.178 0.292
MAE 0.019 0.070 0.153

R-squared 0.996 0.965 0.924

GMNN
RMSE 0.080 0.177 0.288
MAE 0.019 0.070 0.152

R-squared 0.999 0.968 0.924

The two worst-performing models are FC-LSTM and FC-GRU, with the maximum
RMSE, MAE and the minimum R- squared (Table 2), indicating that ignoring spatial corre-
lation can significantly affect prediction accuracy. There is little difference between these
two models and FC-GRU’s is slightly worse than FC-LSTM’s when predicting the future 3
and 7 days. This suggests that in this study, using LSTM for time feature extraction is more
suitable. Both graph-based models exhibit good performance, with GMNN performing
the best in all metrics. For instance, in terms of RMSE for seven-day prediction, GMNN’s
0.288 is 7.7% lower than FC-LSTM and 1.6% lower than GCN-LSTM. This indicates that the
iterative GNN idea can effectively capture the spatial information of SST data.

To visually compare the results, we take the node with longitude 109.875◦E and
latitude 0.125◦N in subregion 1 as an example. The predictions and observations of each
model were compared using a line chart for a 7-step prediction, as shown in Figure 9.

It can be seen that the main difference in the prediction results of each model lies in
the degree of fitting to the peak values. Therefore, we select four peak areas, a, b, c, and d
for detailed analysis. Among them, a and c are steep peak areas, while b is a gentle peak
area, and d is a low peak area.

FC-GRU predicts well in b and d, but has the worst performance among all models in
the steep peak areas a and c. FC-LSTM performs slightly better than FC-GRU in the steep
peak areas, but its fitting degree in the low peak area is low. GCN-LSTM’s predictions can
already fit the observations well, but there is still room for improvement in the steep peak
areas. GMNN has the best overall prediction accuracy, showing a high degree of fitting
in these peak areas with different characteristics. Especially in the steep peak areas, the
performance is significantly better than the other compared models.

4.3.2. Results of Complete Sea Areas

Similarly, we analyze the effectiveness of GMNN in complete sea areas using the
example of subregion 4 which contains 1600 nodes. The results are shown in Table 3.

FC-LSTM and FC-GR performed the worst. ConvLSTM which uses CNN idea, exhibits
good performance in complete sea areas where data can be expressed in pixel form, and
its prediction accuracy is slightly better than that of the GCN-LSTM model, which uses
graph idea. Among prediction models, GMNN is better than other models in the metrics.
GMNN’s RMSE value for seven-day prediction decreased by 5.5% compared to FC-LSTM,
0.9% compared to ConvLSTM, and 2.0% compared to GCN-LSTM.
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Table 3. Daily prediction results on the complete sea area dataset (subregion 4).

Method Metric
Daily

1 3 7

FC-LSTM
RMSE 0.078 0.164 0.252
MAE 0.019 0.069 0.134

R-squared 0.979 0.948 0.807

FC-GRU
RMSE 0.076 0.169 0.252
MAE 0.019 0.070 0.134

R-squared 0.979 0.949 0.798

ConvLSTM
RMSE 0.079 0.154 0.241
MAE 0.018 0.062 0.127

R-squared 0.982 0.940 0.834

GCN-LSTM
RMSE 0.075 0.156 0.243
MAE 0.018 0.062 0.129

R-squared 0.982 0.939 0.834

GMNN
RMSE 0.073 0.154 0.238
MAE 0.018 0.062 0.127

R-squared 0.983 0.956 0.855

As shown in Figure 10, a comparison chart of the seven-day predictions and obser-
vations is created for node located at 130.125◦E and 0.125◦N in subregion 4. We analyze
two high peaks (a, d) and two low peaks (b, c) in detail. The performance of FC-LSTM
and FC-GRU is quite similar, with poor predictions for the highest and lowest points in all
four areas. ConvLSTM and GCN-LSTM show significant improvement in the prediction of
areas a, b, and d, with ConvLSTM showing better fitting. GMNN performs well in all four
areas with excellent prediction ability.
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Figure 10. Line charts of observations and predictions in seven-day of different models on the
complete sea area dataset (subregion 4): (a) FC-LSTM; (b) FC-GRU; (c) GonvLSTM; (d) GCN-LSTM;
(e) GMNN.

The results prove that GMNN has excellent prediction ability in both complete and
incomplete sea areas.

4.4. Results of Different Time Scales

To verify the accuracy and stability of GMNN for different time scales and prediction
steps, we conduct comparison experiments for future 1 step, 3 steps, and 7 steps on three
types of datasets: daily, weekly, and monthly mean, using the example of subregion 5. The
results are presented in Figure 11. The y-axis of each metric is standardized across different
time scales for comparison.
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From the perspective of fixed time scales, as the prediction step increases, the perfor-
mance of each model declines, with RMSE and MAE increasing and R-squared decreasing.
Taking daily predictions as an example, the R-squared, RMSE, and MAE for predicting
one day ahead are 0.994, 0.078, and 0.018, respectively. When predicting three days ahead,
R-squared decreased by 0.037, while RMSE and MAE both increased by more than double.
When predicting seven days ahead, R-squared continued to decrease by 0.047, with RMSE
and MAE increasing by 0.62 and 1.10 times, respectively. This suggests that multi-step
prediction incurs greater errors than single-step prediction. With an increasing number
of prediction steps, more relationships need to be learned, and models become more chal-
lenged in capturing the changing trends and periodicity of time series, which results in
increased errors.

From the perspective of fixed prediction steps, as the time scale increases, the perfor-
mance of each model also declines. Taking RMSE as an example, on a daily scale, the RMSE
is 0.078, 0.170, and 0.275, when predicting the future 1, 3, and 7 step. On a weekly scale, the
RMSE increases by 0.67 times, 0.50 times, and 0.46 times when predicting 1, 3, and 7 steps
in the future. On a monthly scale, compared with the weekly scale, the RMSE increases by
0.33 times, 0.34 times, and 0.13 times when predicting 1, 3, and 7 steps in the future. The
reasons for this phenomenon are mainly twofold. First, the time series of daily, weekly,
and monthly mean datasets used in this study contain 10,227, 1461, and 336 time steps,
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respectively, which means that the data available for training are sparser at larger time
scales, and affect the prediction accuracy. Second, from daily to weekly to monthly, the
smoothness of the SST changes gradually decreases, and the changing trend and periodicity
of the time series become less obvious, making it difficult to capture the nonlinear features,
resulting in a decrease in prediction accuracy.

As shown in Figure 11, GMNN has better prediction accuracy than the comparison
models at different time scales and prediction steps. In order to more clearly show the
performance improvement, we use FC-LSTM as the baseline and calculate the percentage
of RMSE reduction of GMNN relative to the baseline under different time scales and
prediction steps (Figure 12), which serves as the performance improvement ratio.
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At the same time scale, changes in the prediction step do not result in significant
changes in the improvement ratio. However, when the time scale changes to the monthly
scale at the same prediction step, the improvement ratio increases significantly. This
suggests that GMNN can capture hidden spatiotemporal features on large scales.

5. Discussion
5.1. Model Comparison

Through experiments in different partitions, time scales, and prediction steps, we
find that our GMNN is better than other comparison models, which can be categorized
into time series models (FC-LSTM, FC-GRU), convolution-based model (ConvLSTM), and
graph-based model (GCN-LSTM). The results provide insights into the applicability and
effectiveness of different ideas for SST prediction tasks.

The inferior performance of time series models suggests the impact of neglecting
spatial information on prediction accuracy. Convolution-based models and graph-based
models differ in their learning styles and applicable structures. In terms of learning styles,
CNN extracts feature by sliding convolution kernels, thus exhibiting strong capabilities in
extracting multi-scale local spatial features [41]. GNN focus more on adjacency relation-
ships, with their message-passing mechanism providing better abilities for tasks with strong
object interrelations. As SST is influenced by ocean currents, winds, and heat exchange
processes in nearby regions, graph-based models can well represent temperature variation
processes. Regarding applicable structures, CNN is based on traditional grid structures
and is suitable for regular datasets. Therefore, convolution-based model (ConvLSTM)
demonstrates excellent forecasting performance in experiments with complete sea area
datasets. Graph-based models, on the other hand, are not restricted by data regularity,
offering greater flexibility.
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Both being graph-based methods, the iterative GNN used in this study and the GCN
adopted by the comparison model GCN-LSTM differ in the information they emphasize.
GCN primarily focuses on node information, with its convolution operation aggregat-
ing features of nodes and their adjacent counterparts [42,43]. Although GCN considers
node information and adjacency relationships, edge attributes are typically not directly
incorporated into calculations. In contrast, the iterative GNN takes both node and edge
information into account through its designed aggregation and update functions. As a re-
sult, in comparative experiments, GMNN consistently achieves better prediction outcomes
than GCN-LSTM.

5.2. Error Distribution

To clearly show the prediction performance and error distribution of our model,
we use the future seven-day prediction results of GMNN and select 12 subregions with
observations, predictions, and errors on 26 February 2016 for analysis. Among them,
two regions are selected within every 10◦ latitude range, corresponding to incomplete
and complete sea areas, respectively. The experiment results of the 12 regions are shown
in Figure S1.

When comparing the error between two regions at the same latitude, there is no
significant difference in the prediction accuracy of the model between incomplete and
complete sea areas, indicating a good prediction performance in both types of regions.

Comparing the errors of regions at different latitudes, the regions with latitudes be-
tween 30◦N and 50◦N have the largest errors, followed by the regions between 20◦N and
30◦N and between 50◦N and 60◦N, while the regions between 0◦–20◦N have relatively
smaller errors. The complexity of the meteorological and oceanic environment is the main
reason for the differences in the prediction performance among these regions. Regions
between 30◦ and 50◦N belong to the North Temperate Zone and are influenced by subtrop-
ical high-pressure zones, westerlies, monsoons, and continental climates. They are also
affected by multiple ocean currents such as the Kuroshio Current, the Oyashio Current, and
the North Pacific Warm Current, resulting in complex spatiotemporal characteristics and
making predictions difficult. In contrast, regions between 0◦ and 20◦N are mainly affected
by tropical and subtropical climates, with relatively simple spatiotemporal characteristics
and thus easier to predict. Regions between 20◦ and 30◦N and between 50◦ 60◦N have
moderate environmental complexity and prediction difficulty.

6. Conclusions

In this paper, we propose a GMNN to predict future SST. The model uses a graph
representation method based on distance threshold and Pearson correlation coefficient to
transform SST data into a graph structure, thus overcoming the limitations of convolution-
based methods in encoding irregular data that includes land or islands. We also design a
graph encoder based on iterative GNN, incorporating edge information to fully express the
heat transfer process at the sea surface. To validate the effectiveness of GMNN, we choose
time series prediction models (FC-LSTM, FC-GRU), convolution-based model (ConvLSTM),
and graph-based model without considering edge information (GCN-LSTM) as comparison.
We conduct experiments of these models in incomplete and complete sea area partitions,
daily, weekly and monthly time scales, as well as 1-step, 3-step, and 7-step prediction steps,
and our model exhibits superior prediction ability compared to the others, reflecting its
accuracy and stability.

In addition, we find that with increasing time scales and prediction steps, the predic-
tion accuracy decreases. GMNN shows a higher performance improvement at the monthly
time scale than at the daily and weekly time scales. Error analysis reveals that GMNN has
larger prediction errors for areas with greater temperature variations. The errors also have
a certain correlation with latitude, with higher errors for the region of 30–50◦N due to the
complex ocean and meteorological environment, and lower errors for the region of 0–20◦N
with relatively stable temperature changes.
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However, there are still some limitations in our work. Although we use SST as
the input for prediction, in the future, other factors will be considered and collected for
systematic analysis so as to explore the impact of these factors on SST prediction. Moreover,
the study area in this case was the Northwest Pacific. To generalize the ability of our
model, we will select different ocean basins with various dynamic features and make
improvements in subsequent studies to explore large-scale SST prediction.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs15143539/s1, Figure S1: GMNN prediction results for SST on
26 February 2016, in 12 subregions: (a) Subregion 3; (b) Subregion 4; (c) Subregion 11; (d) Subregion 15;
(e) Subregion 18; (f) Subregion 22; (g) Subregion 27; (h) Subregion 30; (i) Subregion 32; (j) Subregion
36; (k) Subregion 40; (l) Subregion 41.
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