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Abstract: The registration of optical and SAR images has always been a challenging task due to
the different imaging mechanisms of the corresponding sensors. To mitigate this difference, this
paper proposes a registration algorithm based on a pseudo-SAR image generation strategy and an
improved deep learning-based network. The method consists of two stages: a pseudo-SAR image
generation strategy and an image registration network. In the pseudo-SAR image generation section,
an improved Restormer network is used to convert optical images into pseudo-SAR images. An L2
loss function is adopted in the network, and the loss function fluctuates less at the optimal point,
making it easier for the model to reach the fitting state. In the registration part, the ROEWA operator
is used to construct the Harris scale space for pseudo-SAR and real SAR images, respectively, and
each extreme point in the scale space is extracted and added to the keypoint set. The image patches
around the keypoints are selected and fed into the network to obtain the feature descriptor. The
pseudo-SAR and real SAR images are matched according to the descriptors, and outliers are removed
by the RANSAC algorithm to obtain the final registration result. The proposed method is tested on a
public dataset. The experimental analysis shows that the average value of NCM surpasses similar
methods over 30%, and the average value of RMSE is lower than similar methods by more than
0.04. The results demonstrate that the proposed strategy is more robust than other state-of-the-art
methods.

Keywords: pseudo-SAR; image generation strategy; registration

1. Introduction

Optical and synthetic aperture radar (SAR) images are two types of products formed
by distinct sensors. Optical images result from the passive reception of naturally reflected
light, while SAR images are generated by actively transmitting and receiving radar electro-
magnetic waves. The quality of optical images is heavily affected by cloudy conditions and
night variations. In contrast, SAR is capable of observing the earth under various weather
conditions and demonstrates strong performance during day and night. Therefore, it is
necessary to jointly use the effective information from these two different imaging sensors.
Thus, how to match the two kinds of images becomes the top priority. However, SAR
images often exhibit unique manifestations, such as shadows, superimposition, and fore-
shortening, which are caused by special imaging mechanisms. These imaging disparities
pose challenges to the registration of optical and SAR images.

In recent years, many researchers have proposed diverse approaches for matching
optical and SAR images [1]. Presently, three primary frameworks for the image registration
have been established [2]: area-based matching [3], feature-based matching [4], and deep
learning-based matching methods [5].
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Area-based matching techniques rely on template matching to quantify the similarity
of image block templates, employing similarity metrics such as mutual information [6–8],
normalized cross-correlation coefficient [9,10], and cross-cumulative residual entropy [11].

Although area-based matching methods tend to achieve higher accuracy than feature-
based methods in homologous image registration due to their use of the gray-scale informa-
tion of image regions, they are sensitive to the nonlinear radiometric differences between
optical and SAR images. Additionally, the need to traverse the entire reference image
in area-based registration methods results in computationally complexity. Consequently,
there are some limitations to the registration of optical and SAR images using area-based
methods [12].

Feature-based matching is also an important method framework in image registration.
This method is mainly divided into four steps: keypoint extraction, feature descriptor con-
struction, feature matching, and affine transformation. Generally, feature-based matching
methods have a higher calculation speed than area-based matching methods. The most fa-
mous one is the scale-invariant feature transform (SIFT) [13] method. It has good effects on
rotation, scaling, translation, and shall be robust to intensity changes and affine distortion.
The different imaging mechanisms of optical and SAR images, such as noise characteristics,
may cause distortions in the keypoint detection and matching by just using SIFT. In the
research on applying the SIFT algorithm to optical and SAR image registration, some
scholars have made attempts. Xiang et al. proposed OS-SIFT [14–16], which improved the
method of extracting keypoints from SAR images and built a new descriptor. Sedaghat et al.
established an improved descriptor-based framework called UR-SIFT [17]. Ma et al. [18]
adopted a new gradient calculation architecture, which introduced an enhanced feature-
matching method based on the position, scale, and orientation of each keypoint. However,
the traditional feature-matching strategy mentioned above is challenging to eliminate the
offset of matched point pairs caused by feature differences.

With the development of artificial intelligence, deep learning technology has grad-
ually been applied to the registration of remote sensing images from different sources.
Compared with traditional methods, deep learning-based descriptor construction methods
have stronger robustness and are more conducive to keypoint matching [2]. Han et al. [19]
proposed a Siamese network, which uses image blocks to construct feature vector descrip-
tors. It has been widely applied in the registration field. Subsequently, numerous deep
learning-based registration methods emerged, such as TFeat [20], L2 Net [21], HardNet [22],
MatchosNet [23], etc. Xiang et al. [24] proposed a new registration method based on feature
and area combinations. The above deep learning-based methods have made significant
progress in the feature-based registration field, but there are also some limitations. When
dealing with significant feature differences between optical and SAR images, it will lead to
an offset of matched point pairs.

To mitigate the feature differences, several scholars have proposed image trans-
formation-based methods. For instance, Maggiolo et al. [25] employed a conditional
GAN-based generation strategy to convert optical images into SAR images and then con-
ducted a template matching between the GAN-generated SAR and real SAR images. Huang
et al. [26] utilized a CycleGAN network structure to transform SAR images into pseudo-
optical images and registered them with real optical images. Many researchers have also
explored the potential of the Transformer model [27], which was introduced by Google in
2017, for SAR image processing. Self-attention mechanisms [28–31] included by the Trans-
former network, which are used to replace the conventional convolution operator, have
been employed in SAR image [32–34] interpretation. The attention mechanism allows the
network to extend information beyond the convolution kernel’s range in the surrounding
space, resulting in a more robust feature extraction of spatial relations, particularly for
high-resolution images [35]. It can further focus on the imaging differences between optical
and SAR images, greatly increasing the success probability of transforming optical images
into pseudo-SAR images [27]. In the Transformer architecture, self-attention mechanisms
are used instead of CNN structures in the encoder and decoder. This paper employs a
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Transformer model for pseudo-SAR image generation; then, it seeks registration between
pseudo-SAR and real SAR images.

To address the registration of homologous SAR images, in the field of traditional
methods, Schwind et al. [36] combined the Best-Bin-First algorithm with SIFT for SAR
image registration. Delinger et al. proposed the SAR-SIFT [37] method, which replaced the
DoG pyramid with the Harris pyramid and utilized the ratio gradient [38,39], achieving
good results in SAR image registration. These traditional methods based on SAR image
gray-scale variations struggle to detect effective keypoints in SAR images with narrow
dynamic ranges, but they could lead to unsatisfied results sometimes. In the field of deep
learning, Du et al. [40] introduced FM-CycleGAN to achieve feature-matching consistency.
Ye et al. [5] achieved remote sensing image registration by fusing SIFT and CNN feature
descriptors. However, as the convolutional layers deepen, detail features in SAR images
are gradually lost. Effectively utilizing these detail features has become a research direction
in SAR image registration. Yun et al. [23] presented an improved Siamese [19] network,
called MatchosNet, to avoid the loss of detail features. In proposed framework, a refined
scheme including MatchosNet is constructed in the registration stage between pseudo-SAR
and real SAR images.

Inspired from the Transformer and the MatchosNet, this paper presents a novel method
for the registration of optical and SAR images, adopting a pseudo-SAR generation strategy
and an improved registration network between pseudo-SAR and real SAR images. The
overall methodology is illustrated in Figure 1. In the first step, an improved Restormer [41]
network is utilized to transform optical images to pseudo-SAR images. This network
originated from Transformer and comprises several encoding and decoding blocks, which
are each equipped with self-attention mechanisms. These mechanisms effectively capture
the feature differences present in the local features of optical and SAR images. To enhance
performance, we adopt the L2 loss function, which facilitates better estimating similarity
between the pseudo-SAR and real SAR images, aiding the convergence of network weights
toward an optimal fitting state. In the second step, the registration is conducted between
the pseudo-SAR and real SAR images. Initially, the ROEWA [16] operator is applied to
construct a multi-scale Harris scale space for both images. Subsequently, extremal points
are selected from each scale space and incorporated into the keypoint sets obtained from the
pseudo-SAR and real SAR images. The ROEWA operator effectively extracts informative
features from SAR images, while the Harris scale space construction facilitates the extraction
of keypoints at multiple scales, thereby enhancing the robustness of the extracted keypoints.
For each keypoint in the pseudo-SAR and real SAR image keypoint sets, an image patch
surrounding it is extracted and fed into the MatchosNet network. The network employs
deep feature extraction, resulting in the generation of robust descriptor vectors. MatchosNet
utilizes a twin-branch network with shared weights, enabling the maximum utilization
of feature information from both pseudo-SAR and real SAR images, thereby producing
optimal descriptor matches. Finally, the RANSAC [42] algorithm is employed to eliminate
outlier matching pairs. The contributions of this paper are as follows:

• In the pseudo-SAR generation strategy, this paper use the improved Restormer net-
work to eliminate the feature differences between optical and SAR images.

• For the registration part, a refined keypoint extraction method using the ROEWA
operator is designed to construct the Harris scale space and used to extract the extreme
points in each scale.

The remaining sections of this paper are organized as follows. Section 2 provides a
detailed description of the proposed method. The results of registration and the ablation
experiment are presented in Section 3. Section 4 shows the experimental results and a
discussion of research prospects. Conclusions are given in Section 5.
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Figure 1. Overall framework of the method.

2. Materials and Methods

As Figure 1 shows, the schematic diagram of our proposed method consists of two
main parts. Firstly, this paper adopts an improved Restormer to accomplish our pseudo-
SAR generation strategy, transforming optical images into pseudo-SAR images. Secondly,
the Harris scale space is constructed for both pseudo-SAR and real SAR images using the
ROEWA operator, and we extract extremal points in each scale space. And then, image
patches are selected around the keypoints, and we input them into the MatchosNet network
to obtain robust descriptors. Based on the feature descriptors, keypoints are matched in
pseudo-SAR and real SAR images, and we utilize the RANSAC algorithm to eliminate
outliers, resulting in the final matching results.

2.1. Pseudo-SAR Image Generation Strategy
2.1.1. Network Architecture

Inspired by the Restormer network, a deep learning-based transformation method is
proposed. Specifically, an encoder network is employed to extract feature information from
the optical image and a decoder to decode the feature information. Within the encoder–
decoder network, the transposed self-attention mechanism is used to enhance the model’s
robustness of the feature differences in optical and SAR images. Finally, a pseudo-SAR
image consistent with the feature imaging of real SAR images is obtained. The specific
network structure is illustrated in Figure 2.

As shown in Figure 2, the input to the network is an optical image to be transformed,
and the output is a pseudo-SAR image. The input image is first processed by convolution
to expand the number of channels to obtain a high-dimensional feature matrix. These
features are then transformed into deeper feature maps through a symmetric encoder–
decoder at each level. There are a total of four levels of corresponding to the encoder and
decoder blocks. Each level of encoder and decoder has multiple Transformer blocks. The
number of Transformer blocks gradually increases from top to bottom, mainly for deep
feature extraction. The attention mechanism establishes a connection between local and
global features. The encoder uses downsampling to continuously reduce the spatial size
of the input image and increase feature dimension. The decoder employs upsampling
to progressively enlarge the image while compressing the feature dimensions. In order
to transfer the features extracted from each downsampling layer, skip connections are
added after each downsampling layer, and the feature matrix obtained by upsampling
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are concatenated in the channel dimension and compressed by convolution. Then, the
feature matrix is further refined through several Transformer blocks and a convolution
layer. To better learn the differences between the optical and SAR image features, the
network introduces element-wise operation between the original optical image feature and
the high-level feature matrix to help restore the lost texture and semantic details in the
image. Finally, the network outputs the generated pseudo-SAR image.
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Figure 2. Transformation network architecture.

The structure of the Transformer block is shown in Figure 3, which includes two
modules, MDTA [41] and GDFN. The MDTA module is Multi-Dconv Head Transposed
Attention. The main network structure of this module is a self-attention mechanism. Firstly,
normalize the input feature matrix, and then generate Q, K, V projections through 1 × 1
point-wise convolution and 3 × 3 depth-wise convolution, respectively. Here, Q projection
is query projection, K projection is keyword projection, and V is value projection. Then,
multiply the Q and K matrices to obtain the Transposed Attention Map. The Transposed
Attention Map is element-wise multiplied with the V, and the resulting matrix is obtained
through 1× 1 point-wise convolution to generate the output matrix of MDTA. The principle
formula is as follows:

X̂ = Wp Attention (Q̂, K̂, V̂) + X

Attention(Q̂, K̂, V̂) = V̂ · Softmax(K̂ · Q̂)
(1)

where X and X̂ are the input and output vector feature maps, respectively, and the Q̂ ∈
RĤŴ×Ĉ, K̂ ∈ RĈ×ĤŴ , and V̂ ∈ RĤŴ×Ĉ matrices are obtained by transformation from the
original matrix RĤ×Ŵ×Ĉ.

The GDFN module is Gated Dconv Feedforward Network [41]. As shown in Figure 3,
the GDFN structure is divided into two parallel paths. Both paths undergo 1 × 1 convolu-
tion and 3 × 3 depth convolution. One of the paths is nonlinear activated by the GELU.
Finally, the outputs of the two paths are multiplied element-wise and passed through a 1 ×
1 convolution layer. The resulting matrix is then added element-wise to the input matrix to
obtain the output matrix. The corresponding formula for this method is as follows:

X̂ = W0
pGating(X) + X

Gating(X) = φ
(

W1
d W1

p(LN(X))
)
�W2

d W2
p(LN(X))

(2)
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where � represents the multiplication of each element in the vector, and φ represents the
nonlinear GELU function. LN is a layer normalization operation. W(·)

p is 1×1 pixel by pixel

convolution, and W(·)
d is 3×3 convolution.
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2.1.2. Pseudo-SAR Generation Network Loss Function

In the application of Restormer to optical image, an L1 loss function is usually em-
ployed. Compared to the L1 loss function, the L2 loss function emphasizes the penal-
ization of erroneous pixels, resulting in smoother fluctuations around the best fit in the
model [43,44]. The later experiments will further demonstrate its effectiveness. Therefore,
the L2 loss function is used here to calculate the difference between the pseudo-SAR and
real SAR image. The formula for the L2 loss function is given below:

Loss(x, y) =
1

nm

n

∑
i=1

m

∑
j=1

(
yij − f (x)ij

)2
(3)

where yij is the pixel values of real SAR images at coordinates (i, j), and f (x)ij is the pixel
values of pseudo-SAR image at coordinates (i, j). n and m represent the size parameters of
images.

2.1.3. Pseudo-SAR Generation Performance Evaluation

The performance evaluation of the pseudo-SAR generation strategy is conducted
using a combination of subjective visual assessment and objective evaluation metrics. The
objective quantitative evaluation indicators used for testing are the Average Gradient (AG),
Structural Similarity (SSIM), Peak Signal-to-noise Ratio (PSNR), Learned Perceptual Image
Patch Similarity (LPIPS) [45], and Mean Absolute Error (MAE) index. The pseudo-SAR
image and results of these indicators will also be mentioned in the ablation experiments.

(1) AG
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The Average Gradient index is calculated using the following formula:

AG =
1

m× n

m

∑
i=1

n

∑
j=1

√
∆I2

x + ∆I2
y

2
(4)

where m and n are the size parameters of the image, and ∆Ix and ∆Iy are the differences
on the horizontal and vertical coordinates, respectively. The AG reflects the difference in
gray-scale near the edge of an image and is used to measure the clarity of the image, and a
larger value represents a clearer image.

(2) SSIM

The formula for SSIM is given as follows:

SSIM(x, y) = (2µxµy+c1)(2σxy+c2)
(µ2

x+µ2
y+c1)(σ2

x+σ2
y+c2)

c1 = (k1L)2

c2 = (k2L)2

(5)

where µx is the mean of x, µy is the mean of y, σ2
x is the variance of x, σ2

y is the variance of y,
σxy is the covariance of x and y, and c1 and c2 are used to maintain stability in the dynamic
range of pixel values. Among c1 and c2, L is the dynamic value range of the pixel value, k1
and k2 represent the hyperparameters, which are generally 0.01 and 0.03. In this evaluation
indicator, a value closer to 1 indicates a higher similarity between the pseudo-SAR and the
real SAR image.

(3) PSNR

Regarding PSNR, the formula is given as follows:

MSE = 1
mn

m−1
∑

i=0

n−1
∑

j=0
[I(i, j)− K(i, j)]2

PSNR = 20 log10(
MAXI√

MSE
)

(6)

where MSE refers to the mean square error, m and n represent the dimensions of the image,
and i and j represent the positions of the pixels. MAXI represents the maximum pixel
value. Generally, a higher PSNR value represents the better similarity of pseudo-SAR and
real SAR images.

(4) LPIPS

In this paper, LPIPS [45] represents the distance between pseudo-SAR and real SAR
image features. LPIPS utilizes a CNN network to extract features from images and calculates
distances using these features. A smaller value of LPIPS indicates a higher similarity
between the two images. The formula is shown as follows:

d(x, x0) = ∑
l

1
HlWl

∑
h,w

∥∥∥wl �
(

ŷl
hw − ŷl

0hw

)∥∥∥2

2
(7)

where x and x0 represent the pseudo-SAR and real SAR image, respectively. ŷl
hw and ŷl

0hw
denote the features extracted from the CNN network at the L-th layer. wl represents the
weights of the L-th layer of the CNN network. H and W represent the size parameters of
the image.

(5) MAE
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MAE represents the difference value between pseudo-SAR and real SAR images and
can be expressed using the following formula:

MAE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

[I(i, j)− K(i, j)] (8)

where i and j represent the coordinates of a pixel, and m and n are the dimension parameters
of the image. A smaller MAE value indicates a higher similarity between the pseudo-SAR
and real SAR image.

2.1.4. Parameter Analysis

During the model training process, it is necessary to determine the training iteration
value, learning rate, and optimizer. The training iteration is set to an empirical value. As
for the learning rate and optimizer settings, this paper follows the strategies mentioned in
the literature [41]. The specific setting approach is provided in Section 3.1.2.

2.2. Image Registration

A point-matching-based registration framework is adopted in this paper. The frame-
work includes keypoint extraction, feature descriptor construction, feature descriptor
matching, and RANSAC to remove outliers. The flow chart of this method is shown in
Figure 4.
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Figure 4. Procedure of registration.

The overall process of the registration scheme is described below. First of all, extract
keypoints from real SAR and pseudo-SAR images. Secondly, image patches are extracted
centered around the keypoints and fed into the MatchosNet to extract feature descriptors.
Then, the keypoints are matched according to the descriptor. Finally, remove the outliers
by RANSAC [42] and obtain the final registration result.

2.2.1. Keypoint Detection

The registration framework proposed by Yun et al. [23], based on MatchosNet, utilizes
the Difference of Gaussians (DoG) operator to extract keypoints from optical and SAR
images. However, directly applying the DoG operator in SAR images with significant
speckle noise will lead to the inability to extract repeatable keypoints, affecting the ori-
entation assignment and descriptor construction, and resulting in registration errors [14].
The ROEWA operator proposed by Fjortoft et al. [16] is commonly used for the edge
detection of SAR images with good results. It uses gradient by ratio (GR) instead of a
differential gradient, which consists of two orthogonal one-dimensional filters to form a
two-dimensional separable filter. In this paper, the ROEWA [16] operator is used to extract
images at different scales to help establish the Harris scale space. The comparison between
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our proposed keypoint extraction method and the DoG operator is given in the following
ablation experiment chapter.

The calculation process of constructing the Harris scale space using the ROEWA
operator is described by Equations (9)–(13) as shown. A series of scale parameters are
constructed, which are denoted as α.

α = α0 × ci (9)

where i represents the spatial layer of the scale, c is a constant, α denotes the scale space
parameter, and α0 represents the initial value of the scale space parameter.

Hereafter, the ROEWA operators oriented in the horizontal and vertical directions are
defined as follows:

Rh,α =

M/2
∑

m=−M/2

N/2
∑

n=1
I(x + m, y + n)e−

|m|+|n|
α

M/2
∑

m=−M/2

−1
∑

n=−N/2
I(x + m, y + n)e−

|m|+|n|
α

(10)

Rv,α =

M/2
∑

m=1

N/2
∑

n=−N/2
I(x + m, y + n)e−

|m|+|n|
α

−1
∑

m=−M/2

N/2
∑

j=−N/2
I(x + m, y + n)e−

|m|+|n|
α

(11)

where M and N are the size of the sliding processing window, I(x, y) represents the pixel
intensity of the image, x and y represent the coordinates of the center point. Rh,α and Rv,α
denote the horizontal and vertical ROEWA operator, separately.

For the next step, the horizontal and vertical gradients are calculated using Rh,α and
Rv,α, respectively.

Gh,α = log(Rh,α)
Gv,α = log(Rv,α)

(12)

where Gh,α and Gv,α represent the horizontal and vertical gradients, respectively.
Finally, the Harris scale space is constructed by the following formula:

CSH(h, v, α) = g√2α ∗
[

(Gh,α)
2 (Gh,α) · (Gv,α)

(Gh,α) · (Gv,α) (Gv,α)
2

]

RSH(h, v, α) = det(CSH(h, v, α))− d · tr(CSH(h, v, α))2

(13)

where g√2α represents the Gaussian convolution kernel with scale α, ∗ denotes the convo-
lution operation, d is a hyperparameter, and RSH represents the Harris scale space.

Then, in each scale level of the Harris scale space, a local extrema value is found as a
candidate keypoint and added to the keypoint set. The flow chart for extracting keypoints
is illustrated as shown in Figure 5.

2.2.2. Feature Descriptor Construction

For the obtained keypoints, the image patches centered on the keypoint coordinates
are selected. Then, we input the extracted image patches to the MatchosNet. The net-
work adopts a twin structure and shares weights. The backbone of MatchosNet is CSP-
DenseNet [46]. The network reduces the computation and enhances the learning ability.
The network structure is shown in Figure 6.

There are three DenseBlocks with the same structure in the network. The structure of
each DenseBlock is shown in Figure 7.
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Each DenseBlock consists of 11 layers, including 3 layers of 3 × 3 depth-wise con-
volutions, 4 layers of 1 × 1 pixel-wise convolutions, 3 layers of channel-wise feature
concatenation, and 1 layer of average pooling. The DenseBlock removes redundant layer
connections and retains some important layer connections, resulting in the improvement of
the operation efficiency.

2.2.3. Descriptor Matching Loss Function

Figure 8 illustrated the computation process of the loss function. The figure consists
of three components: namely, descriptors, distance matrix, and relative tuple. In the
descriptors section, there are total of n matched descriptor pairs. The distance matrix
section represents the distance matrix formed by calculating the L2 distances between all
descriptors [21]. The relative tuple section consists of the four-tuple collection computed
from the distance matrix. This collection is used for the final calculation of the loss function,
which is shown below:

LHardL2(pi, sj, sjmin, pimin) =
1
n

n

∑
i=1

n

∑
j=1

max(0, (1 + d(pi, sj)−min(d(pi, sjmin), d(pimin, sj))) (14)Remote Sens. 2023, 15, x FOR PEER REVIEW 12 of 25 
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After extracting feature descriptors using the network, the RANSAC algorithm is used
to remove outliers and obtain the point matching result. Finally, the registration results of
the pseudo-SAR and SAR images are mapped back to the optical and SAR images.

2.2.4. Parameter Analysis

For the registration part, it is necessary to determine the Harris scale space constant c,
d, and α0. In the registration network, the image patch size, number of training iterations,
learning rate, optimizer, and RANSAC threshold need to be determined. The specific
parameter values for the c, d, α0, image patch size, learning rate, and optimizer are set



Remote Sens. 2023, 15, 3528 12 of 24

according to the literature [23,37]. As for the training iteration value and the RANSAC
threshold, these rely on empirical values. These values are provided in Section 3.1.2.

3. Results
3.1. Experiment Preparation
3.1.1. Dataset Preparation

The QXS-SAROPT [47] and OSDataset [48] datasets are adopted in this experiment.
For the QXS-SAROPT dataset, the SAR image part of the dataset is from the Gaofen-3
satellite and the resolution is 1 m × 1 m, and the optical image part is from Google Earth
images. These images cover three port cities: Santiago, Shanghai, and Qingdao, and
they contain 20,000 pairs of optical and SAR image pairs. The dataset is split into three
parts for training, validation, and testing, with a ratio of 8:1:1. In the training process of
the pseudo-SAR generation network, the training and validation sets of this dataset are
adopted. The test set is used to test the pseudo-SAR generation network and the registration
network. The OSDatase contains 10,692 pairs of optical and SAR images, each with a size
of 256 × 256 pixels. These SAR images have the same sensor source and resolution as
QXS-SAROPT. The dataset collects scenes from several cities around the world, including
Beijing, Shanghai, Suzhou, Wuhan, Sanhe, Yuncheng, Dengfeng, Zhongshan, and Zhuhai
in China, Rennes in France, Tucson, Omaha, Guam, and Jacksonville in the United States,
and Dehradun and Agra in India. The SAR images from this dataset are used to train the
registration network.

3.1.2. Parameter Setting

For the pseudo-SAR generation strategy, the total number of iterations for training
the original and improved Restormer network is set to 600,000 empirically. Regarding the
literature [41], the initial learning rate is set to 3× 10−4 and gradually reduced to 1× 10−6

using the cosine annealing algorithm. The optimizer is set to Adam.
For constructing the Harris scale space, according to the literature [37], the parameters

c, d, and α0 are set as 21/3, 0.04, and 2 respectively. On the basis of the literature [23], the
training optimizer is Adam, the learning rate is set to 1× 10−4, and the size of the image
patches is specified to be 64 × 64. Based on the empirical values, the training epoch is set
to 100, and the RANSAC threshold is set to 1.

In the ablation experiment, to ensure fairness, the CycleGAN model is trained for
600,000 iterations. The optimizer used is Adam with a learning rate of 3× 10−4. Addition-
ally, the learning rate gradually reduce to 1× 10−6 using the cosine annealing algorithm.

3.1.3. Registration Comparison Method

The comparative experiments used in this paper are as follows.

(1) PSO-SIFT [49]: According to the existing SIFT method, PSO-SIFT adopts a new
gradient definition to eliminate the nonlinear radiation differences between optical
and SAR images.

(2) MatchosNet [23]: MatchosNet proposes a deep convolution Siamese network based
on CSPDenseNet to obtain powerful matching descriptors to improve the matching
effect.

(3) CycleGAN + MatchosNet [26]: This method uses CycleGAN [50] to generate pseudo-
optical images from SAR images, and it uses SIFT to match the pseudo-optical and
optical images to obtain the final registration results. In the ablation experiment,
the CycleGAN network and the improved Restormer network are compared in the
pseudo-SAR generation strategy. In the registration experiment, we make improve-
ments to this method by converting the optical image into a pseudo-SAR image
and replacing the SIFT with MatchosNet to better evaluate the registration method
proposed in this paper.
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3.1.4. Experimental Platform

The platform and environment used in the experiment are shown in the Table 1.

Table 1. Experiment environment.

Environment Version

Platform Windows 11, Linux
Torch V 1.9.0

Matlab 2021a
CPU Inter Core i7-10700

Memory 16 G
Video memory 6 G

3.2. Experiment Result
3.2.1. Comparison of Registration Results

(1) Keypoint matching analysis

To evaluate the proposed registration method, this paper compares its performance
with the methods discussed in Section 3.1.3. The results of point matching are analyzed in
this section. Figure 9 show the visual results of point matching.
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Figure 9. Experimental results of registration for different scenes. (a1–a4,b1–b4,c1–c4,d1–d4,e1–e4)
represent the forest and lake, rural and road, urban, farmland, and mountain scenes, respectively.
(a1–e1,a2–e2,a3–e3), and (a4–e4) are the results of the proposed method, PSO-SIFT, CycleGAN +
MatchosNet, and MatchosNet, respectively.

Figure 9(a1–a4) show the visual registration results of four methods in forest and lake
scenes. Our method achieves a higher number of matched points compared to PSO-SIFT
and CycleGAN + MatchosNet, and there are no noticeable positional errors in the matched
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points. As shown in Figure 9(a2), the red box highlights the mismatches produced by
PSO-SIFT in those areas.

The visual registration results of the rural and road scenes are shown in
Figure 9(b1–b4). From the overall comparison of the four methods, it can be observed
that our method has a significant advantage in terms of the number of matched points.
PSO-SIFT, CycleGAN + MatchosNet, and MatchosNet exhibit fewer matched points.

Figure 9(c1–c4) show the registration results of the four methods in an urban scene. It
can be noticed that our proposed method still has a significant number of matched points
in areas with strong textures. Both CycleGAN + MatchosNet and MatchosNet show more
matched points than PSO-SIFT in the urban scene.

Referring to Figure 9(d1–d4), the registration results of the four methods in a farmland
scene are presented. Our proposed method obtains a greater number of matched point
pairs in the farmland scene. PSO-SIFT shows fewer matched point pairs compared to the
proposed method, CycleGAN + MatchosNet, and MatchosNet methods. The CycleGAN +
MatchosNet method exhibits slight errors in matched points, and Figure 9(c3) highlights
the incorrectly matched point pair within the red box.

Figure 9(e1–e4) illustrate the registration results of the four methods in the mountain
scene. In the PSO-SIFT method, all keypoints are completely mismatched, as indicated
by the red box. Among the remaining three methods, the proposed method outperforms
CycleGAN + MatchosNet and MatchosNet in terms of the number of matched points, and
the keypoints are evenly distributed.

From the visual effect of the above five scenes, deep learning-based registration meth-
ods demonstrate superior point-matching performance compared to traditional methods,
especially in areas with strong textures. This is because deep learning networks can effec-
tively learn the similarity between features of heterogeneous images. The combination of
the Transformer-based pseudo-SAR generation strategy and deep learning registration mit-
igates the majority of feature differences in the pseudo-SAR generation stage; this strategy
significantly enhance the robustness of the registration network.

Table 2 presents the quantitative evaluation of the registration results. Two quantitative
metrics are used here—namely, the number of correctly matched points (NCM) and Root
Mean Squared Error (RMSE)—to assess the effectiveness of our registration. Among them,
a larger NCM and smaller RMSE value indicates a better matching effect. The data in
Table 2 indicate that the proposed method outperforms the other three methods in terms
of the NCM metric across all scenes. Regarding the RMSE metric, our method is slightly
higher than the MatchosNet method only in the rural and highway scenes, but it performs
lower than the other methods in the remaining four scenes. However, in the rural and road
scenes, the MatchosNet registration method only achieves 4 matched point pairs, while our
method achieves 84 matched point pairs.

Table 2. Comparison of evaluation indicators for registration result.

Method Scene NCM RMSE (pix)

PSO-SIFT

Forest and lake 4 1.15
Rural and road 12 1.57

Urban 6 0.98
Farmland 7 0.90
Mountain 15 0.99

CycleGAN +
MatchosNet

Forest and lake 5 0.89
Rural and road 3 1.30

Urban 12 0.96
Farmland 33 0.88
Mountain 11 0.90
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Table 2. Cont.

Method Scene NCM RMSE (pix)

MatchosNet

Forest and lake 13 0.87
Rural and road 4 0.96

Urban 15 0.79
Farmland 29 0.89
Mountain 26 0.94

Proposed Method

Forest and lake 15 0.83
Rural and road 84 0.99

Urban 57 0.76
Farmland 34 0.82
Mountain 36 0.84

(2) Checkerboard image experiment analysis

The visual appearance of the checkerboard pattern is also an essential evaluation
criterion for registration results. In order to further prove the effectiveness of the proposed
method, the checkerboard image experiments are added based on the point matching
results, and the experimental results are shown in Figure 10. In Figure 10(a1–a4), the
PSO-SIFT method completely fails to register, while MatchosNet exhibits a matching error
in the red-boxed region. As shown in Figure 10(b1–b4), the PSO-SIFT method generates
incorrect matches in the red-boxed region. In the urban scene, only our method successfully
matched the images; the other three methods exhibit mismatches in the red-boxed region,
as depicted in Figure 10(c1–c4). From Figure 10(d1–d4), it can be observed that in the
farmland scene, the other three methods also exhibit matching errors in the red-boxed
region, while the proposed method still achieves successful registration. According to
Figure 10(e1–e4), in the mountain scene, the PSO-SIFT method fails to achieve a complete
registration. The proposed method accomplishes the registration successfully. These
results indicate that deep learning-based methods have advantages in registration, and
the proposed Transformer-based pseudo-SAR generation strategy further improves the
registration performance between optical and SAR images.
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Figure 10. Registration checkerboard results for five scenarios. (a1–a4) represent forest and lake
scenes, (b1–b4) represent rural and road scenes, (c1–c4) represent urban scenes, (d1–d4) represent
farmland scenes, and (e1–e4) represent mountain scenes. (a1–e1) are the experimental results of
the proposed method, (a2–e2) are the experimental results of the PSO-SIFT method, (a3–e3) are
the experimental results of the CycleGAN + MatchosNet method, and (a4–e4) are the experimental
results of the MatchosNet method.

3.2.2. Ablation Experiment

This section presents a series of ablation experiments, including pseudo-SAR genera-
tion strategy validity analysis, the validity analysis of the pseudo-SAR generation strategy
for registration, and keypoints extraction strategy validity analysis.

(1) Pseudo-SAR generation strategy validity analysis

In this experiment, AG is used to evaluate the pseudo-SAR image. SSIM, PSNR, LPIPS,
and MAE are calculated between the pseudo-SAR and real SAR images. The objective
evaluation indicator values for the generation results are shown in the Table 3. Bold font
indicates optimal values.

The experiment results show that the improved Restormer outperforms the original
Transformer and CycleGAN in terms of AG, SSIM, and PSNR metrics. The improved
Restormer achieves the best performance in most scenes based on the LPIPS and MAE
metrics. Therefore, the experimental result indicates that the improved Restormer outper-
forms the CycleGAN and the original Restormer, and L2 loss function is superior to L1 loss
function in the pseudo-SAR generation strategy.

The subjective evaluation indicators for this experiment were based on visual evalua-
tion. Figure 11 presents a comparison of five different scenes: forest and lake, rural and road,
urban, farmland, and mountain. Each scene comparison comprises five images, arranged
from left to right: a real optical image, a pseudo-SAR image generated by CycleGAN, a
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pseudo-SAR image generated by original Restormer, a pseudo-SAR image generated by
improved Restormer, and a real SAR image.

Table 3. Quantitative evaluation index of pseudo-SAR generation strategy.

Method Evaluation
Metrics

Scenes

Forest and
Lake

Rural and
Road Urban Farmland Mountain

CycleGAN

AG↑ 11.39 16.19 17.56 12.00 17.05
SSIM↑ 0.64 0.80 0.78 0.79 0.72
PSNR↑ 12.70 10.02 8.64 12.14 10.02
LPIPS↓ 0.62 0.61 0.62 0.57 0.56
MAE↓ 173.28 127.16 121.04 89.15 136.67

Original
Restormer

AG↑ 15.86 25.04 23.05 19.96 24.86
SSIM↑ 0.89 0.91 0.90 0.81 0.97
PSNR↑ 15.30 12.33 11.78 15.76 14.30
LPIPS↓ 0.56 0.60 0.58 0.54 0.50
MAE↓ 143.58 113.39 115.57 95.24 123.57

Improved
Restormer

AG↑ 16.91 27.03 26.73 21.19 25.34
SSIM↑ 0.93 0.92 0.92 0.88 0.99
PSNR↑ 16.17 12.80 12.69 16.00 14.54
LPIPS↓ 0.50 0.53 0.53 0.51 0.54
MAE↓ 141.02 123.16 114.45 92.89 123.12

Based on the comparison of pseudo-SAR generation strategy, in Figure 11(a2–e2),
as indicated by the red-box marked, the CycleGAN method only focuses on rendering
the style of the SAR image onto the optical image in the rural and rode, urban, farmland,
and mountain scenes without fully eliminating the feature difference of the target. The
original Restormer and improved Restormer exhibit better visual effects compared to
CycleGAN. As shown in Figure 11(a3–e3,a4–e4), Restormer produces pseudo-SAR images
that resemble real SAR images more closely. Specifically, improved Restormer provides
clearer textures in the generated images compared to the original Restormer, as depicted
in Figure 11(b4,d4,e4). The original Restormer generates images with relatively blurred
texture details in some areas of the pseudo-SAR images, as shown in the red box marked
in Figure 11(b3,d3,e3). In conclusion, in the pseudo-SAR generation strategy, the original
Restormer outperforms similar methods, and the improved Restormer further improves the
generating effect. The above conclusions also prove that the L2 loss function has advantages
in the field of pseudo-SAR image generation.
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Figure 11. Comparison of pseudo-SAR generation strategy. (a1–a5) represent the forest and
lake scenes, (b1–b5) represent the rural and road scenes, (c1–c5) represent the urban scenes,
(d1–d5) represent the farmland scenes, and (e1–e5) represent the mountain scenes. (a1–e1) are the real
optical images, (a2–e2) are pseudo-SAR images generated by CycleGAN, (a3–e3) are pseudo-SAR
images generated by original Transformer, (a4–e4) are pseudo-SAR images generated by improved
Restormer, and (a5–e5) are the real SAR images.

(2) The validity analysis of pseudo-SAR generation strategy for registration

Figure 12 illustrates a comparison of the registration results between the proposed
method, the original Transformer, CycleGAN + MatchosNet, and MatchosNet. Among
them, MatchosNet directly registers optical and SAR images. The proposed method, the
original Transformer and CycleGAN + MatchosNet are two-stage registration methods
that involve pseudo-SAR generation and registration. From the results in Figure 12, it
can be observed that the proposed method exhibits a more even distribution and a higher
number of matching points. The registration results based on the Transformer pseudo-SAR
generation strategy outperform the direct registration of optical and SAR images. In the
registration methods based on CycleGAN, one scene shows a matching error, as indicated
by the red box in Figure 12(d3).
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Figure 12. The results of pseudo-SAR generation strategies for registration and direct registration.
(a1–a4) represent the forest and lake scenes, (b1–b4) represent the rural and road scenes,
(c1–c4) represent the urban scenes, (d1–d4) represent the farmland scenes, and (e1–e4) represent
the mountain scenes. (a1–e1) are the results of the proposed method, (a2–e2) are the results of the
original Transformer + MatchosNet method, (a3–e3) are the results of CycleGAN + MatchosNet, and
(a4–e4) are the results of direct MatchosNet. (a1–e3) depict the results of the two-stage registration
method, showcasing the registration of the pseudo-SAR and real SAR images. (a4–e4) illustrate the
results of the direct registration method, demonstrating the registration results between the optical
and SAR images.

Figure 13 displays a quantitative evaluation line chart of the registration results shown
in Figure 12. Figure 13a represents the NCM for the four methods; it can be observed that
the proposed method achieves the highest NCM value. The original two-stage registration
method using Transformer performs well and obtains the second-highest NCM values
in most scenes. Figure 13b shows the RMSE for the four methods; it is evident that the
proposed method achieves the lowest RMSE in most scenes. These experimental results
provide substantial evidence of the proposed pseudo-SAR generation strategy in terms of
image registration effectiveness.

(3) Keypoint extraction strategy validity analysis

Figure 14 presents the comparison of keypoint extraction strategies for pseudo-SAR
and real SAR images. It can be observed that the proposed strategy yields a higher number
of keypoint matches without any matching errors. However, the DoG and FAST extraction
strategies exhibit fewer matching points. Especially in some scenarios there are some
erroneous keypoint matches, as indicated by the red boxes in Figure 14(c2,d2,d3).

In Figure 15, a comparison of three keypoint extraction methods is presented. In
Figure 15a, the number of keypoints extracted by the three methods is compared. Figure 15b
illustrates the NCM for the three methods. It can be observed that proposed keypoint
extraction strategy outperforms the other methods in terms of both the number of keypoints
selected and the final NCM. FAST operator extracts fewer keypoints than DoG in most
cases but more keypoints than DoG in urban areas, which fully shows that there are more
corners in urban areas and FAST is easier to extract keypoints than DoG. However, in
weak texture areas, the corner feature is not significant, so FAST extracts fewer keypoints.
The proposed keypoint extraction strategy gives consideration to both shallow and deep
features, it can extract large keypoints in both weak and strong texture regions, and the
final matching keypoints are more than FAST and DoG. This provides substantial evidence
for the robustness of our keypoint extraction strategy.
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Figure 13. Comparison of different pseudo-SAR generation strategies for registration and direct
registration. (a) represents NCM statistics. Among them, there are 4 curves, representing direct
registration MatchosNet, CycleGAN + MatchosNet, original Restormer + MatchosNet, and the
proposed method. (b) represents the RMSE statistics. Among them, there are 4 curves, representing
direct registration MatchosNet, CycleGAN + MatchosNet, original Restormer + MatchosNet, and
proposed method.
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Figure 14. Results of registration methods with different keypoint extraction strategies. (a1–a3) rep-
resent the forest and lake scenes, (b1–b3) represent the rural and road scenes, (c1–c3) represent the
urban scenes, (d1–d3) represent the farmland scenes, and (e1–e3) represent the mountain scenes.
(a1–e1) are the results of the proposed strategy, (a2–e2) are the results of the DoG strategy, and
(a3–e3) are the results of the FAST strategy.
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Figure 15. Comparison of different keypoint extraction strategies. (a) represents keypoints statistics.
Among them, there are 3 curves representing the number of keypoints for pseudo-SAR by DoG,
FAST, and the proposed strategy. (b) represents matching statistics. Among them, there are 3 curves
representing the NCM by DoG + MatchosNet, FAST + MatchosNet, and the proposed keypoint
extraction strategy + MatchosNet.

4. Discussion

The registration experimental results from Section 3.2 indicate that deep learning-based
methods are more robust compared to traditional point matching methods. Comparing the
results of the proposed method with CycleGAN + MatchosNet and MatchosNet methods
further demonstrates that the registration method based on the Restormer’s pseudo-SAR
generation strategy improves the accuracy of deep learning models in the registration
process. The registration scheme based on the pseudo-SAR generation strategy can avoid
the feature differences between heterogeneous images, making the registration network
easier to train.

In the conducted ablation experiments, this paper investigated the effectiveness of
Restormer’s pseudo-SAR generation and a Harris scale space keypoint extraction strategy.
The experimental results demonstrate that both of these strategies outperform similar
methods. Specifically, compared to similar methods, the proposed Restormer pseudo-SAR
generation strategy exhibits smaller RMSE and larger NCM. Contrasting with the original
method, L2 loss function is used to instead of L1 loss function, and this improvement has
achieved better results in experiments. The proposed keypoints extraction strategy shows
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a higher number of extracted and matched keypoints. Therefore, relative to other deep
learning-based methods, the proposed method has more advantages.

However, in some weak texture scenes, generating pseudo-SAR images may be chal-
lenging, which could be a direction for future research in the field of optical and SAR image
registration based on pseudo-SAR generation strategy. In other fields of research, such as
underwater acoustic or sonar [51,52], Transformer-based simulation may be explored for
pseudo-SAS (Synthetic Aperture Sonar) imagery generation.

5. Conclusions

This paper proposes a registration method based on a pseudo-SAR generation strategy.
In this approach, Restormer is used to transform an optical image to a pseudo-SAR image.
During the training of Restormer, the original loss function is replaced with L2 so that
the model fluctuates less at the best fit. In the registration process, the DoG operator is
replaced with the ROEWA operator, which is used to construct the Harris scale space for
pseudo-SAR and real SAR images, this strategy increases both the extracted and matched
keypoints. The extreme points are extracted in each layer of the Harris scale space and
added to the keypoint set. The image patches around the keypoints are extracted and
fed to MatchosNet to obtain feature descriptors for initial matching, and the RANSAC
algorithm is used to remove outliers to obtain the final matching results. The feasibility and
robustness of this method have been demonstrated by experiments compared to similar
methods.
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