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Abstract: The Brazilian Legal Amazon (BLA) is the largest administrative unit in Brazil. The region
has undergone a series of territorial policies that have led to specific conditions of occupation of the
land and particular urban environments. This plurality expresses specific physical relations with
the environment and infrastructure, which require innovative methods for detecting and profiling
human settlements in this region. The aim of this work is to demonstrate how angular composites of
nighttime lights can be associated with specific profiles of urban infrastructure, sociodemographic
parameters, and mining sites present in the BLA. We make use of sets of yearly VNP46A4 angular
composites specifically associated with the narrowest ranges of observations across the year, i.e.,
observations right below the sensor’s pathway (near-nadir range) and observations in between the
oblique range (off-nadir), to identify urban typologies that expose the presence of structures such as
vertical buildings, industrial sites, and areas with different income levels. Through a non-parametric
evaluation of the simple difference in radiance values ranging from 2012 to 2021, followed by an
ordinary least squares regression (OLS), we find that off-nadir values are persistently higher than near-
nadir values except in areas where obstructing structures and particular anisotropic characteristics
are present, generally changing trends of the so-called angular effect. We advocate that relational
metrics can be extracted from the angular annual composites to provide additional information on the
current urban structural state. By calculating the simple difference (DIF), the relative difference (REL),
and the residual values of the linear regression formula estimated for the off-nadir and near-nadir
composites (RES), it is possible to differentiate urban environments by their physical aspects, such as
high-mid income areas, low-income settlements with different levels of density, industrial sites, and
verticalized areas. Moreover, pixels that were exclusively found in one of the angular composites
could be spatially associated with phenomena such as the overglow effect for the exclusive off-nadir
samples and with the wetlands of the northwest portion of the Amazon Forest for the near-nadir
samples. This work deepens our current understanding of how to optimize the use of the VNP46A4
angular series for monitoring human activities in the Amazon biome and provides further directions
on research possibilities concerning nighttime light angular composites.

Keywords: VIIRS; VNP46A4; Black Marble; Amazon; nighttime lights; angular effect

1. Introduction

Over the last decades, the Brazilian Legal Amazon (BLA) has been the stage for the
main economic policies for the occupation of the national territory in Brazil. Added to
the agrarian conflicts, the result is a singular and out-of-step process of development if
compared to other regions of the country [1,2].

Currently, this singularity is expressed by a diversity of human settlement types.
Among these settlements, there are a few distinctive examples that compose the Amazo-
nian environment, such as secular indigenous villages, small rural communities, settlements
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that emerged from the local demand for labor focused on extractive activities, small urban
centers on the riverbanks that developed from intermediate trading posts for the flow of
forest products, cities developed from settlement projects driven by the public sector, cities
based on the agricultural economy, and large metropolises that received funding for the
development of specific economic sectors, among others [3–8]. Each of these settlement cat-
egories has its own proper spatial arrangement and inter- and intra-specific infrastructural
characteristics that are a reflection of their local economy and the development policy to
which they were subjected [5,6,9].

From a broader perspective, monitoring the Amazon is a foundation for understanding
regional economic dynamics, evaluating the results of social, environmental, and economic
policies, and providing accurate information about different aspects of its territory. This
understanding and availability of information are central when highlighting local needs,
which are usually neglected by traditional development policies [10–13].

Given the importance of monitoring the Amazon territory and the challenging task
of accessing updated and parameterized data about the infrastructure related to human
occupation, remote sensing products are currently one of the main tools for acquiring
synoptical, precise, and up-to-date information [14]. Therefore, in the geospatial context,
developing methodologies and exploring different sensors and data to further understand
the components of this region are crucial steps for its management. The remote sensing of
nighttime lights has unexplored potential for this task.

One of the main expressions of human settlements and other anthropogenic processes
that stands out in the landscape is the night lighting infrastructure, necessary for the main-
tenance of various activities at night. During the day, the presence of lighting objects is
not evident at certain scales, but at night, light emitted by street lights and other outdoor
lighting apparatus can be easily identified [15]. For this reason, satellite images obtained
during the night have been tested for their potential to locate and characterize anthro-
pogenic structures and activities that may be somehow associated with the distribution,
intensity, and other parameters of nighttime stable lights, including in the Amazon biome,
e.g., Refs. [16–21].

Although the use of nighttime images is not as consolidated as approaches based
on daytime images, in the last decade, an increasing number of studies have explored its
usefulness in different fields. Identification of maritime vessels, mapping illegal mining
activities, mapping human settlements, population volume estimation at different scales,
and estimation of road traffic flow [18–20,22,23] are just a few of the fields of study that
have successfully identified the potential of nighttime images.

Multiple sources have been used to study issues related to this work’s objectives [19,24,25].
Nonetheless, images of the Day Night Band (DNB) sensor on board the Visible Infrared
Imaging Radiometer Suite instrument (VIIRS) are one of the main sources of orbital night-
time images that are uploaded regularly and are freely accessible at the moment. The
DNB sensor captures images of the Earth’s surface daily, at approximately 1:30 a.m. local
time, depending on the mapped region [26]. After the process of transforming digital
numbers into physical quantities, namely, nocturnal radiance, the images from the DNB
sensor represent the “brightness” level of the most diverse sources of nighttime lights, such
as street lighting structures of cities and other anthropogenic features, auroras, biomass
burning, gas flares, and marine vessels, among others [16]. Depending on the objective of
the study, the images must be submitted to atmospheric correction processes and also to
the compensation of the contribution from other components unrelated to the light emitted
by the terrestrial surface, such as the lunar irradiance component [27].

NASA’s Black Marble project is currently one of the main scientific endeavors respon-
sible for making these images available at different processing levels, attending to various
demands related to the use of nighttime images [28]. Among the available products, the
VNP46A4 series is a set of nighttime composites that refer to annual compositions of images
submitted to a rigid process of atmospheric correction and produced from samples only
considered of good quality, i.e., without the presence of clouds and other less frequent
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issues that could compromise the quality of the final product [29]. The final result repre-
sents a dataset of the average annual radiance level detected by the DNB sensor, discarding
areas that may be affected by ephemeral lights and do not express radiance levels above
the detection limit estimated for the sensor.

Recently, angular issues related to the acquisition of nighttime data by the DNB
sensor have started to draw researchers’ attention. Some studies have identified that,
depending on the angle at which the images are acquired, there is a strong tendency for the
instrument to record different levels of radiance associated with the same location [30–32].
This phenomenon can be associated with the fact that, although the atmospheric and
lunar components of irradiance are treated during the process of retrieving the radiance
levels of the DNB data, the methodology still does not use techniques for including the
interaction of the electromagnetic radiation (EMR) emitted by outdoor lighting sources
with the surrounding environment [29].

The process through which changes in radiance levels for a given location can be
detected as a function of the observation angle is called the angular effect. This effect
might be caused by the anisotropic emission of radiance from different sources, such as
traditional lighting poles that emit radiation preferentially downwards or the interaction of
the EMR with surfaces that, in turn, have anisotropic characteristics that affect the EMR’s
preferential direction of propagation differently, depending on the set-up of irradiation and
imaging [29–32]. In general, recent studies have treated the angular effect as an aspect to be
corrected in the images, since it results in variations in radiative levels that do not express
actual changes in the emitted radiative levels [31,32].

This work seeks to address the angular effect as a potential source of environmental
information related to local infrastructure, since this effect is closely correlated with aspects
such as vegetation cover, height and size of buildings, type of lighting, and radiative
intensity [31]. All these aspects are important elements that compose the urban and rural
landscape and also support the description of anthropogenic processes in the BLA.

The analyses presented in this paper are based on the use of annual compositions
to demonstrate the potential and limitations of the angular sets for monitoring the BLA,
specifically the VNP46A4 series. First, the simple differences between the compositions
referring to observations carried out only at sets of specific angles were addressed.

When close to the nadir, angular compositions are called near-nadir composites (view-
ing angles just below the satellite’s pathway). When at oblique angles, they are called
off-nadir composites [29]. Second, we investigated the relationship between the spatial
distribution of pixels in which only one of the angular compositions was able to detect
considerable stable radiance levels and different land use and cover (LUC) classes that
compose the context of the VIIRS/DNB pixel’s footprint. Finally, the relationship between
the radiance levels of the angular compositions was investigated using a linear regression
between a set of samples, which resulted in a proposal for the interpretation of their angular
coefficients as indicators of the intensity of the angular effect relative to lit areas under
different LUC contexts.

This work contributes to the discussion about the main drivers of the angular effect
in the use of angular composites of night lights in the Brazilian Legal Amazon territory,
indicating the knowledge gaps, potential methods, and limitations regarding the use of
annual compositions for BLA monitoring.

2. Materials and Methods
2.1. Database and Basic Processing Procedures

Nighttime annual angular composites (VNP46A4) are made available by NASA’s
Black Marble science team at the Level-1 and Atmosphere Archive & Distribution System
Distributed Active Archive Center’s website (LAADS—DAAC, ladsweb.modaps.eosdis.
nasa.gov, (accessed on 18 June 2022)). The VNP46A4 product represents the average radi-
ance level from daily nighttime retrievals from its DNB sensor. The product is composed
of high-quality, cloud-free observations, after atmospheric, terrain, vegetation, snow, lu-
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nar, and stray light correction procedures to estimate daily nighttime light levels before
averaging. Average radiance values less than 0.5 nW·cm−2·sr−1 are automatically set to
zero by the algorithm, which is equivalent to the last reported detection limit of the DNB
sensor [29].

All the nighttime composites overlapping the BLA’s territory were selected and mo-
saicked, ranging from 2012 to 2021. This analysis is based on two out of three available
datasets: off-nadir composites (view zenith angle 40–60 degrees) and near-nadir compos-
ites (0–20 degrees), using the regular annual composites as the reference for the average
radiance level of a certain place.

If compared to regular annual composites, i.e., composites that average all available
observations regardless of the interval in which their zenith angle falls, angular composites
might present fewer entries to compute the average radiance associated with a specific
location and a higher probability of the occurrence of pixels that do not match the min-
imum requirements to be classified as good-quality data. On the other hand, angular
composites are restricted to a narrower range of angles of view, which should minimize the
radiance’s variance associated with the angular effect and facilitate the identification of its
possible drivers.

LUC data is derived from version 6 of the Mapbiomas catalog [21]. The acquired LUC
maps have the same timespan as the VNP46A4 series. Both series were integrated into the
Google Earth Engine platform, and all necessary geospatial operations were performed in
this environment (earthengine.google.com).

Pixels of both composites whose off- or near-nadir radiance levels lie above the 99th
percentile were filtered off to avoid sampling outliers. Before the following procedures, all
pixels from the VNP46A4 series that were not identified as good quality by the VNP46A4′s
Quality Assessment Band (QA) were discarded from the analysis of both composites.
Bad-quality pixels are the ones whose averaging process has less than three good-quality
observations in a year [29]. As a result, all the following operations between two composi-
tions are only possible when both spatially corresponding pixels are identified as having
good quality.

Once the VNP46A4 is processed, three metrics representing the relation between the
angular composites are calculated: the simple difference and relative difference between
the off-nadir and near-nadir radiance values (Equations (1) and (2)); and the residual values
are calculated after estimating the linear relation between the angular composites of each
class (Equation (3)):

(a) Simple difference (DIF): simple subtraction between the off-nadir (OFF) and near-
nadir (NEAR) radiance values. Units are expressed in nW·cm−2·sr−1.

DIF = (OFF−NEAR) (1)

(b) Relative difference (REL): the ratio between the DIF and OFF. The value is unitless
and can be interpreted as the percentage or size of DIF as a fraction of OFF.

REL =
DIF
OFF

(2)

(c) Residual (RES): the difference between actual NEAR and near-nadir predicted ra-
diance values (NEARp). NEARp is estimated by using the Ordinary Least Squares
method (OLS) [33], which is, in turn, based on the linear relation between OFF and
NEAR, arbitrarily defined as independent and dependent variables, respectively. The
details of the experiment are explained in Section 2.2.

RES = NEAR−NEARp (3)

DIF is initially used to statistically attest to the significance of differences between the
off-nadir and near-nadir radiance levels across the years (Section 2.2). Alongside the other

earthengine.google.com
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relational metrics (RES and REL), DIF is also used to compare their distributions, grouped
into several subclasses of urban areas (Section 2.4). Figure 1 illustrates the general approach
for setting up the main database of nighttime light composites and other variables.
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Figure 1. Basic processing steps. * Relative to the residual values of the regression line estimated for
the off-nadir and near-nadir linear correlations.

2.2. Statistical Differences between the VNP46A4 Angular Composites

To evaluate the magnitude and significance of the differences between the off-nadir
and the near-nadir composites, we first calculated the DIF for every pair of annual angular
composites, resulting in 10 different images of simple difference values (2012 to 2021).
Then, each DIF image was independently sampled, without replacement. Because the
number of valid pixels in each year differs, the number of samples was defined considering
a proportion of the total population of each year (5%). This way, the analysis of the
significance of the simple differences is performed under the same confidence interval for
all DIF images’ statistics.

The significance of DIF was assessed via a one-sided Wilcoxon’s signed rank test
for paired samples with continuity correction [34]. The simple difference samples were
compared with a random normal distribution with the same size and variance as the
sampled dataset, but the reference mean and median were set to zero. All statistical analyses
were performed in the R environment (www.r-project.org, (accessed on 30 August 2022)).
With this procedure, it was expected that DIF should not be statistically different from zero
when there are no statistical differences between the angular composites’ radiance values.

2.3. Identification and Characterization of Exclusives Pixels

Most of the time, pixels that are considered lit, i.e., that recorded average radiance
values above 0.5 nW·cm−2·sr−1, are identified in both off-nadir and near-nadir angu-
lar composites in areas corresponding to urban centers and other manmade structures.
Nonetheless, there are cases in which pixels present an average radiance value above
the aforementioned threshold in only one of the angular composites. Those pixels are
hereafter denominated “exclusive pixels”. An initial visual inspection showed that this
phenomenon is likely to occur in overglow areas, where observations in the near-range
of view are not affected by the overglow as much as those in the off-nadir range. In other
cases, pixels associated with less prominent settlements are only identified by the off-nadir
composite, likely due to the presence of obstructing objects or even the intrinsic anisotropy
of common lighting structures and reflecting surfaces. It is also important to consider
that, in some cases, lit pixels associated with a specific area occur exclusively in one of
the composites because of the evaluation of the number of good-quality observations.
Therefore, the procedure to detect exclusive pixels must also be carried out considering the
quality-assessment band.

www.r-project.org
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In order to identify exclusive pixels, the angular composites were first masked in the
following way: all pixels with radiance values greater than 0 units in the VNP46A4 angular
composites were assigned to one, resulting in two angular binary composites. Then, the
composites were subtracted from each other, similarly to the previous step, using the
off-nadir composite as the minuend. The resulting image has only three entries: 0 (zero) for
pixels present in both composites, −1 (minus one) for pixels present only in the near-nadir
composite, and 1 (one) for pixels present only in the off-nadir composite.

Pixels assigned to −1 and 1 were individually vectorized. The result is a vector file
with geometries corresponding to the footprint of those pixels. Finally, each geometry was
overlayed over the LUC map, and the number of pixels from each class was counted. The
class with the relative majority number of pixels was assigned as a further attribute of the
geometry, designated as the “predominant LUC class”, which contained the count of pixels
from that class and a flag indicating to what class it corresponds.

Exclusive pixels from the off-nadir and near-nadir composites were classified accord-
ing to their position relative to other lit areas. If a pixel was found to be an immediate
neighbor of any lit area, either in the off-nadir composite or the near-composite, the pixel
was classified as a “neighboring pixel.” Pixels that were found far away from lit areas,
both in the off-nadir and the near-nadir composites, were classified as “isolated pixels.”
This method aims to facilitate the interpretation of the predominant LUC class present in
each group of pixels since we considered neighboring pixels to be more likely to represent
overglow areas, i.e., areas that are only permanently lit because of the scattering of light
coming from neighboring areas [26]. Figure 2 illustrates the basic procedure adopted for
the identification of exclusive pixels, designation of neighboring pixels, LUC percentages,
and predominant LUC.
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Since the predominant LUC class under a VNP464 pixel’s footprint determines the
class of the reduced resolution LUC image, sampled pixels are not specfied by the presence
of built-up areas, which usually serve as a proxy for light sources. This means that a
pixel classified as “Pasture” after the resolution reduction could indicate either land that is
exclusively pasture but contaminated by the nearby glow of light sources (overglow) or a
farmhouse surrounded by a pasture landscape, for example.

2.4. Correlation between Off-Nadir and Near Nadir-Composites

This step consists of the analysis of the correlation between the radiance values of
the VNP46A4 angular composites from 2019, the most recent year that is not affected by
changes in the average nocturnal radiance levels triggered by socioeconomic processes
during the COVID-19 pandemic [32,33]. The angular composites were submitted to a
stratified sampling process based on the predominant LUC class of each DNB pixel in an
attempt to characterize the LUC context of a lit area. In total, 100 samples from each LUC
context were withdrawn. For each group of samples, corresponding to each predominant
LUC present in the lit areas of the BLA, a different linear equation was estimated and
analyzed. Groups of samples that did not have at least 1000 entries to be sampled were
automatically discarded from the analyses.

Two rules of thumb were established for the interpretation of the β coefficients (slope
and intercept). For the equations’ slope, the coefficient should represent the expected unit of
change of the dependent variable (near-nadir) in comparison to changes in the independent
variable (off-nadir). Because the variables present a positive linear correlation, their range
is limited to the interval between zero and + infinite. In practice, given the setting of the
experiment, if the slope is closer to one, it means that the variation of radiance associated
with a pixel does not depend on the viewing angle so much. As the slope diverges from
one, the angular effect takes place and favors one of the viewing angles. More specifically,
if the slope is higher than one, the near-nadir radiance increases at a higher rate than the
off-nadir radiance. If the slope is smaller than one, the off-nadir radiance increases at a
higher rate than the near-nadir. Therefore, the slope of the fitted linear equation can be
interpreted not only as a measure of the general degree of the angular effect from a set of
samples but also as showing if the entirety of the anisotropy drivers in each area favors the
off-nadir radiance rather than the near-nadir.

On the other hand, the intercept of the estimated equation (β0) can help to understand
from what value onwards the radiance detected in a certain imaging range will also be
detected by other angles. Thus, the intercept is related to the occurrence of exclusive
pixels in certain composites and allows the differentiation of what landscapes, namely, the
predominant LUC, have a greater potential to block or reflect in a higher proportion the
radiation coming from a certain angle.

2.5. Analysis of the Relational Metrics in Different Urban Typologies

The residual values (RES, DIF, and REL) were extracted from samples of areas that
are typically associated with lighting structures: mining sites and urban areas. With that
in mind, a few representative locations were selected to discuss the angular effect in the
annual angular composites. Industrial sites and areas of vertical urbanization were visually
identified with the help of BING and Google Earth databases. Different urban subclasses
were defined based on the classification of precarious settlements in smaller cities in the
BLA and subclasses of urban clusters [34].

Urban areas were classified according to five classes: residential areas with low-income
and high demographic density (dense low-income); residential areas of low income and
lesser density (hereafter, low-income); residential areas of mid- to high-income; industrial
sites; and verticalized areas. Distinguishing urban classes by their density and average
income is a strategy to differentiate classes by sociodemographic characteristics that poten-
tially impact the physical arrangement of dwellings (demographic density) and, therefore,
might be expressed by relational metrics.
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Mining sites were visually identified and differentiated by open surfaces, where the
mining operation happens, and supporting areas, where there are buildings, parking lots,
and facilities for processing and transporting materials. In this case, mining sites are subject
to thorough statistical tests in the same way as urban areas. In all cases, 30 samples were
selected for each class of interest. Table 1 provides a formal description of the criteria used
for selecting each stratum of samples.

Table 1. Criteria for identification of mining sites and urban areas samples.

Class Subclass Description Example

Urban area Industrial sites
Large building footprints, parking lots, and industrial

facilities. Samples are restricted to designated
industrial parks.
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The investigation of the potential of the relational metrics focused on two specific
questions: (a) what relational metric is capable of distinguishing the higher number of
urban classes; and (b) what class is more distinguishable by the relational metrics among the
urban classes. Each metric represents the relationship between two specific combinations
of data acquisitions. On the other hand, some of the urban classes can have their physical
arrangements similarly expressed, only to be specified by sociodemographic parameters.
Therefore, jointly understanding what metrics are more relevant to the differentiation of one
single class among others might be useful to explain why some metrics cannot differentiate
certain pairs of urban classes.

Regarding the distribution of the samples, preliminary tests showed that most met-
rics are normally distributed (Shapiro–Wilk test [35]), even after applying a logarithmic
transformation. Similarly, most pairs of variables to be tested resulted in heteroscedastic
distributed errors (Kruskal–Wallis, [36]). These characteristics narrow down some of the
possibilities for statistically attesting to the differences between the relational metrics of
different urban classes. In this sense, the Mann–Whitney U test (hereafter, the U test) was
chosen, since it is a non-parametric test that does not make any assumptions regarding
the distribution of the variables’ estimators [37]. The test is based on the ranking of the
samples in comparison to the median of both analyzed samples. This logic makes the test
a good fit when dealing with outliers, not only because the rankings are not affected by
them, but also because it avoids the discard of samples, an important feature when dealing
with small sample sizes.

3. Results
3.1. Descriptive Analysis of the Differences between NTL Angular Composites

Figure 3 shows the frequency histograms of differences in radiance values from pixels
sampled from each angular composite (off-nadir and near-nadir). A normal probability
curve derived from the variance of the sampled dataset, but with an average difference
equal to zero, is also plotted over the frequency histogram.
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In Figure 3a–j, all years present a fairly identical pattern of the frequency distribution
of their simple differences: a higher frequency of values ranging from 0 to 0.4 nW·cm−2·sr−1

(between 9% and 12% throughout the years), resulting in a median simple difference that
persists between 0.3 and 0.4 nW·cm−2·sr−1. Since the averaging operation is more sensitive
to outliers than the median, the vertical red lines present in all panels from Figure 3 are
shifted to the right side of the blue lines, indicating a greater frequency of radiances sensed
off-nadir with a higher average radiance level than the near-nadir ones. The predominance
of higher off-nadir values can be statistically attested through the results of Wilcoxon’s test
(Table 2), which was chosen due to the non-normal nature of the frequency distribution of
probabilities from the simple difference values. In all cases, the average difference between
the composites was statistically higher than zero.

Table 2. Wilcoxon’s signed rank test for paired samples with continuity correction (α = 0.05).

Year 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

p-value 8.3·10−6 3.4·10−11 5.2·10−14 1.9·10−6 2.1·10−11 2.5·10−11 2.6·10−14 5.8·10−8 6.5·10−5 2.3·10−6

V-stat. 2348.5 3887.5 4282.5 3194.5 4208 3678.5 4547.5 3231 3309.5 3172

The V-statistic represents the sum of the positive and negative ranks (w+ and w−)
obtained after the ranking of the paired samples, in this case, pairs of pixels from different
composites. Since the near-nadir composite was operationalized as the minuend, positive
w+ values indicate a higher average radiance off-nadir. Alongside the p-value, the V-
statistic restates that those differences are predominantly positive. These results do not
necessarily indicate that sources of light are brighter at higher view zenith angles (VZA),
but there is also the possibility of a higher number of landscapes and geometric settings
present in the BLA that favor this phenomenon.

At this point, it is necessary to restate that the analysis of the basic differences between
the composites was carried out differently when investigating pixels that are defined as
lit (illuminated) only in a single composite from those pixels defined as lit in both near-
and off-nadir composites. That is because the methodological approach used during the
generation of the composites defines every pixel with an average radiance less than a
threshold of 0.5 nW·cm−2·sr−1 as background noise [29], a by-product of the current NTL
detection limit estimated for the VNP46 series. Thus, when comparing the average radiance
of pixels belonging to spatially equivalent but different angular composites, one can only
assess the simple or relative difference within a standard precision if both pixels have an
average radiance above this threshold.

3.2. Land Use and Cover Classes versus Simple Radiance Difference between Angular Composites

Figure 4 presents scatter plots of the average annual radiance measurements off-nadir
against near-nadir, specified by their respective predominant LUC classes. In all cases
presented, there is a high degree of linear correlation between the variables (R2 ≥ 0.84,
α = 0.01).

The persistency of β1 coefficient (slope) values smaller than one reflects the expected
higher off-nadir radiance. However, although the majority of pixels follow this rule, there
are pertinent observations regarding the ordering of the β1 coefficient that are discussed in
Section 3.3.
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3.2.1. The Potential Use of the Annual Angular Composites for Urban Environments in the
Brazilian Legal Amazon Territory

Since the same approach used to characterize the nighttime radiance angular effect
using daily images cannot be reproduced with the annual composites (usually through the
analysis of the relation between VZA and radiance), the relational metrics are an alternative
to be similarly exploited (DIF, REL, and RES).

In Figure 5, a series of boxplots illustrate the distribution of the relational metric
associated with each of the sampled urban classes.

It is clear that there is the possibility of differentiation between industrial sites and
verticalized areas using relational metrics, the only two classes that were not defined strictly
on socioeconomic parameters. The remaining classes are mostly not clearly different from
each other solely by a single metric. Considering all metrics, a first look at the boxplots
indicates that RAD is a good indicator of different urban classes. On the other hand,
RAD is also the more scattered one. It is likely that the more diverse the expression of
the geophysical properties of an urbanized area, the higher the variance of the radiance
levels. Industrial sites have RAD values that are persistently smaller than all classes
except low-income areas (Figure 5d). By contrast, REL is able to deal slightly better with
the over-scattering of samples from the same group, also stabilizing the variance across
different groups (Figure 5b), but it is not possible to assume that this will result in a better
performance in distinguishing the classes.

The hypothesis that each relational metric has the potential to facilitate the inter-
pretation of the physical aspect of the urban environment is based on the principle that
they should be analyzed together to reduce their ambiguities when analyzed separately.
For example, industrial sites present values of simple differences (DIF) that are very dis-
tinct from the other classes. However, the boxplots of the variables REL and RAD allow
us to conclude that this difference is a result of its relatively low average radiance level
(Figure 5b,d). Figure 6 illustrates the relative position of the p-value in relation to a sig-
nificance level of 0.05, an illustration of how the urban classes were generalized from the
reference data [34], and a dendrogram showing a scheme to differentiate the urban classes
based on the behavior of their metrics. A full report of the statistical parameters is presented
in Appendix A.
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the variables.

The dendrogram allows us to systematically interpret which classes are distinguishable
from the others, metric-wise (Figure 6c). The stages are defined by the total score of each
class, so each metric can complement the strengths and weaknesses of the others. In the
context of using relational metrics for classification purposes, a flaw is the inability of a
metric to differentiate a pair of classes, an assumption based on the p-value.

Not every metric can differentiate all classes at once. Partial scores (Figure 6a) represent
the number of pairs of classes whose p-values are smaller than 0.05, thus rejecting the null
hypothesis. As a result, RAD has the potential to differentiate the greatest number of classes
at once but is not very different from the relational metrics, except RES. In agreement with
the interpretation of the boxplots, verticalized areas, industrial sites, and low-income areas
are the ones with the higher total scores, that is, with the higher number of pairs of metrics
that do not belong to the same probability distribution.
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Figure 6. Scheme of patterns of significance differences between the relational metrics and average
radiance levels considering all angles of data acquisition: (a) illustration of the relative position of the
p-value to the 0.05 level of significance threshold; (b) relation of reference classes of urban clusters
based on [38] and defined urban classes; (c) dendrogram of urban classes according to significant
differences between the metrics of distinct classes.

The different levels of the dendrogram sum up the variables that are significantly
different from other classes and would allow their subsequent classification. Verticalized
areas have higher RAD values when compared to other classes. Their DIF levels tend to
be negative, resulting in REL values smaller than zero as well. In this case, verticalized
areas can be understood as generally well-lit areas with a proportionally angular difference
in radiation levels when compared to industrial sites and mid- to high-income areas
(in the module), but favoring the near-nadir observations. Although this class has a well-
established structure and a clear expected behavior of the REM, it is not possible to conclude
whether the near-nadir predominance occurs solely due to the obstruction of the light in
oblique observations, or also because of the multiple pathways through which the REM
“bounces” on the opposite side of buildings towards the sensor’s detectors, favoring the
predominance of near-nadir levels by a different process. It is most likely that both take
place in the final result. In the second case, one should consider that the natural anisotropic
characteristics of different building materials could have a significant impact on how strong
this “bouncing effect” is.

Relatively high RAD levels are also associated with high-income areas and dense
low-income areas. In fact, all paired metrics of these classes are statistically identical. It is
generally expected that areas with better living conditions might present higher radiance
levels, since it is known that higher radiance levels are often found in countries with higher
GDP, a factor that could also be present at the intra-urban level [18,39–41].

As aforementioned, dense low-income areas express the same pattern of relational
metrics found in mid- to high-income areas. In this regard, although no statistically
significant difference was observed, the medians illustrated in Figure 5 suggest that a better
definition of the groups could lead to a more constrictive distribution of the variables. After
the generalization and sampling process of the urban classes, it was observed that the mid-
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to high-income group has a disproportional number of samples from each urban class
defined by the reference data (A = 0%, B = 10%, C = 0%, D = 20%, E = 3.3%, F = 66.6%)
(see [34]). Thus, due to the predominance of samples of regular living conditions, class sits
mostly just on the threshold between the bottom of the regular-living conditions group and
the top of the low-living conditions group.

Putting aside the potential of relational metrics for investigating urban environments,
there is another feature associated with angular composites that is worthy of attention:
mining sites. Contrary to urban areas, the estimated regression line for mining sites resulted
in a lower slope coefficient, which should heavily impact the relationship between RES,
REL, and DIF. Figure 7 illustrates the distribution of these metrics according to the different
infrastructures associated with mining sites.
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As expected, there is a clear difference in the relational metrics associated with the
structures that compose a mining complex. Considering their variances, the DIF and RES
metrics indicate that areas used for mining grounds have a lesser variation in radiance
values than supporting facilities, although proportionally to their radiance levels, as shown
by the REL metric (Figure 7c). Generally, supporting facilities can be easily recognized as
brighter areas in mining complexes (Figure 7d). It is also interesting to compare the behavior
of the central tendencies of the RES and DIF. In both cases, they have a lower value than the
supporting facilities, which indicates they have relatively higher radiance values towards
nadir and a higher magnitude of angular effect if compared to the supporting facilities.

3.3. Characterization of Exclusive Pixels

Exclusive pixels are all those whose average radiance values are higher than
0.5 nW·cm−2·sr−1 in only one of the angular composites. In Figure 8a, it is possible
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to discern how predominant exclusive off-nadir pixels are in comparison to exclusive
near-nadir pixels and their respective singular characteristics.
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Figure 8. (a) Brazilian Legal Amazon and distribution of exclusive pixels from both composites;
Exclusive near-nadir pixels isolated from major light sources off- and near-nadir on (b) the Solimões
River waterway; (c) and Içana River, the northern frontier of the Amazon state; (d) Belém Metropolitan
Region, Pará state—neighboring off-nadir pixels and numerous isolated off-nadir pixels associated
with small settlements; (e) Rolim de Moura, Rondônia state—neighboring exclusive off-nadir and
near-nadir pixels around small settlements.

Virtually every grouping of lit pixels spatially associated with human settlements
is encircled by exclusive off-nadir pixels (Figure 8c,d). In this case, these patterns of
neighboring pixels span not only pixels strictly associated with portions of land that lack
the presence of elements that could be associated with the emission of night lights but
also small disjoint settlements and non-residential buildings found in rural-urban fringe
areas. When these groups of pixels are disjointed from the main urban and peri-urban
spaces (isolated pixels), they are primarily related to deforested areas, peripheral forested
areas, rural buildings, and other manmade structures, such as minor human settlements,
farmhouses, agricultural buildings, and other structures of this sort.
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Exclusive near-nadir pixels are relatively rare. Neighboring near-nadir pixels, the
ones that lie near other common lit areas, are scattered throughout other exclusive off-
nadir pixels (red polygons in Figure 8d,e). By contrast, isolated pixels are surprisingly
concentrated over the northwest portion of the study area, often alongside riverbanks
(Figure 8a–c). In this case, it is plausible that ephemeral anthropogenic light sources are
being detected amid the dense forest formation and waterways.

In Figure 9, a series of boxplots illustrate the distribution of percentages of specific
LUC classes with an average percentage of covering area higher than zero in any of the
datasets (in this case, urban area; river, lake, and ocean; pasture; and forest formation).
Figure 9a is a reference sample based on random pixels sampled from the original angular
composites. Figure 9b,c refers to exclusive pixels found in off-nadir composites and near-
nadir composites only, respectively.
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The distribution of the frequency of LUC classes’ percentages from the reference
samples is not explicitly different throughout all classes (Figure 9a). Both off-nadir and
near-nadir composites have pixels that are primarily associated with pasture areas, followed
by forest formations, and only then with urban areas. Water surfaces are the last, but not
neglectable. The higher percentage of non-urban LUC classes in the reference samples
reflects the classes that are most commonly neighboring human settlements considered
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urban areas by the Mapbiomas project. Perceptive changes in the relative rank between the
LUC classes after the subsetting process offer insights into what features can be responsible
for the omission of certain areas in specific angular composites.

Pixels detected by the off-nadir composite are the vast majority of exclusive pixels,
summing up to 95.8%, against 4.2% of exclusive near-nadir pixels. Two main differences can
be highlighted when analyzing the boxplots associated with pixels defined as exclusives.
The first one regards the changes in the ranks of LUC percentages. The subsets in Figure 9b,c
show that exclusive pixels are more likely to be associated with larger areas classified as
forest formation than the ones from the reference sample. Although the off-nadir and
near-nadir subsets present a slightly higher percentage of pasture areas, these areas only
total the second most prevalent class in this dataset. Additionally, water surfaces rise to the
third position in terms of prevalence, but with no clear differences between the reference
samples. Urban areas are the least common ones to be associated with pixels of this sort.

Objectively, both subsets of exclusive pixels have a similar prevalence of forest forma-
tion. The most evident differences rely on the prevalence of pasture areas, which are less
representative in near-nadir exclusive pixels. When samples are specified even further by
their relation to common lit areas (Figure 9b.1,b.2), there is no difference between the ranks
of the average percentages of LUC if compared to Figure 9b. Only minor changes in their
general distribution are observable.

Exclusive near-nadir pixels’ divergences are more evident. If isolated (Figure 9c.2),
they are more likely to consist of areas predominantly covered by forest and also present the
most prevalent proportion of water surfaces among all subsets. Boxplots in Figure 9c.1,c.2
show that pixels that only ended up in the near-nadir composite are more frequently
associated with large proportions of pasture if found near other lit areas. Therefore, in
addition to being related to atmospheric conditions and the magnitude of the emitted
radiance [26], the overglow seems to be affected by landscape components.

Isolated pixels, which were judged as less likely to be triggered by the overglow
effect, are more frequently associated with areas almost completely covered by forest
formations and/or greater portions of water. In this case, several possibilities could be
traced as prompts for the persistent scattering of pixels over water surfaces and dense
forest formations across the BLA. The vast majority of pixels are located near creeks or
streams (igarapés). Igarapés are shallow watercourses and are generally embedded in the
middle of the dense forest [42]. In most cases, pixels are located near the mouth of these
igarapés, in areas close to deeper water channels, which are subject to flooding in periods of
higher precipitation and meandering regimes [42,43]. These characteristics limit the types
of vessels that can navigate these watercourses.

Since the points are not located above any specific location, it is fair to hypothesize
that they are related to vessels that navigate between small settlements within the forest, or
small riverine settlements, disconnected from localities [44]. In the case of vessels emitting
light in an ephemeral regime, it would be necessary for a light source to emit light at
night with sufficient intensity for the average between the daily images to result in a
radiance value above 0.5 nW·cm−2·sr−1. Although unlikely, it would be possible if the
number of good-quality observations was low enough to not reduce the radiance emitted
by one ephemeral light source to a level under the 0.5 nW·cm−2·sr−1 threshold after the
averaging process.

4. Discussion
4.1. Linear Regression Coefficients as Indicators of Radiance Angular Persistency and Angular
Minimum Detection Threshold

Figure 10 displays the slope coefficients derived from the linear regression models
of near-nadir and off-nadir observations for each LUC class. When the slope coefficient
equals one, both angular observations tend to have the same average radiance values.
The closer to zero, the higher the off-nadir average radiances in comparison to near-nadir
average radiances. The greater the number, the higher the near-nadir average radiances in
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comparison to off-nadir. Slope coefficients are ranked from lowest to highest, indicating
the LUC’s degree of influence over the angular effect in areas where stable lights are found.
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Figure 10. Ranking of the estimated slope coefficients (β1) for each land use and cover class. If
β1 = 1, no angular effect is evident. When β1 < 1 or β1 > 1, off-nadir average radiance is higher than
near-nadir or the contrary, respectively.

Regarding areas usually expressed by open spaces and lacking the frequent presence
of vertical features (Soybean, Savanna formation, Grassland, and Pasture), their β1 co-
efficients agree with their general anisotropic characteristics. Considering the different
anisotropic characteristics of each LUC class, it is possible to interpret the slope coefficient
behavior by analyzing the reflectance from their respective LUC classes at specific angles.
One should also take into account that the DNB sensor has a wide range of detection
(0.4–0.9 µm), which requires a holistic analysis of the different bands within this interval.
The most straightforward method to interpret the slope coefficients’ behavior among differ-
ent LUC classes would be to consider the relation between the view zenith angle (VZA)
and reflectance factor (RF). However, as the RF is an empirically derived variable that is
not constrained to a single positional parameter (i.e., VZA), a few considerations should
precede the analysis of the β1 coefficients.

Daily DNB observations inputted into the composition of the VNP46A4 series are
already subjected to a procedure to compensate the lunar irradiance and the resulting
airglow [29]. Therefore, the following considerations take into account only the possibility
of interaction between light sources on the ground, mainly lighting poles, and the surface
itself. In the LUC context, VIIRS/DNB pixels were classified according to their predomi-
nantly LUC class, which means that only pixels consisting of urban areas and mining sites
are likeable to display light sources that are arranged at lower zenith angles of irradiance.
That means that, aside from urban areas and mining sites, all stably lit pixels are likely to be
a result of oblique interactions between ground light sources and the surface itself, either
because they are just partially present under a pixel’s footprint or due to the predominance
of overglow in these areas.

Regarding the azimuth angles, although VIIRS observations do vary from approxi-
mately −90◦ to 120◦, VNP46A4 series’ view azimuth angles (VAAs) are not sampled and
reported based on specific angular ranges as with VZAs, probably due to a considerable
difference between the available range of viewing azimuthal angles at different latitudes.
Therefore, although these parameters are crucial to the interpretation of angular effects, the
following discussion is based on the premise that both azimuthal angles of irradiance and
VAAs are considered random due to the setting of this experiment in different stages of the
analysis (composition of the VNP46A4 and sampling process prior to regressions); VZAs
are determined by the type of composite (off-nadir or near-nadir); and irradiance zenith
angles are generally oblique (>30◦). The roles of back- and forward scattering are also
unpredictable in this context, but, given the same established premises, a rough averaging
should provide insights on how the β1 coefficient relates to the anisotropic characteristics of
the different LUC classes. Under a sun zenith angle of 30◦, soybean fields reach their peak
of reflectance at a VZA of 30◦ on the principal plane, but decay rapidly when this angle is
increased, shifting from approximately 80% to less than 10% higher at 45◦ if compared to
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their reflectance at 20◦. Although this observation was limited to the red band (661 nm) and
to an interval associated with backscattering (0–45◦), the result is coherent with β1 = 0.95,
a very small difference between off- and near-nadir radiance levels, considering that its
peak reflectance is not contemplated by the interval of the angular composites [45]. The
remaining classes of this sort tend to have a smaller β1.

Grasslands have been documented to have a reflectance at 60◦ approx. 1.5 times higher
than the reflectance at the 10–20◦ interval (i.e., 35% higher), therefore favoring the off-nadir
radiance levels and a smaller β1 than soybean fields [46]. Leaf area index (LAI) and the
chlorophyll content also play a role in the bidirectional reflectance, but variations in re-
flectance values seem to affect both off- and near-nadir observations proportionally [45–48],
which should have a much lesser impact on the β1 coefficients independently of changes
in these variables.

Wetlands are subjected to a similar logic, although water seems to be the main driver
of the angular specificities. The reflectance associated with this class in the panchromatic
interval (0.51–0.73 nm) has a reflectance factor that does not differ much when considering
different moist content, but if considered from different points of view, wetlands’ reflectance
can vary from less than 0.05 (0–10◦) to almost 0.5 (45◦ forwards), i.e., 10 times higher [49].
In the BLA, wetlands are usually covered by non-forest formations, depending on which
biome they occur in. The phytophysiognomy can vary from lowland species in the Amazon
Forest to herbaceous and savanna arboreal species in Cerrado and shrubs and herbaceous
species in Pantanal. All of them are partially or fully flooded over the year, share a
significant presence of grassland, and are also found in the Brazilian Legal Amazon’s
territory [21]. In this case, the relative prominent off-nadir radiance levels seem to be not
a result of the heavy presence of obstructing features, but due to the anisotropy effect of
this class.

Lit areas in the context of forest formations encompass both primary and secondary
forests. Either way, as they are found in stably lit areas, some level of deforestation is
expected. Higher deforestation levels lead to stronger angular effects, which result in
differences in reflectance levels of deforested areas, varying from 35% to 75% higher at
off-nadir angles, depending on the spectral interval (75% for visible, 35% for NIR, 45%
for SWIR) [47]. Since the proportion of differences between view angles is smaller than
the ones found in wetlands, it is safe to assume that, although forest formations have a
virtually equal β1, they are not subjected to the same drivers affecting wetlands. In this
case, it is likely that near-nadir angles are the most affected by the forest canopy.

The ordering suggests that, although the β1 is higher in areas with lesser obstructing
features (Soybean, Savanna formation, Grassland, and Pasture), the obstruction is not
necessarily the only factor that interferes with the β1 levels. Classes that lie at both
extremes of the ranking (Mining, Urban Area, and Mosaic Agriculture and Pasture) present
more diverse settings of structures that can interact with the emitted radiance, which
makes it difficult to trace all drivers of the angular effect without a further inspection of
their characteristics.

In this particular experiment, urban classes are based on MapBiomas Version 6
data [21]. These areas are mapped on a 30 m scale, meaning samples must represent
the most frequent class under the VIIRS/DNB pixel’s footprint, either of urban areas or
any other class. Samples with a lesser proportion of urban structures over their landscape
are necessarily classified in another LUC context. Peripheral urban environments and
small isolated settlements are subjected to a higher proportion of radiance emerging from
overglowing areas, and a higher discrepancy between off- and near-nadir radiance levels
is also expected. In the case of samples that are classified as urban areas, the proportion
of urban environments with a variety of physical expressions results in well-balanced
sampled average radiance values between both angular compositions, only because the
region lacks highly verticalized areas.

Relational metrics can also provide further insights on this matter. Positive values of
DIF relational metrics indicate that the radiance levels from mining sites also present an off-
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nadir predominance over near-nadir (Figures 7 and 10). Specifically on extraction sites, the
observation is just the opposite: near-nadir values tend to be higher (Figure 7). In this sense,
the β1 coefficient could be explained by a disproportionate sampling of supporting facilities
to the detriment of extraction sites. However, extraction areas are proportionally more
extensive. Consequentially, it is likely that supporting facilities have lighting structures
that overlap the radiance levels found at extraction sites. These specific areas are not
persistently illuminated, i.e., they usually lack the fixed lighting structures that are found
on supporting facilities. As mining activity advances, extraction sites are subject to constant
infrastructural changes to meet the current needs of the extraction activity, which include
vehicle lights and other mobile light sources [50]. Although this interpretation is able to
provide an empiric insight on how mining areas have such particular low β1 levels when
compared with urban areas, the reason why oblique observations tend to register such
relatively higher radiance levels is still unclear.

The interpretation of β0 (intercept value) can be considered not only if it is an absolute
value, but also if it is negative or positive. In most cases, intercept values are negative,
indicating that if a certain spot emits or reflects light, it will only be detected by a near-nadir
observation if the off-nadir radiance exceeds the absolute value of β0. Mining areas and
wetlands are exceptions, for they present positive intercept values (see Figure 4b,c). In this
case, it is hard to set a scenario where night lights above a certain threshold are detected
firstly near-nadir and only after it exceeds this limit, it will present an anisotropic behavior
that favors the off-nadir viewing angle.

Mining areas comprise both artisanal mining spots (garimpos) and industrial mining
sites, which are very different in terms of infrastructure [21]. The potential variety of
lighting levels and settings present at those sites might be the only plausible explanation
aside from atmospheric-related processes and very specific anisotropic characteristics that
could lead the class to present intercept values above zero and slope coefficients less than
one. Wetlands, in turn, are more dynamic environments that are not defined by their
inland cover, but instead, by the frequency that they stay dry versus covered by water
during a year [21]. Therefore, even though this class can be associated with areas of Forest
Formation, Savanna Formation, Grassland Formation, and Pasture, it is expected to have
relatively limited settings of occupation in these areas, if not represented by overglow areas
in its totality.

The problem with the interpretation of the equation’s intercept coefficient is that, in
most cases, its value is lower than the minimum estimated detection limit of the DNB
sensor, putting in check the association of the predominant LUC classes as main drivers for
the presence of exclusive pixels (see Figure 4c–i). Only classes that are more likely to present
lighting infrastructure under the footprint of all their pixels have intercepts greater than
0.5 (mining and urban areas—Figure 4a,b). As a result, while isolated exclusive near-nadir
pixels still hold LUC and spatial distribution patterns that are worthy of investigation,
most exclusive off-nadir pixels are probably a result of the higher sensibility of oblique
viewing angles to the overglow effect. The occurrence of higher proportions of certain LUC
classes on these exclusive off-nadir pixels, such as Forest Formation and Pasture, might be
simply by chance since they are predominant in the study area and the estimated intercept
coefficient is lower than 0.5 units.

4.2. Association between Man-Made Typologies and Relational Metrics

It is not reasonable to assume that every type of settlement or facility can be represented
by the metrics derived from the relation between off-nadir and near-nadir radiance, but a
couple of different types of structures should be more easily distinguishable because of their
unique spatial features, types of lighting infrastructure, and landscape patterns in general.
Considering the angular effect behavior reported in [30,31], areas with a rather high density
of tall buildings should present a higher radiance towards the nadir, since off-nadir angle
views might be blocked by buildings’ facades. Residential areas, on the other hand, will
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not be able to block the off-nadir radiance as much, allowing a clear differentiation between
highly verticalized areas and any other urban typology.

If the slope were interpreted by itself, one could conclude that there is no preferential
direction of propagation of anthropogenic lights in urban environments, which has been
proven wrong multiple times [30–32,51]. Quite the opposite, it is likely that urban environ-
ments are complex enough across the BLA that the off-nadir and near-nadir preferential
directions of propagation of the light can cancel each other out. This is an important feature
of the relational metrics, for it shows that they can be used to set a baseline for analyzing a
city’s structure by comparing the slope coefficients estimated on scales different from the
BLA, such as city-wise. This possibility would only be valid if there was a clear relationship
between different urban typologies and their relational metrics.

In the BLA, it is not as common to find cities with the same degree of verticalization as
in other cities from different regions of the country and the world [52,53]. Even in some
state capitals, the presence of tall buildings is rather scarce. This limits experimentation
in certain ways, but it is still possible to define a range of urban typologies based on the
presence of tall buildings. The structures of cities are also very different among capitals
and smaller cities, for a large parcel of the BLA territory still has a very precarious urban
system, lacking appropriate lighting systems and overall basic maintenance [7–9].

In many cases, the inter-city transportation system is often dependent on inland
waterways, which, without a proper navigation system, also results in a lack of means
to provide the infrastructure that befits the local needs [7,8,54]. Although there are many
further causes of the current mismatch in resource provision in the BLA, often political, the
following discussion is limited to the physical aspects that might be accountable for the
angular effect.

In urbanized areas, there are a higher number of factors affecting the radiance values
and the way radiation interacts with these surfaces. Even so, it is possible to reduce these
factors to building height, vegetation, and building area (footprint) [31]. These components
might not be exactly as important in some human settlements of the BLA, for they manifest
themselves in patterns that have not yet been studied from the perspective of nighttime
lights, especially in small settlements far away from urban centers. Even though there
is a significant overlap in the distribution of the relation metrics, their central tendency
can most definitely be used as a parameter for classifying urban typologies in the BLA.
However, these results are limited to a few representative samples. Therefore, relational
metrics can be included as an extra dimension of any classification method, which would
also benefit from other data derived from remote sensing images, such as the average size
of building footprints, street and lot size, and variables that would help to differentiate
wealthy areas and industrial sites as well [9,55].

A time series of these metrics would also help to understand how the urban class of a
certain settlement is evolving. For instance, consider the variance of RES and REL in areas
with an increasingly higher variety of RES and REL over the years. This could indicate that
the area is developing into a more complex environment. At the same time, the analysis
of the central tendency of the relational metrics in the same site over time would provide
further information to decide whether it is a type of development that favors off-nadir
radiance levels or near-nadir levels.

Concerning the relational metrics from mining spot samples illustrated in Section 3.2,
the behavior of these same metrics might be triggered by different processes. Given that
variation in radiance values and the magnitude of the angular effect are both positively
correlated with the radiance level [31,56], the narrower distributions of RES and DIF are
likely due to low levels of radiance detected in extraction sites in comparison to supporting
facilities. The higher scattering of the REL from these surfaces supports this observation,
for it means that the radiance values found in areas for extracting minerals can present a
less stable radiance value in between the sampled areas.

In this sense, the combination of relational metrics could benefit different purposes
of classification. Considering a single mining complex, the DIF metric has the potential to
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further classify mining sites based on areas used for administration and support, and areas
used for the extraction of minerals. Since the relative difference has a higher variance among
the relational metrics, other experiments should consider its use to differentiate at least the
method used for extracting minerals. If considering that the BRDF of different types of bare
soils is also specific [45], one should expect a different behavior of the relational metrics
from different types of mining activities, specifically from the REL metric.

4.3. Suitability of the Annual Composites in Comparison to Daily DNB Images

Although a recent letter published by Kyba et al. (2022) has discussed some applica-
tions that might benefit from the use of angular observations of nighttime lights [51], the
angular effect is, so far, generally treated as a noisy aspect of nighttime observations [31,32].
In studies aiming to detect significant changes in the time series of radiance levels at night,
relying on daily images is usually the best option since they are sampled on a frequency
that matches the studied issue. In these cases, the angular effect should be considered a
component of variation in radiance levels, such as in power blackout detection, monitoring
the recovery of compromised structures affected by natural disasters, vehicle traffic at night,
light pollution, etc. [57–60].

Daily images are, however, susceptible to a range of issues that do not play a major
role in annual composites. In the urban context, for example, human activities that take
place at night are usually paced by local nighttime habits, which may vary both in space
and time [56,61]. In an experiment performed in two neighboring cities of considerable
different sizes in northern Spain, Bará et al. observed that lights coming from residential
areas and vehicles can account for up to approximately 10% of light emissions at 1:00 am
local time, but they decrease steadily until they reach a minimum close to 0% at 4:00 a.m. in
both cases [61]. Similar results were found by Li et al. [62]. Since this roughly corresponds
to the timespan of the SNPP/VIIRS overpass, variations are expected daily, simply due to
the satellite’s overpass time.

When considering pinned locations, fluctuations in nighttime radiance levels have
been shown to be high enough to make analyses based on single pixels problematic.
Moreover, variations of nearby pixels are often correlated, which indicates that conclusions
drawn from methods that do not analyze pixels based on their statistical terms might
be more susceptible to outliers and transient sources of light that are hardly accountable.
In this context, it is fair to assume that studies focused on images with coarser spatial
resolution will manifest a more stable radiance over time since differences are eventually
canceled by each other once they are grouped by some spatial criteria [56].

At the city scale, intra-annual patterns of light emissions can be correlated to a diverse
range of sociodemographic profiles and cultural patterns that, ultimately, make use of
lighting differently throughout the year [63]. Therefore, spatially aggregating pixels in
hopes of minimizing the fluctuation of radiance levels will only be a good decision if one is
not interested in investigating intracity radiance fluctuations, or any other spatial reference
that does not match the spatial distribution of the object of study. Even so, nighttime daily
images will also be affected by trends resulting from different human routines across the
week and their cultural patterns across the year. Basically, if one is interested in studying
lighting systems at a daily scale, such as power outage detection, energy consumption,
or natural disaster monitoring, the ideal scenario would consist of modeling the human
activities for one specific study area with common settings and also considering their
behavior on a weekly and annual basis.

By reducing daily images to annual composites of nighttime lights, unpredictable
sources of variation in radiance levels can be coerced to a minimum, so the differences in
angular composites can better represent the “true” radiance detected at different angles.
Of course, this represents a limitation for studies in which a higher frequency of data is
desirable, but it may also provide a better baseline for detecting spatial patterns of human
settlements based on the expected behavior of the angular effect.
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Recent studies have shown that at least three main types of angular effects are present
in urban environments: positive, negative, and U-shaped. These denominations illustrate
the graphical scattering of radiance values of nighttime lights when a fixed location is
sensed at progressively higher VZAs. A positive or negative effect reflects the monotonic
behavior of the radiance as VZA varies and is closely influenced by the different types of
buildings on the sensor’s line of sight. If positive, it means that the radiance level increases
as the VZA also increases. This behavior is usually found in residential areas with few
obstructing features. By contrast, a negative angular effect is often found in areas with a
higher level of verticalization, such as commercial areas with taller buildings. The U-shaped
angular effect is interpreted as areas where there is a mixture between the positive and
negative angular effects, usually associated with buildings with larger footprints, such as
in industrial areas [31,32].

In the annual composites, the angular effect cannot be exactly reproduced, for the
process of composition relies on the averaging of the radiance values in only two different
VZA ranges: near-nadir (0–20 degrees) and off-nadir (40–60 degrees) [29]. Hence, assessing
parameters of urban infrastructure and morphology from annual angular composites
requires a different approach, such as using relation metrics (Section 3.2.1). On top of
that, cities that were considered “representatives” in other studies might not represent the
typology of human settlements in the BLA. This reinforces the idea that methods relying
on nighttime images, angular or not, should consider a more regional approach and also
focus on how scale affects the behavior of relational metrics and similar parameters.

5. Conclusions

Techniques for remote sensing of nighttime lights are evolving. As novel methods
for analyzing this sort of data are explored, new dimensions of the relationship between
anthropogenic lights and the environment become evident. This work explores specifically
the potential of using angular annual composites of nighttime lights for studies around
human settlements and manmade features in the Brazilian Legal Amazon (BLA) territory.
In addition to explaining the different detection patterns of the nighttime annual angular
composites (VNP46A4), our results presented the potential to detect and characterize
human activities in the BLA.

The first part of our results indicates that, although off-nadir observations are persis-
tently higher than near-nadir observations in general, this is caused by the overwhelming
presence of features that contribute preferentially to the obstruction, reflection, and emis-
sion of lights in the off-nadir range. The overglow effect is the main source of pixels
with higher off-nadir values or even exclusive off-nadir pixels. For this reason, it is rec-
ommended that studies that aim to make use of annual composites keep in mind that
near-nadir observations will tend to better allocate the distribution of prominent lighting
infrastructure, while off-nadir composites might be a good source of data to explore the
extent of light pollution, for example.

In the context of urban studies, from the analysis of the angular annual composites,
it is possible to identify that they have a similar potential to the daily images for the
identification of urban typologies but also present the inherent advantages of annual
composites, such as a small number of low-quality pixels, which makes them more suitable
for studying phenomena that occur on temporal scales greater than yearly and on areas as
vast as the BLA.

On the other hand, the meteorological conditions of most of the Amazon biome in
the BLA result in a low availability of cloud-free observations, one of the main aspects
that defines a good-quality observation in the QA band. Because of that, even when
dealing with the annual composite that weights all angles for its composition (the all-angles
composite), the angular effect could be observable. That is due to the possibility of a
disproportional input of a specific range of VZAs into the all-angles composite when only
a few good observations are available, a feasible scenario in the Amazon region. Therefore,
comparative studies utilizing annual composites should consider that locations with a
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higher incidence of bad-quality observations might still have their pixels influenced by the
angular effect, introducing an angular bias to the analysis.

Through angular nighttime lights, it is possible to detect, identify, and monitor the
human presence and some of its occupation patterns. However, as new perspectives
for using nighttime lights are being studied, new issues are still being revealed. This
work provides a baseline for future studies that aim to use the VNP46A4 to assess the
parameters of human endeavors in the BLA or in any other region in which patterns of
use and occupation differ from most of the types of human settlements contemplated in
previous studies.
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Appendix A

Table A1. p-values (lower left) and U-statistic (upper right) from the Mann–Whitney test between
relational metrics—residual values (RES).

Industrial Sites Mid- to
High-Income

Low-Income and
Dense Low-Income Verticalized Areas

Industrial sites - 193 279 347 452
Mid- to high-income 0.001 - 501 567 624

Low-income and dense 0.038 0.293 - 522 590
Low-income 0.168 0.366 0.786 - 529

Verticalized areas 0.665 0.088 0.279 0.307 -

Table A2. p-values (lower left) and U-statistic (upper right) from the Mann–Whitney test between
relational metrics—relative values (REL).

Industrial Sites Mid- to
High-Income

Low-Income and
Dense Low-Income Verticalized Areas

Industrial sites - 456 514 404 723
Mid- to high-income 0.513 - 531 406 750

Low-income and dense 0.055 0.109 - 288 684
Low-income 0.023 1.87·10−4 4.787·10−5 - 788

Verticalized areas 2.8·10−5 1.29·10−5 5.5·10−3 1.37·10−8 -

ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/VNP46A4
ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/VNP46A4
mapbiomas.org


Remote Sens. 2023, 15, 3515 25 of 27

Table A3. p-values (lower left) and U-statistic (upper right) from the Mann–Whitney test between
relational metrics—simple difference (DIF).

Industrial Sites Mid- to
High-Income

Low-Income and
Dense Low-Income Verticalized Areas

Industrial sites - 328.5 431.5 310 635
Mid- to high-income 0.099 - 513 456 704

Low-income and dense 0.186 0.131 - 368 666
Low-income 0.009 0.442 0.002 - 704.5

Verticalized areas 0.006 9.02·10−4 0.018 8.89·10−5 -

Table A4. p-values (lower left) and U-statistic (upper right) from the Mann–Whitney test between the
average radiance (RAD).

Industrial Sites Mid- to
High-Income

Low-Income and
Dense Low-Income Verticalized Areas

Industrial sites - 210 214 387.5 63
Mid- to high-income 8.14·10−5 - 443 656.3 181

Low-income and dense 3.05·10−5 0.676 - 636.5 189
Low-income 0.615 2.93·10−4 8.89·10−5 - 74

Verticalized areas 1.10·10−8 2.75·10−4 5.43·10−4 1.25·10−8 -
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