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Abstract: We introduce an approach for the direct measurement of the gravitational potential (GP)
along the trajectory of a satellite, with a specific focus on Low-Earth Orbit (LEO) satellites. A LEO
satellite communicates with several Geosynchronous Equatorial Orbit (GEO) satellites via frequency
signal links. The GP difference can be measured in real-time using the gravitational frequency shift
approach by equipping both LEO and GEO satellites with precise atomic clocks. Since the GP at the
high orbits of the GEO satellites can be precisely determined by the present gravitational field model
EGM2008, the GP along the LEO satellite’s trajectory can be determined. In this study, simulation
experiments were conducted, featuring a GRACE-type satellite as the LEO satellite in communication
with three equidistant GEO satellites. The results indicated that the accuracy of the GP measurements
along the LEO satellite’s trajectory primarily depends on the precision of the onboard atomic clocks.
Supposing optical atomic clocks attain an instability level of 1 × 10−17τ−1/2 (τ in seconds), we
determined the GP distribution covered by the LEO satellite’s trajectories with 30-day observations.
Then, we determined a gravitational field at the centimeter level based on the GP distribution. The GP
data derived from the trajectory of a LEO satellite can be utilized to establish temporal gravitational
fields, which have broad applications in different disciplines.

Keywords: relativity; satellite; gravitational potential; frequency link

1. Introduction

The Earth’s gravitational field, a fundamental physical field, plays a vital role in nu-
merous applications across various fields, rendering its determination imperative within
the geodetic community. The gravitational potential (GP) field, a consequence of the Earth’s
density distribution, can be determined inside and outside the Earth, essentially across
the entire spatial domain, by applying the Newtonian integral formula. As a result, the
gravitational field throughout the space is established by applying the gradient operator to
the GP field. However, the Earth’s density distribution, as per the preliminary reference
Earth model (PREM) [1], has been inadequately determined, making the gravitational field
based on this distribution insufficient for general application requirements. Fortunately,
the Earth’s external gravitational field can be established by considering certain gravitation-
related distributions, such as gravitation or potential distributions, over the Earth’s surface
(boundary) [2]. Determining a gravitational field (or GP field) based on the given distribu-
tion values on the boundary is termed the geodetic boundary value problem (GBVP). The
conventional approach to addressing this boundary value problem involves using spherical
harmonic analysis, which successfully represents the external gravitational field through
comprehensive coverage of gravitation (or GP) measurements over the Earth’s surface or
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a surface defined by the orbits of a satellite. Over the past few decades, satellite-based
gravity measurement techniques have emerged to surmount challenges related to practical
measurements on the Earth’s surface, particularly in mountainous and oceanic regions.
These techniques have proven instrumental in gravitational field determination.

Kaula [3] introduced a method for formulating a gravity model by calculating the
spherical harmonic coefficients based on the observations of orbit perturbations from
artificial satellites. This seminal work sparked substantial efforts and led to significant
advancements in delineating the Earth’s gravitational field using diverse datasets, including
satellite radar altimetry data, satellite tracking data, terrestrial gravity data, and combined
data sources. The launch of dedicated satellite gravity mapping missions, such as the
CHAMP mission in 2000 [4], the GRACE twin satellite mission in 2002 [5], and the GOCE
mission in 2009 [6], heightened interest in the recovery of satellite gravitational fields.
Furthermore, various techniques have been proposed, including satellite accelerations [7],
orbital perturbations [8], harmonic analysis [9], and energy-integral methods [10–12]. These
satellite-based gravity measurement approaches are particularly beneficial because they
provide comprehensive coverage of the Earth.

Recent advances in time and frequency science have facilitated the development of
optical-atomic clocks (OACs), achieving stability and accuracy superior to the 1× 10−18

level over several hours in laboratory settings [13–15]. Notably, ultra-high-stability onboard
and portable satellite clocks are anticipated to become available shortly [16,17]. This
development offers the prospect of determining the GP differences between a satellite and
a ground station. Precise atomic-clock-related frequency signal links will be utilized, rooted
in the principles of general relativity [18]. Consider a scenario in which a satellite transmits
frequency signals received by two different ground stations. The GP difference between
these stations can be ascertained by observing the frequency shift [19]. However, the precise
extraction of the frequency shift attributed to the GP difference between a ground station
and a satellite presents challenges. The primary reason is the contamination of observations
by the Doppler effect and influences from the ionosphere and troposphere. In response to
these difficulties, a more precise formulation of the satellite frequency signal transfer (SFST)
approach, based on the tri-frequency combination technique, has been developed [20,21].
This approach aims to determine the GP difference between a satellite and a ground station
or between two satellites with an accuracy level of several centimeters when establishing
high-precision frequency signal links. For the practical application of the SFST method
in geodesy, the relative stability of clocks should reach about 10−18 over several hours,
corresponding to approximately 1 cm in height.

In the present study, we propose an approach to determine the GP of a LEO satellite
along its trajectory, employing the SFST technique. The GP of a LEO satellite can be utilized
to construct an Earth Gravitational Model. We refer to the LEO satellite as the Target
Satellite (TS) for ease of reference. In Section 2, we provide a concise overview of the
SFST technique and the gravitational frequency shift approach, demonstrating how these
methods can ascertain the GP difference between a TS and a GEO satellite. Subsequently,
we propose an approach to determine a GP distribution over the TS-sphere by establishing
frequency links between a TS and three GEO satellites. In Section 3, we conduct simulation
experiments under various conditions to evaluate the approach proposed in this study. We
summarize the experimental results and discuss potential issues in Sections 4 and 5.
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2. Materials and Methods
2.1. Gravity Frequency Shift

General relativity theory proposes a correlation between a clock’s frequency and the
gravitational potential (GP) at the clock’s location. Consider two clocks situated at disparate
positions P and Q, with their respective GP values being UP and UQ, the frequencies
fP and fQ of the two clocks conform to a particular equation as delineated in previous
studies [22,23].

UP −UQ =
fP − fQ

f
· c2 + O(c−4), (1)

where c represents the speed of light in a vacuum, and f signifies the average of frequencies
fP and fQ. Terms on the order of O(c−4) denote higher-order terms that may be neglected,
specifically when the two stations are near Earth. By accurately measuring and comparing
the clock frequencies fP and fQ, one can derive the GP difference UP − UQ between
positions P and Q. Tackling geodetic issues, such as determining GP, using the clock
comparison technique is called relativistic geodesy [24,25].

Presently, three methods have been suggested for comparing clocks situated at distinct
locations: (1) clock transportation [26,27], (2) transmission of frequency signals via optical
fiber links [28–30], and (3) transmission of frequency signals through free-space links and
satellites [21,31]. The first two approaches are applicable to terrestrial clock comparisons,
while the third is specifically crafted for satellite-based comparisons. However, transferring
frequency signals via satellites poses significantly more complexity than what is indicated
in Equation (1). For instance, the high-speed motion of the satellite induces Doppler
effects. Furthermore, space media, such as the ionosphere and troposphere, can cause
frequency shifts during the propagation of microwave or optical signals. To mitigate these
issues, Kleppner et al. proposed a technique for transmitting microwave frequency signals
between a satellite and a terrestrial site [32]. This method has been successfully applied to
validate Einstein’s equivalence principle in the Gravity Probe A (GP-A) experiment [33,34].

The crux of the frequency transfer method involves the concurrent connection of
a ground site and a satellite through three microwave links, as depicted in Figure 1. A
frequency signal fe is transmitted by ground station E at time t1, an event denoted as the
uplink (represented by a blue line). Upon receipt, satellite S retransmits the received signal
f ′e (downlink depicted by the blue line) and emits a new frequency signal fs at time t2
(downlink represented by a dark-blue line). These signals are then received at the ground
station at time t3 at position E′ as f ′′e and f ′s . Here, φ denotes the gravitational potential (GP).
In this scenario, most medium influences and the first-order Doppler effect are nullified in
the output beat frequency ∆ f , defined as follows:

∆ f
fe

=
f ′s − fs

fe
− ( f ′′e − f ′e) + ( f ′e − fe)

2 fe
, (2)

where fe and fs represent frequencies of the signals emitted from the ground site and the
satellite. These signals are then received as f ′e and f ′s at the satellite and the ground site,
respectively. When the satellite receives the frequency signal f ′e , the signal is instantaneously
transmitted and subsequently received at the ground site as f ′′e . For additional details,
please refer to [33].

Kleppner’s method was subsequently refined and applied to relativistic geodesy for
GP determination [20,21]. This refined method is commonly referred to as the satellite fre-
quency signal transmission (SFST) method. According to SFST, the GP difference between
a ground site and a satellite is defined as follows [21]:

∆φes

c2 ≡ φs − φe

c2 =
∆ f
fe
− v2

s − v2
e

2c2 −
4

∑
i=1

q(i) + Λ f + O(c−5), (3)
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where ∆φes is the GP difference between the satellite and the ground station; ve and
vs are velocities of the ground site and the satellite, respectively. The second term of
the Equation’s right side contains the second-order Doppler effect. q(i) (i = 1, 2, 3, 4) are
quantities associated with the velocities and positions of the ground site and satellite, vector
potential, second Newtonian potential, and third- and fourth-order terms. Λ f shows the
correction terms for ionospheric, tropospheric, and tidal effect; O(c−5) represents higher-
order terms, which can be disregarded due to their negligible impact. For comprehensive
details, please refer to [21].

Figure 1. The satellite frequency signal transmission (SFST) technique for determining the gravita-
tional potential difference (GP) between a satellite and a ground site.

The theoretical accuracy of Equation (3) is of the order 10−19, demonstrating a signif-
icant improvement over the original formula used in the GP-A experiment, which had
an accuracy of approximately 10−15. With the stability of optical-atomic clocks (OACs)
achieving a level of 10−18, the SFST technique can yield a measurement of GP with precision
to the order of a few centimeters [21].

2.2. Determination of Gravitational Potential along the Target Satellite Orbit

Supposing the GP value of a terrestrial station is known, the GP values for a satellite
can be ascertained by establishing SFST links. By determining the GP distribution across a
TS sphere (a sphere defined by the orbits of satellites similar to the GOCE or GRACE types),
the Earth’s external gravitational field can be deduced correspondingly [35]. However,
due to the proximity of the satellite’s orbit for gravitation measurement (for instance, the
altitude of the GRACE satellite is around 500 km), only a short arc length of the orbit is
visible to a specific terrestrial station. Ascertaining the GP distribution across the TS sphere
would necessitate hundreds of terrestrial datum stations with known GP values to ensure
the satellite can continuously connect to at least one terrestrial station at any given time [36].
Furthermore, the majority of Earth’s surface is composed of oceans, which further compli-
cates the task of establishing a sufficient number of terrestrial datum stations to meet the
observation objectives. Consequently, our capacity to deploy the necessary infrastructure
for continuous GP measurement of the target satellite is considerably restricted.
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The SFST method described in Section 2.1 was initially conceived for determining the
GP difference between a terrestrial station and a satellite. Nevertheless, with some modifi-
cations, it can also be adapted to determine the GP difference between two satellites [36].
Imagine a scenario in which a target satellite (TS) in a low Earth orbit is linked to a Geosyn-
chronous Equatorial Orbit (GEO) satellite, herein referred to as GS for simplicity, situated
in a higher Earth orbit. The configuration of their inter-satellite SFST links is described as
follows.

Referring to Figure 2, a frequency signal fG is generated by an emitter on the GS at a
specific time t1. This signal is subsequently received by the TS at time t2. Upon receiving
fG, the TS transmits it back as f ′G and simultaneously emits a new frequency signal fT . The
receiver on the GS, now designated as GS′, intercepts both signals ( f ′G and f ′T) from the TS
at a later time t3. During the period of signal emission and reception, the GEO satellite’s
position in space transitions from GS to GS′. The target satellite transmits and emits its
signals at the same instant it receives the signal. As such, its position in the signal links
is designated as the point TS at time t2. By setting fG = fT , the gravitational potential
difference between the GS and the TS can be expressed as:

∆φGT

c2 ≡ φT − φG

c2 =
∆ f
fG
−

v2
T − v2

G
2c2 −

4

∑
i=1

q(i) + Λ f + O(c−5), (4)

where the subscripts G and T represent the GS and TS respectively, and the beat frequency
∆ f is given as:

∆ f
fG

=
f ′T − fT

fG
−

( f ′′G − f ′G) + ( f ′G − fG)

2 fG
. (5)

The transmission process might introduce a slight latency, leading to slight discrepan-
cies in the satellite’s position between the signal emission and reception times. Considering
a signal transponder delay of approximately 800 ns [37] and a typical orbital height of the
TS of around 500 km (with a velocity of about 7.6 km/s), the TS moves a mere 0.61 cm
between the emission and reception of signals. This minute displacement is negligible for
observations requiring a centimeter scale precision level.

Figure 2. The satellite frequency signal transmission (SFST) technique for determining the gravita-
tional potential difference (GP) between two satellites.
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Analogous to the satellite-to-ground link, we postulate that the GP difference between
the GS and TS is measured using the SFST method, with the absolute GP values of the
GS provided a priori. Consequently, this allows the GP values of the TS to be derived.
The altitude of a typical GS is roughly 35790 km above the equator. Referring to Figure 3,
in the scenario where the TS is a LEO satellite in a polar orbit, positioned approximately
500 km above the geoid, the distance between the target satellite and Earth’s center is
about 6870 km. The distance between a GEO satellite and Earth’s center is about 42,170 km.
When the TS is placed at the poles (N or S), it can connect the GS without being blocked by
the Earth. The TS is visible until reaching the P point (if block threshold OH = 6400 km,
the angle of PON θ = 12.8◦). Thus, only two uniformly distributed GSs are necessary to
maintain continuous SFST links between a GS and the TS, enabling the determination of
the GP values of the TS’s orbital sphere. However, in practical scenarios, it is advisable
to employ three uniformly distributed GSs to ensure stable and reliable frequency signal
connections (see Section 3.1).

Figure 3. The intervisibility between a GEO satellite and a LEO satellite (the target satellite). The two
satellites are intervisible for more than half of the orbit period of the target satellite.

The GP distribution across the TS-sphere allows the gravitational field external to
the TS sphere to be derived. Furthermore, employing the spherical harmonic expansion
expression, the identified gravitational field can be extended downward to the Earth’s
surface [38]. Therefore, the GP values over the TS sphere can be used directly to construct
an Earth Gravitational Model.

3. Simulation Experiments

In this section, we undertake a series of simulation experiments to substantiate the
inter-satellite SFST technique for GP determination over the TS spheres and to estab-
lish an Earth Gravitational Model (EGM). Presently, the stability of an onboard satellite
atomic clock approximates 10−13τ−1/2 (τ in seconds) [17,39]. Nevertheless, the most ad-
vanced optical atomic clock currently available on the ground achieves the stability of
9.7× 10−18τ−1/2 [15]. Therefore, our experiments implement clock stability levels rang-
ing from 10−13τ−1/2 to 10−17τ−1/2, in anticipation of the eventual integration of superior
clocks onboard satellites. We will juxtapose observed GP distributions with their true
values at the TS’s orbit to assess our approach. Additionally, we will compare the derived
EGM and the EGM2008 model [40]. The experiment’s framework is depicted in Figure 4.
To assess the efficacy of our method, we conduct a comparative study of the observed and
true values of the TS’s gravitational potential. Additionally, we compare the EGM2008
model with the recovered Earth Gravitational Models up to degree/order 200.



Remote Sens. 2023, 15, 3514 7 of 17

Figure 4. The scheme of the simulation experiment.

3.1. Input Data

Section 2.2 demonstrates that a pair of GSs can maintain consistent SFST links to
a TS. However, employing three evenly distributed GSs positioned above the equator
is preferable for enhanced reliability in real-world applications. For our experiments,
we selected the following satellites to serve as GSs: the Chinese communication satellite
CHINASAT-1A (at 130.0◦E), the European Union meteorological satellite METEOSAT-9
(at 9.2◦E), and the US communication satellite ECHOSTAR-10 (at 110.2◦W). The GRACE-
FO 1 satellite, with an orbit height of approximately 500 km, was chosen as the TS. The
configuration for this experiment is illustrated in Figure 5. As the TS orbits the Earth, it
maintains SFST links with at least one or two GSs. Leveraging the gravitational potentials
known at the GSs, we can effectively determine the gravitational potential at the TS’s orbit.

Figure 5. The target satellite (TS) retains consistent connections with three geosynchronous equatorial
orbit satellites (GSs).
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The orbital period of the TS, specifically GRACE-FO 1, is approximately 1.6 h, with
an inclination of about 89◦. In order to acquire GP data across its orbital sphere with
a resolution of 30′ × 30′, it is necessary to conduct continuous observations for at least
576 h (or 24.0 days), with the observation interval not exceeding 8.0 s. Consequently,
we have established an observational period of 30.0 days with observation interval of
1 s, thereby fully meeting the resolution requirements (see Figure 6). It is pertinent to
note that minor unobserved areas exist at the poles due to the TS’s inclination not being
exactly 90◦. However, our computations (detailed in Section 4) indicate that this factor has
negligible influence on establishing an EGM. The TS is linked to the closest observable
GS for every observation via SFST links. The base frequency, fG, transmitted by the three
GSs is alternately set as 2.8 GHz, 3.0 GHz, and 3.2 GHz. Orbit data for the four satellites
(one TS and three GSs) are derived from two-line element (TLE) set data, utilizing the
Simplified General Perturbations 4 (SGP4) model [41]. Subsequently, the GPs at the orbits
of these satellites can be determined using the EGM2008 model. All these data are treated
as true values. Thus, errors associated with orbit data and GP are only considered when
we conduct simulated observations.

Figure 6. The trace of target satellite (TS) in Earth-centered, Earth-fixed (ECEF) coordinate for
(a) 1 day and (b) 5 days.

The ionospheric and tropospheric conditions significantly impact the frequency of
microwave signals. To ascertain the values for electron density, we employed the Interna-
tional Reference Ionosphere (IRI) model [42] as a means to approximate the ionospheric
effects [43]. Given the TS’s altitude, roughly 500 km, which surpasses the tropospheric
layer’s extent (typically up to 60 km from the ground), the influence of the troposphere
can be considered negligible. The GP at the satellites’ orbits is also subject to periodic
tidal effects. However, these effects are well modeled [44] and can be effectively mitigated
with robust software tools such as Tsoft [45] or ETERNA [46]. Our experiment used a
Python library Tidal Potential [47] to construct and analyze tidal signals. The input data
are summarized in Table 1.

Table 1. The input data utilized in simulation experiments.

Entities Values of Parameters

GS Satellite METEOSAT-9 ( fG = 2.8 GHz)
CHINASAT-1A ( fG = 3.0 GHz)
ECHOSTAR-10 ( fG = 3.2 GHz)

TS Satellite GRACE-FO 1
Gravity field model EGM2008
Ionospheric model International Reference Ionosphere
Tide correction Tidal Potential
Observation duration 1∼30 January 2023
Mearsurement interval 1 s
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3.2. The Simulated Observations of GP along the TS Orbit

The next step involves determining the GP values at the TS’s orbit once the input
data have been established. We consider three GSs, each denoted as GSi (i = 1, 2, 3),
respectively. By taking an SFST measurement every 1 s, we can derive an observed GP
difference value, ∆φ̂GTi(t), according to Equation (4). Assuming the GP of GSi(t) is pro-
vided (denoted as φGSi (t)), the observed GP of the TS (denoted as φ̂T(t)) can be obtained as
φ̂T(t) = φGSi (t)− ∆φ̂GTi(t). Practically, the absolute GP values of the GSs can be calculated
using an EGM, such as EGM2008. Given their considerable distance from Earth, the preci-
sion of the calculated GPs is relatively high, exceeding 0.1 m2/s2. The error in the absolute
GP values along the orbits of the GSs is denoted as epot in Equation (6).

The observed values φ̂T(t) differ from the true GP value φT(t) due to the influence of
various sources of error. In this simulation experiment, we accounted for clock error (eclk),
errors in the satellite’s position and velocity (epos and evel), ionospheric residual error (eion),
potential errors (epot), and tidal correction residual error (etide). The errors above are treated
as noises, necessitating their simulation and subsequent addition to the true values based
on respective error models. The cumulative errors, eall , are expressed as follows:

eall = eclk + eion + epos + evel + epot + etide, (6)

and the observed values φ̂T(t) can be expressed as

φ̂T(t)
c2 =

φG(t)
c2 +

∆ f (t)
fG
− vT(t)2 − vG(t)2

2c2 −
4

∑
i=1

q(i) + Λ f (t) + eall(t). (7)

The nature and magnitude of such errors play pivotal roles in this study. Therefore, it is
necessary to investigate various error models corresponding to different sources of errors
in order to bring the simulation case closer to the real-world scenario.

Initially, we establish the clock error magnitude of eclk as 1.0× 10−13τ−1/2, which is
currently attainable. Given the best contemporary laboratory clocks, which demonstrate
stability of 9.7× 10−18τ−1/2 [15], we reduced the magnitude of eclk to 1.0× 10−15τ−1/2 and
1.0× 10−17τ−1/2 to simulate specific cases under varying clock precision levels. Despite
numerous types of random noises affecting atomic clock signals [48], white frequency mod-
ulation and random walk frequency modulation are the most significant components [49].
Accordingly, the behaviors of clock errors are modeled as follows:

eclk(t) = aclk + bclk · t + cclk · w(t) + dclk ·
∫ t

0
ξ(t)dt, (8)

where aclk, bclk, cclk, and dclk denote constant coefficients, while w(t) and ξ(t) both cor-
respond to standard white Gaussian noises. Each term on the right side of Equation (8)
carries a distinct physical implication: aclk signifies the initial frequency difference, bclk · t
denotes the drift term, cclk · w(t) represents the white noise component, and dclk ·

∫ t
0 ξ(t)dt

indicates the random walk effect. A series of frequency comparison data with embedded
errors can be generated by assigning suitable values to the constant coefficients based on
the performance of OACs, as outlined in [13]. The statistical properties of the three clock
error series are illustrated in Figure 7.

The magnitudes of other error sources are substantially smaller when compared to
clock errors. These are briefly discussed below, while more detailed explanations can be
found in [21].



Remote Sens. 2023, 15, 3514 10 of 17

Figure 7. The total Allan deviation for three different clocks. The instabilities of the clocks are
10−13τ−1/2, 10−15τ−1/2 and 10−17τ−1/2 for case 1, case 2 and case 3, respectively.

The impact of satellites’ velocity errors is primarily determined by the (v2
T − v2

G)/(2c2)
term in Equation (4). The velocity uncertainty of a spacecraft can reach 0.1 mm/s [50],
corresponding to an approximate evel ≈ 10−17 in relative frequency. The position errors
of satellites influence the determined GP over the TS’s orbit since the satellite’s GPs are
observed at positions divergent from the assumed positions. The magnitudes of these
errors can be estimated using the EGM2008 model by determining the GPs of two slightly
different positions. The position uncertainty of a GEO or LEO satellite is around 1 dm
currently [51,52]. However, it is highly probable that if these satellites are equipped with
high-precision atomic clocks, the position uncertainty can be improved to 1 cm. Therefore,
in our experiments, we suppose the satellites’ position uncertainty is around 1 cm, corre-
sponding to a maximum of 8.5× 10−2 m2/s2 in GP (epos < 10−18 in relative frequency).
Similarly, considering the precision of GP values determined by EGM2008 is also about
1 cm in height, the magnitude of potential error epot is less than 10−18 in relative frequency.

The ionosphere’s effect on the frequency shift of a one-way signal is presented as [43]:

∆ fion = − f
c

d
dt

∫
L
(ni − 1)ds, (9)

where ∆ fion is the frequency shift caused by ionosphere, L shows the path of the signal’s
propagation, and ni denotes the phase index of refraction of ionosphere expressed as [53]:

ni = 1− 40.3
Ne

f 2 + O( f−3), (10)

where Ne represents the electron density per cubic meter and O( f−3) designates high-order
terms, which are omitted as they are at least two orders of magnitude smaller than the f−2

term [54]. The distribution of electron density, Ne, can be acquired from the IRI model, and
the path of the frequency signals can be deduced from the satellite orbit data. Therefore, the
∆ fion value can be accurately modeled, and only the residual values need to be considered.
Furthermore, the electron density is relatively low (the maximum density is at about 350 km
height [55]), as the signals between the TS and the GSs are higher than 500 km from Earth’s
surface. Consequently, in this satellite-to-satellite case, the magnitude of the ionosphere
error, eion, is estimated as 10−19 in relative frequency. This magnitude is significantly
smaller than the satellite-to-ground case estimated in our previous studies [21].
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Tidal effects can be corrected and modeled by the Tidal Potential library. The tidal
effects on a satellite are smaller and can be estimated more precisely than on a ground
station. We assume that the magnitude of the tidal error, etide, is approximately 10−18

in relative frequency because the tidal effects can be modeled to a precision of several
centimeters at a ground station. Table 2 illustrates all errors (or residual errors) magnitudes.

Table 2. Magnitudes of different error sources in determining the gravitational potential difference
between the target satellite (TS) and a geosynchronous equatorial orbit satellite (GS). They are
transformed to relative frequency.

Influence Factor (Residual) Error Magnitude in ∆ f / fG

Ionospheric correction residual eion ∼ 10−19

Tidal correction residual etide ∼ 10−18

Position error epos < 10−18

Velocity error evel ∼ 10−17

Gravitational potential error epot < 10−18

Clock error eclk ∼ 10−13, 10−15, 10−17

Except for clock errors, there are no established mathematical models that simulate the
characteristics of other error sources, such as residuals of ionospheric and tidal corrections.
Consequently, we implemented a general error model that includes systematic (initial)
offset, drift, and white Gaussian noise for each of these error sources, as follows:

ej(t) = aj + bj · t + cj · wi(t). (j = ion, pos, vel, pot, tide) (11)

In this equation, aj, bj, and cj represent constant coefficients that are randomly determined
based on the magnitudes of each error source. Although Equation (11) is a simplified
model and may not accurately reflect the characteristics of various error sources, it is
deemed acceptable because these errors’ magnitudes are much smaller than clock errors.
Furthermore, the cumulative effect of many varied, minor errors will behave more similarly
to white Gaussian noise.

Given Equations (8) and (11), we can generate the noise signals eall(t) term in Equation (7)
based on the characteristics and magnitudes of the error sources at any given time. There-
fore, we obtain a set of “observed” values, which forms a time series of the TS’s GP φ̂T(t),
as illustrated on the left side of Equation (7). Considering that the TS orbits the entire Earth
in approximately 30 days, these values represent the GP at different time points along
the TS’s orbit. Consequently, we have a set of values φ̂T(x, y, z) correlated with orbit data.
Upon 30 continuous days (equivalent to 720 h) of observation, a total of 2,592,000 GP points,
denoted as φ̂T(x, y, z), were distributed over the TS sphere encompassing the Earth.

3.3. Determining the Earth’s External Gravitational Field

The GP distribution φ̂T(x, y, z) over the TS sphere enables us to estimate the gravita-
tional field outside solid Earth using the least-squares approach. The Earth’s GP, V, at an
exterior point (r, θ, λ) can be expanded into spherical harmonics [2]:

V(r, θ, λ) =
GM

a

Nmax

∑
n=0

n

∑
m=0

( a
r

)n+1(
Cnm cos mλ + Snm sin mλ

)
Pnm(cos θ). (12)

In Equation (12), r denotes the geocentric radius, while (r, θ, λ) symbolizes a three-
dimensional position in the Earth-centered, Earth-fixed (ECEF) reference frame. The
variables θ and λ represent spherical co-latitude and longitude, respectively. GM stands
for the geocentric gravitational constant, and a is the semi-major axis of the reference
ellipsoid. The coefficients Cnm and Snm are the fully normalized GP coefficients describing
the Earth’s external gravitational field. Pnm refers to the fully normalized associated
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Legendre functions of degree n and order m. Lastly, Nmax indicates the maximum degree
of the harmonic expansion.

In the context of the linear observation as per Equation (12), the statistical and func-
tional models that enable gravitational field recovery from GP distribution observations
are established using a standard Gauss–Markov model [56]:

y = Ax + ε, E{y} = Ax, D{y} = σ2
0 Q = σ2

0 P−1, (13)

In this formulation, y denotes the vector of GP observations, while A is the design
matrix. The vector x symbolizes the GP coefficients Cnm, Snm, which are yet to be estimated.
The term ε corresponds to the vector of observational errors. D{y} represents the error
variance–covariance matrix, P is the weight matrix, Q signifies the inverse of the weight
matrix, and σ2

0 is the variance component.
Based on the above-described data processing method, we estimated three recovered

Earth Gravitational Models (REGMs) with the degree and order of 200 from GP values
distributed over the TS sphere in the three experiment cases. Since the error distribution is
unknown in GP observations, we set the weight matrix P as a unit matrix. We consider that
the noises in GP observations are white noises. The results are illustrated and discussed in
Section 4.

4. Results

We first estimate the precision of the observed GP distributions over the TS sphere.
The observed disturbing potentials from three different experimental cases are displayed
in Figure 8, with Figure 8a exhibiting the disturbing potential of EGM2008, taken as the
reference true values. For case 1, featuring a clock instability of 10−13τ−1/2, the outcomes
appear to be non-beneficial (refer to Figure 8b). However, a substantial improvement is
discerned in the results of case 2 (see Figure 8c) and the outcomes for case 3, which is
characterized by a clock instability of 10−17τ−1/2, align closely with the true values. The
standard deviation (SD) and the mean offset between the true and observed values can be
estimated by φT(t) and φ̂T(t), which are outlined in Table 3. Specifically, the SDs of GP
distribution, equivalent to height over the TS sphere, are 12,815.256 m2/s2, 128.086 m2/s2,
and 1.662 m2/s2 for cases 1, 2, and 3, respectively.

Figure 8. The disturbing potentials (m2s−2) of (a) EGM2008 as true values; (b) experiment case 1, uti-
lizing clocks with instability of about 10−13τ−1/2; (c) experiment case 2, using clocks with instability
of about 10−15τ−1/2; (d) experiment case 3, utilizing clocks with instability of about 10−17τ−1/2.
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Table 3. The statistical information of the GP offset at the target satellite’s orbit between true values
(calculated by EGM2008) and simulating observations using the SFST method.

Case Clock Instability Mean Offset (m2/s2) Standard Deviation (m2/s2)

1 10−13τ−1/2 1.200 12,815.256
2 10−15τ−1/2 0.243 128.086
3 10−17τ−1/2 −1.86 × 10−3 1.662

Then, we evaluate the precisions of the REMGs drawing from the GP distributions
over the TS sphere. The procedure outlined in Section 3.3 was executed, which led to the
procurement of the coefficients for the spherical harmonics expansion formula, as defined
by Equation (12). Consequently, the REGMs were formulated. The difference between the
coefficients of the REGMs and those of EGM2008 is visually represented in Figure 9.

The outcomes suggest that clock instability greater than 10−17τ−1/2, as in cases 1 and
2, leads to diminished precision in the REGMs. However, when the clock instability attains
10−17τ−1/2 (case 3), a relatively accurate set of coefficients for orders and degrees lower
than 50 can be achieved.

The REGMs’ efficacy can also be evaluated by computing the GPs at the TS sphere. The
mean offset and SD between the GP distribution over the TS sphere calculated by EGM2008
and REGMs are shown in Table 4. The SDs of the GP distribution over the TS sphere are,
respectively, 1320.475 m2/s2, 13.231 m2/s2, and 0.143 m2/s2 for cases 1, 2, and 3.

A comparison of cases 1, 2, and 3 in Table 3 reveals that the SD in Table 4 is approxi-
mately one order of magnitude smaller for each corresponding case. This improvement
suggests that the GPs calculated by the REGMs demonstrate superior precision compared
to directly observed GPs. This can be attributed to the least-squares approach, which oper-
ates by smoothing the observations. However, each case has no noticeable improvement in
the mean offset.

Table 4. The statistical analysis of the GP offset between the values calculated by EGM2008 (consid-
ered as true values) and those calculated by the recovered Earth Gravitational Model (REGMs). The
positions cover the target satellite’s orbit.

Case Clock Instability Mean Offset (m2/s2) Standard Deviation (m2/s2)

1 10−13τ−1/2 1.063 1320.475
2 10−15τ−1/2 0.243 13.231
3 10−17τ−1/2 −1.08 × 10−3 0.143
4 10−18τ−1/2 −1.17 × 10−4 0.014
5 10−19τ−1/2 −2.94 × 10−6 1.47 × 10−3

6 0 ∗ 2.74 × 10−8 6.96 × 10−4

∗ This row demonstrates the REGM derived from true GP values; hence, no clock error exists.

In scenarios in which the clock instabilities are improved to the level of 10−18τ−1/2 or
even 10−19τ−1/2, other sources of error, such as velocity error, become the dominant factor
in limiting the precision of the recovered coefficients. In these instances, further detailed
analysis and corrections are required for various error sources to formulate more effective
correction models. As there could be a substantial period for adjusting onboard clocks to
the 10−18τ−1/2 instability level, we have reserved these investigations for future research.
Nonetheless, to underscore the potential of this method, we performed two simplified
experiments in which the total error (the summation of clock errors and various other
error sources) of SFST links was established at 10−18 and 10−19, respectively (as shown in
Figure 9d,e).

We observed that by decreasing the total error magnitudes to 10−19, the recovered
harmonic expansion coefficients demonstrated commendable quality, closely matching
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those recovered from the true values (as indicated in Figure 9f). The REGMs’ precision on
TS’s orbit for cases 4, 5, and 6 are detailed in Table 4.

Figure 9. The divergence between the recovered harmonic expansion coefficients and EGM2008. The
clock instabilities of various experiments are (a) 10−13τ−1/2; (b) 10−15τ−1/2; (c) 10−17τ−1/2. Figures
(d,e) depict two additional experiments conducted to establish the total error magnitude for an SFST
link of 10−18 and 10−19, respectively. Figure (f) demonstrates the recovered coefficients derived from
the true values of GP distribution over the TS-sphere, as defined by EGM2008.

5. Conclusions

In this research, we developed a methodology for calculating the gravitational poten-
tials (GPs) along the orbits of a Low Earth Orbit (LEO) satellite, leveraging precise clocks
and inter-satellite frequency signal transfer. We further showcased a potential application
of determining the Earth’s gravitational field based on the calculated GPs using the satellite
frequency signal transfer (SFST) technique.

When the precision of the optical atomic clocks (OACs) is less than 10−17τ−1/2, the
accuracy of the observed GPs is primarily influenced by the OACs. For example, according
to our simulated experiments, the GPs over a target satellite’s (TS) orbit can be calculated
with precision levels of approximately 12,815.256 m2/s2, 128.086 m2/s2, and 1.662 m2/s2,
using clocks with stabilities of 10−13τ−1/2, 10−15τ−1/2 and 10−17τ−1/2, respectively. We
can use these GP observations to derive recovered Earth Gravitational Models (REGMs).
The precisions of GPs calculated by the REGMs improved approximately one order of
magnitude at the TS’s position compared to the direct observations, reaching 0.143 m2/s2

(equivalent to 1∼2 cm) if the clock instability is 10−17τ−1/2.
Presently, the stability of a satellite’s onboard clock is approximately 10−13τ−1/2. How-

ever, precise optical atomic clocks have achieved a stability level of 9.7× 10−18τ−1/2 under
laboratory conditions [15]. It is foreseeable that the stability of onboard atomic/optical
clocks could attain a similar level in the near future. At this clock stability level, the precision
of the GPs ascertained by the inter-satellite SFST method can reach 1.662 m2/s2 (see Table 3
case 3, equivalent to 1∼2 decimeters), which presents a novel method for obtaining GP
data around the Earth, with broad potential applications in geoscience. Suppose the clock
stability surpasses 10−17τ−1/2, reaching levels such as 10−18τ−1/2 or even 10−19τ−1/2; then
various other sources of error, such as satellite velocity errors and ionospheric correction
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residual errors, will become the principal factors affecting the determination of GPs. This
instance necessitates the development of more precise error correction models.

Directly applying the GP data around the Earth involves deriving an Earth Gravita-
tional Model (EGM). In this study, we merely demonstrated a rudimentary method for
obtaining the REGM without any optimization or fine-tuning. It is advisable to derive an
EGM from various data sources and methods in a practical setting. The GP data of a LEO
satellite, obtained via the SFST method, is a valuable addition to our current resources,
considering we lack a robust method for measuring a satellite’s GP.
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EGM Earth Gravitational Model.
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