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Abstract: Emerging satellite radar and lidar platforms are being developed to produce gridded
aboveground biomass (AGB) predictions that are poised to expand our understanding of global
carbon stocks and changes. However, the spatial resolution of AGB map products from these
platforms is often larger than the available field plot data underpinning model calibration and
validation efforts. Intermediate-resolution/extent remotely sensed data, like airborne lidar, can
serve as a bridge between small plots and map resolution, but methods are needed to estimate and
propagate uncertainties with multiple layers of data. Here, we introduce a workflow to estimate the
pixel-level mean and variance in AGB maps by propagating uncertainty from a lidar-based model
using small plots, taking into account prediction uncertainty, residual uncertainty, and residual spatial
autocorrelation. We apply this workflow to estimate AGB uncertainty at a 100 m map resolution
(1 ha pixels) using 0.04 ha field plots from 11 sites across four ecoregions. We compare uncertainty
estimates using site-specific models, ecoregion-specific models, and a general model using all sites.
The estimated AGB uncertainty for 1 ha pixels increased with mean AGB, reaching 7.8–33.3 Mg ha−1

for site-specific models (one standard deviation), 11.1–28.2 Mg ha−1 for ecoregion-specific models,
and 21.1–22.1 Mg ha−1 for the general model for pixels in the AGB range of 80–100 Mg ha−1. Only 3
of 11 site-specific models had a total uncertainty of <15 Mg ha−1 in this biomass range, suitable for the
calibration or validation of AGB map products. Using two additional sites with larger field plots, we
show that lidar-based models calibrated with larger field plots can substantially reduce 1 ha pixel AGB
uncertainty for the same range from 18.2 Mg ha−1 using 0.04 ha plots to 10.9 Mg ha−1 using 0.25 ha
plots and 10.1 Mg ha−1 using 1 ha plots. We conclude that the estimated AGB uncertainty from
models estimated from small field plots may be unacceptably large, and we recommend coordinated
efforts to measure larger field plots as reference data for the calibration or validation of satellite-based
map products at landscape scales (≥0.25 ha).

Keywords: aboveground biomass; forest structure; prediction uncertainty; lidar; NISAR

1. Introduction

Global estimates of the aboveground woody biomass density (AGB) and the changes
in AGB over time are important for understanding how climate and land use change affect
the global carbon cycle [1]. Multiple current or upcoming spaceborne missions will support
the production of global or near-global gridded AGB products. Notably, AGB estimation
is an objective for the Global Ecosystem Dynamics Investigation (GEDI) lidar instrument
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on the International Space Station [2], the Biomass P-band synthetic aperture radar (SAR)
satellite [3], and the NASA-ISRO Synthetic Aperture Radar (NISAR) L- and S-band SAR
satellite [4]. Together, data from these missions are intended to improve our understanding
of AGB carbon stocks and fluxes.

Broad-scale gridded AGB products based on remotely sensed data are estimates pro-
duced by models that are calibrated using field data. Among these field data, generally,
individual tree size and species observations from forest plots are used to predict biomass
using allometric models and are then aggregated to estimate plot-level average AGB. How-
ever, the spatial resolution of forest plots is often smaller than the spatial resolution of
gridded AGB products, which is constrained by instrument and sampling properties. For
example, GEDI, Biomass, and NISAR will support gridded AGB products at 100 ha, 4 ha,
and 1 ha, respectively [2–4]. These missions will rely largely on contributed plot data
collected for other efforts from different vegetation types globally, which are often less than
1 ha in size. Geolocation errors in plots and satellite pixels and the side-looking configu-
ration of radar imagery can cause substantial errors in relating ground measurements of
biomass to lidar and radar observations directly [5,6]. Therefore, the direct use of field plots
for the calibration and validation of spaceborne missions may introduce large uncertainty
to both local predictions and the predicted regional spatial distribution of AGB [7,8].

To address this challenge, NISAR will use airborne laser scanning (ALS) data to scale
up field data from smaller, sparse field plots and create 1 ha resolution, landscape-scale
AGB estimates that can be used for the calibration of biomass algorithms and validation
of NISAR’s AGB estimates [9]. In this approach, fine-resolution (<1 m point spacing) ALS
data, as the so-called “gold standard” remote sensing technology for AGB estimation,
are combined with the ground-estimated AGB in a model to estimate the AGB at the
resolution of forest plots across the entire landscape [10]. ALS-based AGB estimates are
then aggregated to provide estimates of the AGB in 1 ha grid cells to match the NISAR AGB
product pixel size [11–13]. This process removes the large error associated with the direct
use of plot data caused by mismatches in the size and location of plots with respect to radar
imagery. However, this process also introduces additional sources of uncertainty related to
the ALS-based model used to predict AGB and the resampling of ALS AGB pixels to 1 ha
grid cells [14–16]. In particular, multiple studies have found that uncertainty in AGB-ALS
models decreases with increasing plot size, as some sources of error become less important,
including spatial mismatches between tree crowns and trunks, and plot/tree geolocation
errors [8,12,17,18].

To estimate uncertainty in AGB predictions from NISAR, it is necessary to rigorously
account for all sources of errors and to propagate uncertainty from ground plots to ALS
and to radar-based estimations of biomass. NISAR’s biomass Algorithm Theoretical Basis
Document and Calibration and Validation (“CAL/VAL”) Plan describes the process of the
ALS-assisted calibration and validation of the NISAR AGB algorithm [9,19].

In this paper, we develop a workflow to estimate the 1 ha pixel-level uncertainty in
AGB predictions associated with scaling AGB estimates from small field plots to larger
landscapes with the aid of ALS data, an intermediate step in the NISAR CAL/VAL method-
ology. We apply a modified version of the methodology outlined in McRoberts et al. to
the practical example of producing reference AGB maps, and associated uncertainty maps,
using a set of 13 sites in temperate forests across four ecoregions of North America [20]. To
properly characterize uncertainty, we also examine: (1) how uncertainty can be reduced by
using site-specific or multi-site models associated with similar vegetation types in terms
of structure and species and (2) the effect of plot size on the model prediction accuracy.
To achieve this goal, we focus on incorporating uncertainty associated with prediction
uncertainty and residual variability [20]. Prediction uncertainty is due to the presence of
incomplete or imperfect information in the sample data used to train and evaluate models,
and residual variability is associated with the distribution of training data around the
model predictions.
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2. Methods
2.1. Study Sites

We used data from 13 sites in the National Ecological Observation Network (NEON).
These sites are distributed across four North American ecoregions (boreal forests, conifer
forests, temperate broadleaf/mixed forests, and temperate grasslands/savannas); the
ecoregions were defined according to the NISAR mission AGB calibration/validation plan
(Figure 1; Table 1) [9]. These study sites were chosen because they contained areas relevant
for NISAR AGB estimation (<100 Mg ha−1; BONA, DEJU, OSBS, NIWO, RMNP, TREE,
CLBJ, and UKFS), were covered by the 2018 UAVSAR (Uninhabited Aerial Vehicle Synthetic
Aperture Radar) campaign to support NISAR algorithm development (LENO, ORNL, and
TALL), and/or had co-located large forest dynamics “megaplots” associated with the
Smithsonian Forest Global Earth Observatory (ForestGEO) network (SERC, SCBI) [21–23].
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Figure 1. Location of study sites and the distribution of NISAR ecoregions in the United States and
Canada. More detailed information about each study site, including latitude/longitude, is provided
in Table 1.

Table 1. Study sites with the National Ecological Observation Network (NEON). NEON plots were
measured for woody vegetation structure on a rotating basis, with a subset of plots at each site
measured each year, resulting in a range of years for those data per site.

NISAR
Ecoregion Site Name

Location Plot Data ALS Data

Latitude Longitude Years
AGB Mean

[Range]
(Mg ha−1)

Area
(ha) Year Density

(pts m−2)

Boreal
forests

Caribou–Poker
Creeks Research

Watershed (BONA)
63.876 −149.213 2016–2021 96.1

[1.5, 149.0] 23,473 2021 16.9

Delta Junction
(DEJU) 63.881 −145.751 2016–2021 20.9

[0.2, 104.6] 19,543 2021 8.2
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Table 1. Cont.

NISAR
Ecoregion Site Name

Location Plot Data ALS Data

Latitude Longitude Years
AGB Mean

[Range]
(Mg ha−1)

Area
(ha) Year Density

(pts m−2)

Conifer
forests

Ordway–Swisher
Biological Station

(OSBS)
29.689 −81.993 2016–2020 70.2

[16.3, 206.8] 19,394 2021 13.6 *

Niwot Ridge
(NIWO) 40.054 −105.582 2015–2020 124.7

[0.01, 346.3] 13,688 2020 5.6

Rocky Mountain
National Park

(RMNP)
40.276 −105.546 2017–2020 149.3

[31.8, 275.6] 19,796 2020 11.9 *

Temperate
broadleaf

and mixed
forests

Lenoir Landing
(LENO) 31.854 −88.161 2017–2021 175.8

[0.4, 961.4] 11,483 2019 5.2

Oak Ridge (ORNL) 35.964 −84.283 2017–2018 247.6
[0.1, 441.3] 23,910 2018 14.0

Smithsonian
Conservation

Biology Institute
(SCBI) ‡

38.893 −78.139 2018 306.4
[7.2, 758.5] 11,243 2021 14.1 *

Smithsonian
Environmental

Research Center
(SERC) ‡

38.890 −76.560 2014 326.6
[0.8, 1022.3] 10,884 2021 12.8 *

Talladega National
Forest (TALL) 32.950 −87.393 2015–2020 150.6

[1.3, 328.9] 13,616 2019 6.3

Treehaven (TREE) 45.494 −89.586 2018–2021 132.6
[7.9, 265.2] 23,491 2020 13.1 *

Temperate
grasslands

and
savannas

Lyndon B. Johnson
National Grassland

(CLBJ)
33.368 −97.587 2016–2021 108.7

[0.1, 265.4] 15,794 2021 12.0

University of Kansas
Field Station (UKFS) 39.040 −95.192 2016–2020 165.9

[10.3, 506.0] 13,591 2020 10.7

* ALS data subsampled from greater point density data; ‡ site used to validate the uncertainty propagation
method only using ForestGEO megaplot data; mean and range AGB values were based on 0.04 ha subplots of the
ForestGEO megaplot.

2.2. Field Estimates of AGB

We estimated the AGB in NEON plots using woody plant vegetation structure data
(DP1.10098) from field surveys [24]. We used all plots with recorded tree and sapling data.
NEON uses two types of field plots for woody vegetation structure, “distributed plots”
and “tower plots”. Both distributed and tower plots are nominally 40 × 40 m in size (0.16
ha), but distributed and tower plots have different subplot sizes where trees are actually
measured. In the distributed plots, all trees≥10 cm in diameter at breast height (DBH) were
measured (diameter, species, and stem location) in only one 20 × 20 m (0.04 ha) subplot,
while in tower plots, trees are measured in either one or two subplots of 0.04 ha, depending
on the vegetation type. At the LENO site, we performed additional fieldwork to measure
trees in all four 0.04 ha subplots. To ensure consistency in the sampled area across plot
types, all analyses with NEON plot data used 0.04 ha subplots.

Small trees (1 cm≤ DBH < 10 cm) were also measured in nested subplots large enough
to include at least 20 individuals, or throughout the entire plot when small trees were
sparse. Our analysis included trees that were ≥2.5 cm DBH, and we estimated the AGB
density of small trees by assuming that nested subplots were representative of their plots.

We also estimated the AGB in two ForestGEO megaplots at SCBI and SERC that were
25.6 and 16 ha in size, respectively. In ForestGEO plots, all trees that were ≥1 cm DBH were
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measured throughout the plot area. We estimated the AGB density in gridded subplots of
either 0.04 ha or 1.0 ha, and also included trees that were ≥2.5 cm in our analysis.

For each measured tree, we used allometric models to predict the AGB from the
DBH and species the ‘allodb’ package in R. This package predicts AGB using multiple
allometries and weights allometric model predictions based on the geographic location
of plots [25]. We chose this package because it included allometries based on species
included in 24 extratropical megaplots in North America, Europe, and Asia, and allowed
consistent AGB predictions across other extratropical NISAR calibration/validation sites.
All AGB predictions from ground measurements and allometries were assumed to have no
uncertainty; previous studies have found that the effects of allometric model prediction
uncertainty are negligible relative to other sources of variability [26,27].

2.3. ALS Data

To scale AGB estimates from field plots to landscapes, we used small-footprint ALS
data from the NEON Airborne Observation Platform (AOP). The NEON AOP carries an
Optech Gemini ALS sensor and collects data over at least 10,000 ha at each site, with a point
density of at least 5.2 pts m−2 (Table 1). For most sites, we used the most recent available
ALS data at the time of analysis. For LENO, ORNL, and TALL, we used the ALS data
closest in time to the UAVSAR campaigns detailed elsewhere in this special issue. We used
the NEON-classified ALS data and excluded points classified as noise (DP1.30003.001) [28].

We processed ALS data into gridded canopy height models using the ‘lidR’ package in
R [29,30]. First, we calculated the normalized height above ground for each point with the
‘normalize_height’ function using the k-nearest neighbor approach with inverse-distance
weighting. Next, we predicted canopy height with the ‘grid_canopy’ function at a 1 m
resolution, using the points-to-raster method to select the tallest ALS return in each pixel
with a 0.2 m buffer around the return locations. Last, we predicted the mean canopy height
(MCH) as the average of the canopy height values within a larger area, either 0.04 ha plot
boundaries or gridded across the landscape at 0.04 ha spatial grain.

2.4. AGB-ALS Model

We used a power function to describe the relationship between the plot-estimated
AGB and forest structure (MCH) from ALS data:

AGB = a1MCHb1 + ε (1)

where a1 and b1 are the parameters to be estimated and ε ∼ N
(
0, σ2) is a random residual

term. The power function was fit with the least-squares approach using the ‘nls’ function in
R and the Gauss–Newton algorithm. Models were fit using weighted least squares because
the AGB prediction residuals were heteroscedastic [20]. The weights were the inverse of
the predicted residual variance, where residual variance was predicted using the procedure
outlined in [20] for estimating heteroscedastic residual variance:

1. First, the plots were ordered by their MCH and sorted into equal-sized groups of at
least 10 plots each;

2. Next, the average MCH and biomass residual variance were calculated for each group;
3. Finally, a model was fit describing the increase in residual variance as a power function

of average MCH:

σ2
RV = a2

———
MCH

b2
+ δ (2)

where σ2
RV is the group average residual variance,

———
MCH is the group average MCH, a2 and

b2 are the parameters to be estimated, and δ ∼ N
(
0, σ2) is a random residual term.

The model prediction of σ2
RV was used to estimate the residual variance for each

sample unit (training data) observation.
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As weights depended on the fitted model, we used an iterative approach, first fitting
Equation (1) without weights and then iteratively refitting using new weights until the esti-
mates of parameters a1 and b1 both varied by less than 1% across five successive iterations.

We fit a single model first, hereafter the “general model”, using AGB and MCH data
from all plots at all sites. Next, we fit ecoregion-specific and site-specific models by using the
relationship between MCH and AGB for all plots within an ecoregion and site, respectively.
We evaluated the initial model fit at each site by reporting the root-mean-square error
(RMSE) and R2 of Equation (1) using 10-fold cross-validation—plots were randomly divided
into 10 groups and the AGB for each plot was predicted from a model trained only on the
other nine groups. All subsequent calculations using Equation (1) residual values were
performed using each plot’s residual value from 10-fold cross-validation.

2.5. Predicted Gridded Biomass across Landscapes

We predicted AGB at the landscape scale for each site by applying Equation (1), pa-
rameterized with field plot data, to gridded ALS-derived MCH data of the same spatial
resolution (0.04 ha). We produced three maps of predicted AGB for each site by applying the
general model, the relevant ecoregion-specific model, and the site-specific model [31–33].
We predicted AGB at the 1 ha spatial resolution of the NISAR biomass product by first ap-
plying the Equation (1) estimated parameters to 0.04 ha resolution pixels (Tables S1 and S2)
and then using the ‘aggregate’ function in the ‘raster’ package, taking the mean value of
25 contiguous pixels [34].

2.6. Estimating AGB Uncertainty at 1 ha Resolution

The variance (uncertainty) of the 1 ha gridded mean AGB was estimated using three
separate variances associated with the prediction uncertainty, residual variability, and
residual spatial autocorrelation:

σ̂2
Total = σ̂2

PU + σ̂2
RV + σ̂2

RSA (3)

where σ̂2
Total is the total estimated uncertainty, σ̂2

PU is the prediction uncertainty, σ̂2
RV is

the residual variability, and σ̂2
RSA is the uncertainty associated with the residual spatial

autocorrelation.
Prediction uncertainty. We estimated the prediction uncertainty using a “wild boot-

strapping” approach [31,32], where the value for each field plot AGB observation was
resampled for each bootstrap iteration:

yi,j = ŷi + εiνi,j (4)

where yi,j is the resampled AGB value for plot i and iteration j, ŷi is the predicted AGB value
for plot i from Equation (1), εi is the residual value for plot i from Equation (1), and νi,j is
randomly selected from a standard normal distribution with mean 0 and standard deviation
1 for each plot i and iteration j. Iterations continued until the standard deviation in the
mean estimated landscape AGB across all iterations varied by less than 0.5% compared with
the standard deviation of the mean estimated landscape AGB calculated for the preceding
50% of iterations [33]. An example of the distribution of model parameter estimates from
bootstrapping is provided in Figure S1. For each 1 ha pixel, σ̂2

PU was estimated as the
variance in the predicted biomass (at 1 ha spatial grain) across all bootstrap iterations.

Residual uncertainty. The residual variance was calculated for each 0.04 ha pixel
(σ̂2

RV,0.04 ha) from the MCH using the approach from [20] and described above for estimating
residual variance during iterative weighted model fitting (Equation (2); Figures S2 and S3).
The residual variance of AGB for each 1 ha grid cell

(
σ̂2

RV ) was then estimated as:

σ̂2
RV =

1
n2

n

∑
i=1

σ̂2
RV,0.04 hai

(5)
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where n = 25, the total number of 0.04 ha pixels within each 1 ha pixel.
Residual spatial autocorrelation uncertainty. We estimated the variance from residual

spatial autocorrelation using a correlogram constructed from observed model residual
values. We constructed the empirical correlogram using two steps. First, we used the
‘correlog’ function from the ‘ncf ’ package in R to estimate point values describing the
correlation of model residuals for plots at different distances apart, with 20 m distance
increments to match the spatial grain of the field plot data [35]. Next, we fit a spline with
3 degrees of freedom to the empirical correlogram data so that the spatial correlation could
be predicted at any distance (Figure S4). Owing to the limited number of field plots and
the amount of data required to estimate the spatial autocorrelation, we constructed one
empirical correlogram from the observed residual values from the general model for all
plots and sites combined; we assumed that the magnitude and distance of the spatial
autocorrelation did not vary among sites. We estimated the residual spatial autocorrelation
for each 1 ha pixel (σ̂2

RSA) by considering the sum of the products of the residual standard
deviations and spatial correlations for each pair of 0.04 ha subpixels:

σ̂2
RSA =

1
n2

n

∑
i 6=

n

∑
j=1

σ̂RV,0.04 hai
σ̂RV,0.04 haj ρ̂ij

(6)

where ρ̂ij is the correlation between the residuals for the pairs of pixels predicted from the
distance between the pixels using the empirical correlogram and n = 25, the total number
of 0.04 ha pixels within each 1 ha pixel.

2.7. The Effect of Plot Size on AGB Uncertainty

To explore the relationship between field plot size and uncertainty in the 1 ha resolution
gridded AGB products, we leveraged the SCBI and SERC megaplots that allowed us to
fit AGB-ALS models at multiple resolutions—we compared the 1 ha pixel-level estimates
of uncertainty for models scaled up from 0.04 ha subplots and 0.25 ha subplots, and for
models directly fit with 1 ha subplots. As the SCBI and SERC megaplots contained no
subplots smaller than 100 Mg ha−1 AGB at 1 ha resolution, we added additional simulated
smaller-biomass data by randomly selecting MCH values between 0 and 20 m and AGB
predictions based on the AGB-MCH model (Equation (1)) and the residual variance model
(Equation (2)), assuming that the models fit to real plot data would predict the relationship
for smaller MCH subplots (Figure S5). Ten hectares of additional plot data were simulated
for each resolution, keeping the total plot area constant across models of different plot
sizes. For each plot size, we calculated estimates of the AGB and associated uncertainty
at a 1 ha resolution as described above. When estimating models directly from 1 ha field
plots, the pixel-level uncertainty estimates did not include a contribution from residual
spatial autocorrelation.

3. Results
3.1. Plot-Based Biomass Estimates

We used 529 plots of 0.04 ha from 11 sites (excluding megaplot sites SCBI and SERC)
to compare the performance of general, ecosystem-specific, and site-specific AGB-ALS
models, and to demonstrate our upscaling approach. The plot-based biomass estimates
ranged from 0.01 to 827.2 Mg ha−1. The large biomass range was mostly due to the small
size of the plots and the diversity of sites across temperate broadleaf and mixed forests with
greater biomass (ORNL and LENO) and the boreal (DEJU) and temperate conifer (OSBS)
sites with smaller biomass (Table 1; Figure 2).
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Figure 2. Comparison of the general model relating aboveground woody biomass to the mean
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3.2. Plot-Based Model Performance

The general model, describing the relationship between the AGB and MCH in 0.04 ha
inventory plots for all sites, had RMSE = 68.4 Mg ha−1 using 10-fold cross-validation.

The relationships between AGB and MCH varied among ecoregions (Figure 2).
Ecoregion-specific AGB-MCH models reduced the RMSE for all ecoregions (Table 2).
However, the magnitude of RMSE reduction varied among ecoregions, from <2% for
the grassland and savanna ecoregions to 20% for boreal forests.

Table 2. Ecoregion-scale performance of models relating AGB and MCH for 0.04 ha inventory plots.
Sites within each ecoregion are given in Table 1. All RMSE values were calculated using 10-fold
cross-validation, and are presented in units of AGB and as a percentage of the mean AGB of the
respective ecoregion.

Ecoregion

RMSE
(Mg ha−1)

[% of Mean AGB]
R2

Number
of Plots

General Model Ecoregion Model General Model Ecoregion Model

Boreal forests 34.7
[61.9]

27.7
[49.5] 0.77 0.85 92

Temperate grasslands and
savannas

75.0
[53.2]

74.0
[52.5] 0.34 0.35 89

Temperate broadleaf and
mixed forests

72.8
[41.7]

68.9
[39.4] 0.60 0.64 243

Temperate conifer forests 73.8
[68.4]

68.4
[63.4] 0.06 0.20 105

The relationships between AGB and MCH also varied among sites (Figure 3). At the
site level, the ecoregion-specific or site-specific model RMSE differed from the general
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model RMSE by up to 67% for the NIWO site. However, more specific models did not
universally reduce the site-level RMSE—depending on the site, either the general, ecoregion-
specific, or site-specific model had the smallest RMSE (Table 3).
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Table 3. Site-scale performance of models relating AGB and MCH for 0.04 ha inventory plots. All
RMSE values were calculated using 10-fold cross-validation, and are presented in units of AGB and
as a percentage of the mean AGB of the respective site.

Ecoregion Site

RMSE
(Mg ha−1)

[% of Mean AGB]
R2

Number
of Plots

General Ecoregion Site General Ecoregion Site

Boreal forests
BONA 48.6

[50.5]
38.2

[39.7]
39.5

[41.1] 0.69 0.81 0.80 43

DEJU 13.7
[65.6]

12.9
[61.7]

11.2
[53.4] 0.48 0.54 0.66 49

Temperate grasslands
and savannas

CLBJ 65.3
[60.1]

55.1
[50.7]

56.2
[51.7] 0.35 0.54 0.52 39

UKFS 81.7
[49.3]

85.9
[51.8]

86.0
[51.8] 0.21 0.13 0.13 50

Temperate broadleaf
and mixed forests

LENO 93.9
[53.4]

88.4
[50.3]

95.0
[54.0] 0.64 0.68 0.63 75

ORNL 82.2
[33.2]

83.3
[33.6]

83.8
[33.8] 0.25 0.23 0.23 52

TALL 51.4
[34.1]

48.1
[31.9]

49.3
[32.8] 0.48 0.55 0.52 57

TREE 46.3
[34.9]

35.8
[27.0]

35.9
[27.0] 0.34 0.61 0.61 59
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Table 3. Cont.

Ecoregion Site

RMSE
(Mg ha−1)

[% of Mean AGB]
R2

Number
of Plots

General Ecoregion Site General Ecoregion Site

Temperate conifer
forests

NIWO 95.4
[76.5]

74.9
[60.1]

31.2
[25.0] 0.00 0.35 0.89 26

OSBS 40.2
[57.3]

62.1
[88.5]

23.9
[34.1] 0.08 0.00 0.67 47

RMNP 90.0
[60.2]

71.5
[47.9]

39.5
[26.4] 0.00 0.06 0.71 32

3.3. One-Hectare-Resolution Estimates of Uncertainty

To characterize how pixel-level uncertainty in the 1 ha gridded AGB estimates varied
across sites, among models (general, ecoregion-specific, or site-specific), and for different
AGB values, we estimated the average pixel-level uncertainty for each site and model for all
pixels in three different AGB ranges chosen to include the AGB range of NISAR’s AGB vali-
dation requirement (≤100 Mg ha−1): 0–20 Mg ha−1, 40–60 Mg ha−1, and 80–100 Mg ha−1.
For all sites and models, the total uncertainty increased in magnitude with increasing pre-
dicted AGB, from 1.1–12.8 Mg ha−1 for pixels with AGB ≤ 20 Mg ha−1, 6.1–28.3 for pixels
with AGB 40–60 Mg ha−1, and 7.8–33.3 for pixels with AGB 80–100 Mg ha−1 (Figure 4).
The total uncertainty was smallest for the site-specific models in conifer forest sites, for the
ecoregion-specific models in temperate broadleaf/mixed forest sites and boreal forest sites,
and for the general model in temperate grassland/savanna sites (Figure 4).

We also characterized the relative contribution of each uncertainty component (pre-
diction uncertainty, residual variability, and spatial autocorrelation in residuals) to the
total model uncertainty (Figure 5). Residual spatial autocorrelation dominated the total
model uncertainty for the general model across all levels of predicted AGB (Figure 5a,d,g),
contributing ~70–90% of the total uncertainty; residual variability had the second-largest
contribution to the total uncertainty for the general model. The prediction uncertainty was
relatively more important for pixels with a smaller predicted AGB in ecoregion-specific
models, contributing up to ~80% of the total uncertainty for temperate broadleaf/mixed
forest sites and ~50% for temperate grassland/savanna sites (Figure 5b,e,h). The relative
contributions among uncertainty components were more variable for site-level models
across the range of predicted AGB, although residual variability was consistently smaller
than ~50%, while prediction uncertainty and residual spatial autocorrelation could reach
up to ~100% and ~80%, respectively, depending on the site (Figure 5c,f,i).

3.4. Plot Size Effects on Gridded AGB Uncertainty

The pixel-level prediction uncertainty, residual uncertainty, and residual spatial auto-
correlation uncertainty were all greater for the models estimated from 0.04 ha plots than
for the models estimated from 0.25 ha plots and 1 ha plots (Figure 6). The prediction uncer-
tainty and residual uncertainty were the smallest for 0.25 ha plots, but the 1 ha plots had the
smallest total pixel-level uncertainty due to the lack of contribution from residual spatial
autocorrelation uncertainty. For pixels with AGB 80–100 Mg ha−1 AGB at SCBI and SERC,
the average total uncertainty (σ̂Total) for AGB estimates for 1 ha plots was 10.1 Mg ha−1,
45% less than the average for 0.04 ha plots (18.2 Mg ha−1); the average for AGB estimates
for 0.25 plots (10.9 Mg ha−1) was 40% less than that for 0.04 ha plots.
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Figure 4. Variation in the average total pixel-level model uncertainty (σ̂Total , Equation (3)) across
sites, models (general model, ecoregion-specific models, and site-specific models), and predicted
AGB values. Each point represents the average pixel-level uncertainty for a given site for all 1 ha
gridded pixels within 1 of 3 predicted AGB ranges: 0–20 Mg ha−1 (a,b), 40–60 Mg ha−1 (c,d), and
80–100 Mg ha−1 (e,f). The left-hand panels (a,c,e) compare uncertainty from the general model (x-
axis) with uncertainty from the relevant ecoregion-specific model (y-axis), and the right-hand panels
(b,d,f) compare uncertainty from site-specific models (x-axis) with uncertainty from the relevant
ecoregion-specific model (y-axis). Each panel includes one point per site, colored by ecoregion.
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Figure 5. Ternary plots showing the relative contribution of prediction uncertainty, residual variability,
and residual spatial autocorrelation to the total model uncertainty (σ̂Total , Equation (3)) among sites
and for different AGB ranges. Each point represents the site-level average across all 1 ha pixels with
low (0–20 Mg ha−1, a–c), medium (40–60 Mg ha−1, d–f), or high (80–100 Mg ha−1, g–i) predicted
AGB values within the range of interest (0–100 Mg ha−1) for the NISAR mission. Results are shown
for the general model (left column), ecoregion-specific model (center column), or site-specific model
(right column) applied to each site.
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Figure 6. Variation in prediction uncertainty (σ̂PU in Equation (3), a), residual variability (σ̂RV in
Equation (3), b), residual spatial autocorrelation (σ̂RSA in Equation (3), c), and total model uncertainty
(σ̂Total in Equation (3), d) for 1 ha gridded AGB estimates derived from 0.04 ha, 0.25, ha, or 1 ha
subplots at the SCBI and SERC sites with ForestGEO megaplots. Residual spatial autocorrelation
does not contribute to the total pixel-level uncertainty of 1 ha plots because the models were fit to the
data of the same spatial resolution. All uncertainty values are in absolute units (Mg ha−1).

4. Discussion

We demonstrated that the pixel-level total uncertainty of gridded AGB products
estimated from field plots and ALS data could be substantial compared with predicted
AGB values. When ALS is used as an intermediate step in gridded spaceborne AGB product
calibration, the uncertainty in ALS and plot-based AGB will influence the uncertainty of
the resulting spaceborne product as well.

In this analysis, relatively large uncertainty could be attributed, in part, to the sparse
and small field plots. Other studies have also demonstrated that the RMSE in AGB-MCH
models decreases with increasing plot area [8,12,17]. While small plots may be efficient
and sufficient for other research purposes in forest ecology, larger plots are preferable for
reducing uncertainty in model-based remote sensing products, particularly those from
spaceborne sensors.

To demonstrate this point, we used the examples of the SCBI and SERC megaplots
to develop AGB-MCH models from different plot sizes. We show, in Figure 6, that field
plots ≥ 0.25 ha in size are necessary to reduce the uncertainty of lidar-estimated AGB and
allow the estimates to be useful for the calibration and validation of other sensors, such as
NISAR. The relationship between plot size and lidar model prediction uncertainty likely
varies among ecoregions, and plots < 0.25 ha (but larger than 0.04 ha, based on our results)
may be acceptable in ecoregions with lower biomass and/or higher stem density of trees
(e.g., boreal forests). It can be challenging to know a priori what plot size is needed in a
particular context, and≥0.25 ha is a conservative choice that is likely to be sufficient in most
systems. Our recommendations are consistent with the Committee on Earth Observation
Satellites aboveground woody biomass working group recommendation of plot sizes of
≥0.25 ha in higher-biomass forests [18].

The model (general, ecoregion-specific, or site-specific) that most reduced the total
pixel-level uncertainty varied between sites in this analysis. For example, for all conifer
forest sites, the site-specific AGB predictions had less total uncertainty than either the
ecoregion-specific or general AGB predictions (Figure 4). However, for the temperate
broadleaf/mixed forest sites, total AGB prediction uncertainty was the lowest for the
ecoregion model (Figure 4). This occurred because there was more variation in the AGB-
MCH relationships among sites for boreal forest sites than for temperate broadleaf/mixed
forest sites (Figure 3), resulting in greater residual variance for the boreal ecoregion model
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compared with the broadleaf/mixed model (Figure S2). When structural differences among
sites are less apparent, using ecoregion-specific or general models calibrated with more
data can reduce the contribution of prediction uncertainty to the total uncertainty (Figure 5).
In addition to the total uncertainty in pixel-level AGB estimates, other considerations may
also be important for model choice, such as systematic prediction error or bias (Figure S6).

There may be practical challenges to applying this framework to rigorously estimate
model prediction uncertainty resulting from the volume of data needed to estimate inter-
mediate model parameters. For example, the model for predicting the residual variance
from MCH (Equation (2)) was fit using grouped data, where each group should have
≥10 separate observations. Therefore, at least 30 observations (i.e., field plots) were re-
quired to fit Equation (2)—having insufficient data to properly fit this model could result in
inaccurate estimates of residual variation. Estimation of the correlogram—describing the
correlation between residual values among plots/pixels as a function of distance—requires
not only a large number of field plots, but also field plots that are arranged in space across
an appropriate range of distances, particularly small distances, where the spatial autocorre-
lation is greatest. Here, we assumed that one empirical correlogram was applicable to all
sites and models. The correlograms were likely to have varied among sites, but we lacked
the data to fit site-specific correlograms.

We acknowledge approaches that could potentially further reduce the total model
prediction uncertainty. For example, including additional ALS metrics, such as alternative
height or canopy cover metrics, can improve the performance of AGB-ALS models for some
ecoregions [36]. We limited this analysis to the mean top of canopy height, because this
metric tends to be relatively stable across instrument and data collection characteristics [37].
Further, improving field plot and ALS co-registration can reduce uncertainty in field plot
ALS models—one example using National Forest Inventory data from Spain found that
increasing the accuracy of field plot geolocation reduced the RMSE of models predicting the
stand volume and basal area by ~10% [38]; another study found that using survey-grade
global positioning system (GPS) receivers with sub-meter accuracy reduced the standard
error of large-area AGB estimates by over 20% compared with GPS receivers with location
errors of up to 5–10 m [39]. In this framework, models with additional parameters may
reduce residual variability, but may also increase prediction uncertainty; the overall effect
on the total uncertainty of adding additional metrics and parameters warrants further
study. Here, we also assumed that the species-level AGB-diameter allometries exhibited no
systematic prediction error. These allometries can have large uncertainties for individual
trees (particularly large trees); therefore, the plot-level AGB for small plots can be uncertain
as well, contributing to large residual variations [18,40]. Although other approaches can
be more accurate for individual tree AGB estimation (such as terrestrial lidar), these data
are not yet widely available for landscape-level applications due to current limitations in
data collection and processing at scale [41]. Therefore, using ALS-based AGB estimates is
necessary at this time to obtain enough 1 ha AGB samples to train and test SAR models, and
to avoid errors associated with geolocation mismatches between field plots and satellite
pixels [5,6].

This analysis is meant to demonstrate the workflow that will be applied for con-
structing gridded reference AGB products for the calibration and validation of the NISAR
mission—the actual AGB estimates and associated uncertainty for NEON sites are likely to
change from additional data collection before NISAR’s launch and calibration/validation
period. Our results support recent calls to have consistent, high-quality field data for the
cal/val of remote sensing AGB products and large-scale Earth system models [13,42–44].

5. Conclusions

We provide a framework for estimating pixel-level uncertainty in gridded products
from AGB-lidar models; this framework will be used as part of the calibration/validation
effort for the NISAR AGB algorithm.
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The uncertainty of predicted AGB from ALS increases in absolute values with AGB,
and varies among sites depending on whether the AGB-MCH model is developed based
on site-specific, ecoregion-specific, or general (using all sites/ecoregions) data.

Our results show that plot size has a substantial impact on the uncertainty of AGB
predicted from ALS data. Predictions from models created using small field plots have
large uncertainty due to several factors, among them including the uncertainty of ground-
estimated biomass in small plots, difficulty of height capturing the variability of volume
and tree size, potential extension of tree crowns outside the lidar pixels of plot area, and
potential plot location errors. Larger field plots can reduce the uncertainty of AGB predicted
from lidar height metrics. We recommend large (≥0.25 ha) field plots for use in developing
AGB-lidar models with reasonably low uncertainty.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs15143509/s1. Figure S1. Parameter estimates for MCH-AGB
models (Equation (1)) for the BONA site. Figure S2. Fitted models describing residual variance as a
function of canopy height (Equation (2)) for the general model and for each ecoregion-specific model.
Figure S3. Fitted models describing residual variance as a function of canopy height (Equation (2))
for each site-specific model within ecoregions. Figure S4. Estimated empirical spatial correlogram
describing how the correlation between model residual values changes with distance. Figure S5.
Megaplot data from the SCBI and SERC sites used to compare 1-ha pixel-level uncertainty in AGB
estimated from 0.04 ha subplots, 0.25 ha subplots, and 1 ha subplots. Figure S6. Differences in
predicted AGB using the general, ecoregion-specific, or site-specific models for each site (Equation (1)).
Table S1. Equation (1) estimated parameters used for AGB prediction for 0.04 ha pixels from NEON
plot data. Table S2. Equation (1) estimated parameters used for AGB prediction for pixels of varying
size from ForestGEO plot data at SERC and SCBI (combined).
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