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Abstract: Copernicus Sentinel-1 images are widely used for forest mapping and predicting forest
growing stock volume (GSV) due to their accessibility. However, certain important aspects related
to the use of Sentinel-1 time series have not been thoroughly explored in the literature. These
include the impact of image time series length on prediction accuracy, the optimal feature selection
approaches, and the best prediction methods. In this study, we conduct an in-depth exploration
of the potential of long time series of Sentinel-1 SAR data to predict forest GSV and evaluate the
temporal dynamics of the predictions using extensive reference data. Our boreal coniferous forests
study site is located near the Hyytiälä forest station in central Finland and covers an area of 2500 km2

with nearly 17,000 stands. We considered several prediction approaches and fine-tuned them to
predict GSV in various evaluation scenarios. Our analyses used 96 Sentinel-1 images acquired over
three years. Different approaches for aggregating SAR images and choosing feature (predictor)
variables were evaluated. Our results demonstrate a considerable decrease in the root mean squared
errors (RMSEs) of GSV predictions as the number of images increases. While prediction accuracy
using individual Sentinel-1 images varied from 85 to 91 m3/ha RMSE, prediction accuracy with
combined images decreased to 75.6 m3/ha. Feature extraction and dimension reduction techniques
facilitated the achievement of near-optimal prediction accuracy using only 8–10 images. Examined
methods included radiometric contrast, mutual information, improved k-Nearest Neighbors, random
forests selection, Lasso, and Wrapper approaches. Lasso was the most optimal, with RMSE reaching
77.1 m3/ha. Finally, we found that using assemblages of eight consecutive images resulted in the
greatest accuracy in predicting GSV when initial acquisitions started between September and January.

Keywords: synthetic aperture radar; growing stock volume; boreal forests; Sentinel-1; support vector
regression; random forests regression

1. Introduction

Space-borne synthetic aperture radar (SAR) is a highly versatile information source
for Earth observation that can provide terrain-related data with fine resolution regardless
of weather conditions. This makes it particularly useful in areas with persistent cloud
cover or near polar regions. SAR images have been extensively used in forest remote
sensing, particularly for wide-area mapping [1–3], where models of relationships between
forest structural parameters and measured backscatter signatures are essential [4]. SAR
signals have been demonstrated to be highly sensitive to various forest structure variables,
including above-ground tree biomass (AGB) and growing stock volume (GSV) (m3/ha) [5].
Depending on the wavelengths of the sensor, the relationship between SAR backscattering
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data and GSV can quickly become saturated. In addition, environmental and ionospheric
conditions can affect this relationship. When signal saturation is reached, the radiometric
data become less useful for predicting volume or biomass, especially when only one image
is used. This means that data from commonly used space-borne SAR systems operating in
the C-band and X-band are often considered suboptimal for wide-area forest inventory [5].

Cross-polarised (cross-pol) backscatter demonstrates greater sensitivity to forest biomass
than co-polarised (co-pol) backscatter, although multiple polarizations are recommended
for use in forest biomass mapping algorithms. C-band SAR is mostly useful for forests
with very small biomass levels (30–50 t/ha) when a single SAR intensity image is used.
The shorter wavelengths have larger extinction, and limited penetration within the forest
layer compared to the L- and P-bands, although multi-temporal and texture analysis of fine
resolution C-band data may provide useful inputs [6–10]. On the other hand, C-band radar
data acquired by multiple space-borne sensors, historically including ERS-1, ERS-2, and
Envisat ASAR, presently RADARSAT-2 and ESA Sentinel-1, and only recently RADARSAT
Constellation, represent attractive sources of information for timely assessment of forest
cover due to their global coverage (in the cases of ASAR and Sentinel-1) and frequent
revisits. This is particularly important for Sentinel-1 satellites [11] with data offered free of
charge to users.

To date, methodological studies using long time series of C-band SAR intensity data
for GSV mapping over boreal forests have been relatively rare [10,12–14] compared to
studies on multitemporal approaches for GSV estimation using L-band SAR imagery in
boreal forests, particularly with JERS [12,15,16] and ALOS PALSAR [17–19]. The common
understanding is that C-band data are suboptimal compared to L- and P-band data [5];
however, due to the availability of C-band data (Envisat ASAR in Global Monitoring
mode), wide-area maps of GSV have been produced in boreal forests [13]. Parametric semi-
empirical and physics-based models have been used with historical C-band SAR data, such
as ERS-1 and Envisat ASAR, to predict forest stem volume and GSV [13,14,20]. Detailed
historical studies of the temporal dynamics of C-band SAR backscatter in boreal forests
are scarce, whereas in notable examples [14,20] the SAR data were represented by ERS-1
single-pol VV imagery at a 23◦ nominal incidence angle. In [20], the auxiliary parameters
of a semi-empirical model were estimated separately from each processed SAR image, then
a vector of backscatter measurements for each areal unit was iteratively inverted to predict
the forest stem volume. Correlation analysis with reference plot-level stem volume was
used to select suitable images. In [14], the parameters of a semi-empirical model and the
stem volume were estimated simultaneously for each SAR image. Separate stem volume
estimates were later combined using a linear regression model calibrated using the training
data set. In addition, use of multiple linear regression (MLR) for optimally combining
predictions from individual SAR images has been reported in [12]. A popular approach
in forest biomass mapping is to initially predict the GSV using the Water Cloud Model
(WCM) [21] for individual SAR images and then combining these predictions via optimal
weighting of the predictions [13]. Weights can be estimated using image-wise accuracy
statistics in the presence of reference data or with auxiliary datasets [13,22].

Recently, nonparametric approaches such as random forests (RF) and support vector
regression (SVR) have been tested to predict GSV using features calculated from multiple
C-band SAR images, often in combination with L-band and optical images [23]. Using
features calculated from several SAR images as independent variables in GSV prediction
has rarely been studied [10,24], and has typically included both SAR intensity and textural
image features. Use of feature selection approaches has often been limited to RF-based
rankings and simple correlation to forest biomass [24–28]. In [29,30], Wrapper methods
such as stepwise regression analysis, recursive feature elimination, and Boruta were applied
to select feature variables from multi-source satellite data in forest height mapping. In [31],
the performance of importance-based selection methods, including RF and XGBoost, was
analyzed in the context of forest biomass estimation. A binary genetic algorithm was tested
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for selecting the features for forest GSV prediction to reduce the computational complexity
of a SVR kernel [32].

The availability of freely available very long time series data from Sentinel-1, the
presence of two polarizations (co- and cross-polarizations), and access to better reference
data motivates more in-depth exploration of seasonal dynamics and their influence on
GSV predictions compared to earlier studies with ERS-1 and ASAR. Studying various ways
of combining C-band images via feature selection to predict GSV, as well as studying the
temporal dynamics of GSV predicted using selected features (including analysis of long
sets of consecutive SAR images) has now become possible.

Several recent studies using multiple Sentinel-1 acquisitions in the context of forest
monitoring or classification [33–36] have concentrated on analysis of the temporal patterns
of Sentinel-1 data. However, these did not elaborate on the influence of the length of the
time series on classification accuracy, perform explicit feature selection trials, or study ways
of combining consecutive observations for predicting continuous forest variables.

In the context of forest biomass prediction, research has been conducted on the fu-
sion of Sentinel-1 data with SAR data from instruments operating at different wavelength,
as well as with optical data. In particular, the combination of Sentinel-1, ALOS-2, and
Sentinel-2 data has produced greater accuracy, although the role of Sentinel-1 data in this
case was relatively limited [23]. Another study compared single-date and multi-temporal
Sentinel-1 data and demonstrated that multi-temporal Sentinel-1 substantially improved
AGB estimation, though with a much smaller adjusted R2 because of the limitations of
the short wavelengths [37]. When using WCM-based approaches for AGB prediction
from ASAR hypertemporal data, a relative root mean square error (rRMSE) in the range
of 34.2–48.1% was achieved for 1 km pixel predictions [13]. Use of multiple stand-level
features was instrumental in achieving an rRMSE of 30% for a Finnish test site [10]. There,
stand-level backscatter intensity and other stand-level features such as the standard de-
viation of the intensities and the averages of the ratios of the intensities of the images
from different dates were used as predictor variables, resulting in good GSV prediction
accuracies. Several sets of RADARSAT-2 images were studied using machine learning
approaches in combination with other SAR and optical data using various features and
machine learning approaches, achieving rRMSE values of 42–47% [24].

A general conclusion that can be reached is that the use of a single Sentinel-1 im-
age does not lead to accurate forest biomass mapping. Therefore, the present research
concentrates on the fusion of Sentinel-1 and L-band SAR or optical satellite data, while
investigating the potential of multitemporal Sentinel-1 datasets. The performance of multi-
temporal Sentinel-1 approaches is not yet satisfactory on either the forest plot or stand level.
Most critically, in-depth analysis of the potential of very long time series Sentinel-1 data,
their seasonal fluctuations (dynamics), and the effects of these fluctuation on the accuracy
of GSV prediction is lacking, although the data for multiple years are readily available.
Furthermore, a statistically sound method for optimising image and season selections for
purpose of increasing prediction accuracy when using dual-pol Sentinel-1 data has not been
demonstrated over boreal forests. Reported studies of feature selection are relatively scarce,
as well as disparate and non-exhaustive. This motivates us to address these knowledge
gaps. In the present study, we use representative reference forest stand-level data to study
various GSV prediction models and feature selection approaches, including several that
have not been previously studied with SAR data.

Here, we should acknowledge the long history of the operational use of optical
area space-borne data, as well as recent studies for forest and agricultural applications,
e.g., [38–43] and the potential of upcoming sensors [44]. However, it needs to be taken into
account that optical area data are applicable in the boreal zone only during the growing
season. Furthermore, the weather conditions often prevent data acquisition during that
season. One purpose of the current article is to study and develop methods of utilizing
remote sensing data that are applicable independently of weather and lightning conditions
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and to take advantage of the seasonal variation of the backscattering mechanism of SAR in
forestry applications.

Goals and Contributions of This Study

In this study, we expand on a lineage of forest biomass mapping using multitemporal
radar imagery by evaluating the use of large numbers of Sentinel-1 images for a lengthy
time period for Finnish boreal forests. We focus on one key variable, GSV (m3/ha), defined
here as the above-ground volume of living stems above stump to the stem top over a
specified area. Included are the stem volumes of living trees standing or lying with a
diameter at breast height (dbh) of more than 10 cm and height of more than 1.30 m, at
which height dbh is measured. GSV is strongly correlated with other forest variables,
such as tree basal area, AGB, and total tree carbon content. The latter is approximately
(0.3–0.4 t/m3) × GSV in boreal forests depending on the tree species [45,46]. Thus, our
results can be compared to the results from other relevant studies that use SAR to predict
tree biomass for boreal forests.

The primary and overarching objective of this study was to develop a method for
using Sentinel-1 imagery to maximize GSV prediction accuracy. Three supporting and sub-
ordinate objectives were addressed: (1) to analyse the effect of the acquisition date, weather
conditions, and number of Sentinel-1 images on the GSV prediction accuracy; (2) to test and
develop feature selection and transformation methods for backscattering coefficients and
multitemporal features such as principal component analysis (PCA), radiometric contrast
(RC), mutual information (MI), improved k-Nearest Neighbors (ik-NN), random forests
selection (RF-Sel), Lasso and Wrapper approaches, and to evaluate the effects of the features
and transformations on the prediction accuracies; and (3) to test a few commonly used
optional forest variable prediction methods and their performance in GSV prediction.

These objectives were addressed using extensive analyses of a 3.5-year stack of
Sentinel-1 images acquired over a large test site representative of boreal forestland. Both
established and advanced statistical and machine learning approaches were used for feature
selection and forest biomass prediction, in particular MLR, RF, and SVR. With management
inventory needs in mind, we focused on stand-level GSV predictions and their errors,
not necessarily on large area level estimates. The criterion was the mean standard error
at the stand level when using separate validation data. Note that estimators with large
standard errors at the stand level may produce consistent large area estimators, while
precise stand-level estimators may be biased when used as large area estimators.

2. Materials
2.1. Study Site

The 50 km × 50 km study area in Southern Finland was chosen around the Hyytiälä
Forestry Field station of the University of Helsinki, with the following centre coordinates:
61.8◦N, 24.3◦E, as shown in Figure 1. The study site includes forest, agricultural land, lakes,
and several population centres. The forests are dominated by Norway spruce (Picea abies
(L) H. Karst.), Scots pine (Pinus sylvestris L.), and birch (Betula pendula Ehrh. and Betula
pubescens Roth). The soils are mainly glacial drift, with sandy and clayey soils common
as well, especially in agricultural areas. Mires and open bogs are frequent. The area is
relatively hilly, with terrain variation ranging between 95 and 230 m above sea level.
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Figure 1. Location of the study site in Southern Finland (left) along with representative Sentinel-1
image as RGB composite (Red: VV, Green: VH, Blue: VV/VH; Date: 9 October 2014).

2.2. Sentinel-1 Data

Ninety-six Sentinel-1 images acquired between 9 October 2014 and 21 May 2018 were
used in the study as Level-1 (Ground-Range Detected High-resolution, GRDH) products
with VV and VH polarizations. The images were acquired in Interferometric Wide-swath
(IW) mode on descending orbits.

The Sentinel-1 images were multilooked with factor 2 × 2 (range × azimuth) to obtain
images with pixel dimensions corresponding to the 20 m grid spacing. The bilinear inter-
polation method was used for resampling in connection with orthorectification. A digital
elevation model (DEM) from the National Land Survey of Finland was used and averaged
to 20 m × 20 m pixels. Radiometric normalization with respect to the projected area of the
scattering element was used to eliminate the topography-induced radiometric variation.
In this way, a time series of co-registered images in the terrain-corrected “gamma-naught”
coefficient was constructed [47] with a pixel size of 20 m × 20 m. A 3× 3 median window
was used to filter the speckle noise.

2.3. Ground Reference Data

Stand-level forest resource data collected, prepared, and intended for forest manage-
ment purposes were used for both the training and validation data. Figure 2 presents
the stand-level reference and weather conditions. The data for the test site corresponded
to the year 2016 and were obtained from the Finnish Forest Centre [48,49]. These forest
resource data consist of predictions from statistical models using airborne laser scanning
(ALS) data and data from field measurements. A single remote sensing site has a total
area of about 300,000 hectares. From one inventory site, 700–800 circular sample plots or
150–200 new types of larger tree map sample plots are measured. Different plot types can
be combined [48]. Field checks on each stand were used to correct noticeable deviations in
predictions, e.g., in tree species level predictions, following the practical procedure recom-
mended by the Forest Centre. It is important to note that despite this procedure stand-level
predictions always include some errors. The estimated average relative stand level root
mean square error (RMSE) of the GSV predictions is around 9–11% [49], with the error
depending on the actual GSV. Earlier, new data were produced on every tenth year, and are
now measured on every fifth year. The data are updated annually based on growth models
and the reported forestry regimes, such as harvests; thus, they are in principle up to date.
Because the stand edges may influence prediction, one-pixel morphological erosion was
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applied to the stand mask, that is, only pixels separated from the closest stand boundary
by at least one pixel were included in the analyses. Further, only stands with areas of at
least 1.0 ha after the erosion and with a GSV of 2.0 m3/ha or more were used. The GSV
threshold was used to remove stands with recent regeneration cuts from the lengthy time
series datasets. In total, 17,762 stands were included in our approach, of which 8881 were
randomly selected for training and 8881 remained for validation (Table 1).

Figure 2. Forest reference data and weather conditions: (a) masks of the forest stands; (b) locations of
training and testing stands; (c) three-day accumulated precipitation amount; (d) minimum tempera-
ture; and (e) snow depth. Sentinel-1 acquisition times are highlighted with red dot marks, while blue
dots indicate the weather history throughout the entire observation period.

Table 1. Ground reference data, including the stand area and the growing stock volume, divided into
training and validation sets.

Data Set
Number Stand Area, ha Volume, m3/ha

of Stands Median Mean Std Mean Std

Training 8881 2.16 3.05 3.26 170.39 93.03
Validation 8881 2.20 3.03 2.77 170.70 93.83

Both 17,762 2.20 3.04 3.03 170.55 93.43

3. Methodology

Our approach focused on predicting GSV at the stand level using optional regres-
sion techniques, including MLR (Section 3.1.1), SVR (Section 3.1.2), and RF regression
(Section 3.1.3).

The general approach is shown schematically in Figure 3. First, a subset of images and
optional features was selected, then the backscattering was averaged within each stand
for each feature, spatially guided by the forest stand masks. Later, using the stand-level
averaged features as the pedictors, the response variable GSV was predicted utilizing the
different regression approaches.
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Figure 3. General processing flowchart for growing stock prediction using selected Sentinel-1 images.

We used RMSE as the criterion for evaluating regression performance. To ensure
that the evaluation was not affected by the size of the forest stands, stand size after a
morphological erosion was used as a weighting factor to normalize the RMSE, which was
calculated as follows:

RMSE =

√√√√∑N
i=1(v̂i − vi)

2si

∑N
i=1 si

, (1)

where vi denotes the GSV of stand i, v̂i is its prediction, si the area of the stand i, and N is
the total number of stands.

Three supervised GSV prediction methods are described in Section 3.1. The approaches
for selecting the optimal subsets of features are described in Section 3.2. The multi-temporal
analysis method is described in Section 3.3.

3.1. Methods for Predicting Growing Stock Volume
3.1.1. Multiple Linear Regression

MLR was used as one of the parametric methods for predicting GSV. This is a basic
regression approach often used for modeling the relationship between GSV or forest
biomass and SAR backscattering. In certain cases, transformations can be applied to the
predictor and response variables to further linearize the modeled relationship [15,18,26,27,
50–56]. In this study, SAR image features were used as predictor variables and multiple
optional transformations of the response variable GSV were tested, including exponential
(e.g. with a power of 0.5) and logarithmic, in addition to a non-transformed GSV. The final
model was of the form

log(vi + a) = w0 +

N f

∑
j=1

wj fi,j + εi, (2)

where vi is the GSV for stand i, fi,j denotes the SAR feature j for stand i, N f is the number
of the SAR features, wj with j ∈ 0, . . . , N f are the coefficients to be estimated, a is a small
positive number, and εi is random error that is assumed to be independently distributed.
In this study, the SAR feature represents the logarithmic scaled stand-level intensity at the
VV or VH polarizations, or both. A bias correction was made to GSV predictions due to the
use of a logarithmic transformation in model estimation [57]. The correction was based on
Taylor series expansion, assuming that εi is normally distributed and is calculated as half
of the variance estimate of εi. Note that the correction is additive, is made to the prediction
on the log scale before back-transforming, and is half the residual variance on the log scale.

To evaluate the separate contributions to GSV prediction, the values of fn were selected
from different scenes (timestamps) and polarizations (VV-only, VH-only, or VV and VH),
as was the case for the other regression approaches as well.

3.1.2. Support Vector Regression

Support vector machine (SVM) classification was first proposed by [58] to solve
traditional classification problems. It is based on statistical learning theory. Later, [59]
extended SVM to regression problems, namely, SVR. This converts a regression problem
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to a convex quadratic programming problem. The introduction of the ε-insensitive loss,
which ignores the error near true values, makes SVR less sensitive to overfitting. Using a
nonlinear kernel function, SVR can be transformed from a nonlinear problem into a linear
one in a higher-dimensional feature space [60,61].

The Gaussian Radial Basis Function (RBF) kernel was used in our study. This kernel
has previously shown good performance in forest biomass estimation tasks [26,62]. As
SVR is sensitive to hyperparameters, it is necessary to find the optimal hyperparameters by
cross-validation on the training data.

3.1.3. Random Forests

RF is a supervised ensemble learning algorithm that uses a bagging strategy to fit a
large collection of classification and regression trees (CART), leading to improved overall
modelling prediction ability [63]. First proposed in 1995, it has been widely used for forest
classification, change detection, and biomass estimation [64–67]

Compared to SVR and linear regression, RF has multiple advantages: (i) it can avoid
overfitting by introducing two layers of randomisation, i.e., bootstrapping when sampling
and a random feature subset when splitting nodes [63]; (ii) parallel decision trees accelerate
computation while making nonlinear modelling possible; (iii) high-dimensional data can
benefit from its automated feature selection, which is especially needed in SAR long time
series image processing; and (iv) by using out-of-bag (OOB) data in internal examination
of the model, RF can substantially decrease the systematic prediction error without any
need for more training data [68].

In the training stage, data subsets for each decision tree are randomly sampled from
the original data using bootstrapping, then each decision tree is trained independently
until each leaf belongs to one specific label. When splitting nodes, for regression tasks
impurity criterion such as mean squared error (MSE) or mean absolute error (MAE) are
used to select the splitting variable (feature) and splitting point. In the end, the predictions
are averaged over trees to provide the final results.

In addition, the impact of each feature on the impurity of the decision trees can reflect
the importance of that feature. This principle is used for feature ranking, namely, RF
selection (RF-Sel), along with the other methods elaborated in Section 3.2.

After five-fold cross-validation on a small subset of training data, the number of trees
within the model was set to 400 and MSE was chosen as the impurity criterion (variance
reduction). To minimise the computational intensity and achieve greater accuracy, the
maximum depth of trees was varied from 5 to 35 according to the number of input features.
The minimum number of sample units required to split an internal node was set to 5.

3.2. Feature Transformation and Selection

Because the Sentinel-1 time series has 96 images (timestamps) covering more than
three years and each image has two bands (VV/VH), considerable redundancy can be
expected in the feature space. To circumvent the effects of this redundancy and to reduce
the computational burden, feature extraction or reduction can be useful. Here, we describe
several approaches for transforming or selecting an optimal subset of SAR features. We dis-
cuss both the optimal subset and insights into the choice of the optimal observation dates.
By carefully choosing a few specific dates, we expect to achieve a prediction accuracy close
to what can be achieved using the entire original time series.

3.2.1. Principal Component Analysis

Principal Component Analysis (PCA) is a common approach for reducing the dimen-
sionality of the feature space [69]. PCA can be used to convert the original features into a
set of linearly uncorrelated components using an eigenvalue decomposition. The impor-
tance of each component is evaluated by its eigenvalue. The components corresponding
to the largest eigenvalues are expected to retain most information about variation in the
data. In this way, a subset of principal components can be used as a set of new features,
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thereby effectively reducing the original data features while preserving the majority of
information. However, because PCA is essentially a feature transformation rather than
a feature selection approach, it is not suitable for certain tasks, such as determining the
optimal season for acquiring SAR imagery. Therefore, PCA analysis is primarily used as a
standard for comparing feature selection approaches, as described below.

3.2.2. Feature Selection Using Radiometric Contrast

Radiometric contrast (RC) is used for choosing a set of images with feature variables
that have the greatest radiometric variation between forested and non-forested terrain. This
is similar to the approaches used for feature selection in earlier studies, and is preferred
because of its simplicity and lack of need for reference data [13]. The essential idea is that
SAR image features with greater radiometric contrast between forested and non-forested
areas are better able to discriminate different values of GSV due to a greater dynamic range
of forest backscattering measurements.

Forested and non-forested areas are each represented by a specific number of stands
that have the least or greatest GSV, respectively. First, we sorted the stands in descending
order according to their GSV. Denoting the 10 stands with the greatest GSV as the subset
Pmax and the 10 stands with the least GSV as Pmin for a specific polarization of a certain
image, the radiometric contrast γ is evaluated as the ratio of the mean amplitude by using
the formula below:

γ =
ĀPmax

ĀPmin

=
∑i∈Pmax Ai

∑j∈Pmin
Aj

(3)

where Ai denotes the stand-averaged feature/backscattering amplitude of stand i ∈ Pmax.
Further, all the images were ranked according to the calculated radiometric contrast.

The selected images and their relative performance are analysed further in Section 4.2.

3.2.3. Feature Selection Using Mutual Information

Mutual information (MI) is a Shannon entropy-based measure of dependence between
random variables. It uses the naive idea that more mutual information means more
contributions to prediction. Unlike Pearson linear correlation, mutual information can
capture nonlinear dependency [70,71]. The mutual information is calculated as

φ = ∑
v∈V

∑
f∈F

p( f , v) log
(

p( f , v)
p( f )p(v)

)
, (4)

where f is the SAR feature variable, v is the GSV, p denotes the probability distribution,
and φ is always non-negative and equals zero when and only when p(F ,V) = p(F )p(V).

Accurate estimation of the probability distribution is not trivial, particularly from
finite samples. Here, we use a k-Nearest Neighbors (k-NN) based approach to estimate
the joint distribution p(F ,V) [72]. The number of neighbours k was set to k = 7 for this
task [70].

3.2.4. Feature Selection Using Lasso

Least Absolute Shrinkage and Selection Operator (Lasso) is another linear regression
method [73]. For totals of Ns stands and N f features, the Lasso loss function is

ŵ = argminw

 Ns

∑
i=1

(vi − w0 −
N f

∑
j=1

fi,jwj)
2 + λ

N f

∑
j=1

∣∣wj
∣∣ (5)

where fi,j denotes the SAR feature j for stand i, vi denotes the corresponding reference GSV,
and wj is the coefficient of feature j. The loss is similar to least squares estimation (LSE) for

conventional linear regression; the difference is that in Lasso an L1 regularization λ ∑
N f
j=1

∣∣wj
∣∣

is applied on the coefficients wj. The regularization makes some of the weak feature weights
equal to 0, thereby achieving selection of important features in high dimensional cases. λ is
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the weight to control the strength of regularization. Lasso has known shortcomings; when
there is a set of highly relevant variables, Lasso tends to choose one of them while ignoring
others, leading to instability of the regression/feature selection process.

3.2.5. Feature Selection Using ik-NN

The well-known k-NN prediction method is well-suited for cases in which multiple
target parameters or variables are estimated simultaneously. In addition, during the
estimation process k-NN can obtain the weights of different features, and as such can be an
optional method for feature selection [10,38–40].

In this study, we utilize an improved k-nearest neighbors (ik-NN) with a genetic
algorithm in the context of feature selection. Consider a stand p and denote its k nearest
feasible field stands as p1, . . ., pk, where the distance is measured in the feature space. The
weight βi,p of field stand i with respect to stand p is defined as

βi,p =
1

dt
pi ,p

/
∑

r∈{1,...,k}

1
dt

pr ,p

i ∈ {1, . . . , k}
= 0 otherwise,

(6)

where pr is a field stand with its index r ∈ {1, . . . , k}. We fixed the value of k to be 15 after
tests on the validation subset, for which we used the RMSE and mean deviation as criteria.
The distance weighting power t is a real number, usually t ∈ [0, 2]; here, we set t = 1. A
small quantity greater than zero is added to d when d = 0.

The distance metric d employed was

d2
pr ,p =

N f

∑
j=1

wj
2( fp,j − fpr ,j)

2, (7)

where fp,j is the j-th SAR feature variable for stand p, N f is the number of SAR feature
variables, and wj is the weight of the j-th SAR feature variable.

The values of the elements wj of the weight vector w were selected using a genetic
algorithm [38,39]. The fitness function to be minimized when calculating the w vector for
GSV estimation was

f (w, γδ, γe, δ̂, ˆ̄e) =
Ne

∑
r=1

γδ,r δ̂r(w) +
Ne

∑
r=1

γe,r ˆ̄er(w), (8)

where:

δ̂r(w) is the standard error of the prediction of the forest variable r at the stand level,
ˆ̄er(w) is the mean deviation of the forest variable r at the stand level,
Ne the number of the forest variables used in the algorithm (here, one variable),
γδ and γe are fixed constant vectors.

After trial and error tests as well as heuristic trade-offs between the standard error
and mean deviation, the values of γδ = 10 and γe = 1 were selected, resulting in RMSE
having greater weight. The other parameters of the genetic algorithm itself were the same
as in [38].

As an iterative procedure, genetic algorithms are computationally intensive and may
produce a local rather than global optimum. To circumvent this possibility, multiple runs
are usually needed to find a near-global optimum.

3.2.6. Feature Selection Using Wrapper Methods

Based on ranking mechanisms, feature selection approaches can be classified into
three categories: Filter, Embedded, and Wrapper methods. Filter methods select features by
statistically measuring their correlation with the target variable. These methods typically
assume the independence of the features. Furthermore, the selection process is not directly
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related to subsequent tasks. Although filter methods are fast, they may not yield the best
features. In the current study, RC and MI are examples of filter methods. On the other
hand, embedded methods incorporate the feature selection process into model training.
For instance, RF has a built-in feature selection mechanism. With a fully trained model, the
importance of different features can be extracted in parallel. In our study, RF-Sel, Lasso,
and ik-NN are typical representatives. In contrast to filter methods, embedded methods
can take into account information redundancy among the features.

In addition to filter and embedded methods, we employed a typical wrapper method
called sequential feature selection (SFS) in our study. SFS utilizes a forward search direction
to select key features from a large number of features. It follows a greedy search approach,
where at each iteration the SFS-based wrapper selects one promising feature from the
remaining feature pool based on the performance of its proxy task model. If the performance
criteria are met, the feature is incorporated into the locally-optimal subset of features for
the next iteration. After a certain number of iterations, a collection of key features is
obtained. The flowchart illustrating the method is shown in Figure 4. Compared to filter
and embedded methods, wrapper methods are generally considered to be more precise;
however, they require substantially more computational resources due to their iterative
nature and the need to evaluate the performance of multiple subsets of features.

Figure 4. Flowchart of the wrapper method.

For the choice of the proxy task model, we opted for RF regression in our study.
The reason for this choice was its nonlinear modelling capability and relatively modest
computation workload compared to other methods. To estimate the performance of the
proxy model, we employed five-fold cross validation. In this case, the RMSE of GSV
prediction was the evaluation criteria. We additionally tested MLR as the proxy model,
with the selection performance being slightly worse. SVR was another option; however,
the computational requirements appeared to be too heavy to accomplish within a reason-
able time.

3.3. Multitemporal Analysis Using “Sliding Window"

The aim of multitemporal analysis of SAR imagery in this study was to assess the
prediction accuracy gain achieved on multiple SAR images. These images were used
as either sequences of consecutively collected images or as specific images chosen using
the feature selection approaches (Section 3.2). For the latter, optimal SAR images could
be spread over the three-year observation period. However, using all the data seems
impractical, as strong saturation can be observed; indeed, any additional value when
using more than 10 images is questionable. The use of such a long time series can be
computationally demanding as well. Therefore, we attempted to use RMSE as the criterion
in order to determine the best time to acquire SAR images, i.e., the optimal observation
season, and to analyze the seasonal characteristics of the SAR image time series.

The size of the sliding window corresponds to the number of images that are aggre-
gated and used to derive the feature variables. Several aggregation approaches are possible
in the context of GSV estimation. The first, multitemporal filtering, facilitates reduction of
speckle by calculating the combined estimate from several images via averaging [74]. The
filtered image is further used to calculate image features to predict GSV. Another approach
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performs image-by-image GSV estimation, then merges individual image-based estimates
using a multiple regression approach [12]. Individual GSV estimates can be obtained using
methods such as inversion of physics-based models [18,75]. However, for this study a set
of feature variables derived from SAR images was used directly as input to a multiple
regression approach, thereby constituting a possible third approach that seems to be the
most practical.

An illustration of the sliding window is shown in Figure 5. The choice of the size of
sliding window, i.e., the number of images used to select the feature variables for regression,
required separate experimentation. On the one hand, it is expected that including more
images will improve GSV prediction performance. On the other hand, the marginal value of
additional images can be limited as the image quantity increases beyond a certain number,
and there is increased computational intensity associated with larger sliding windows.
Thus, several window sizes from 1 to 32 were tested for this study.

Figure 5. Illustration of the sliding window approach.

4. Results

We started our analysis by assessing the improvement in GSV prediction as the number
of Sentinel-1 images increased when using the three GSV prediction approaches. The effect
of the image acquisition time on the prediction accuracy and relative performance of the
studied prediction methods is reported in Section 4.1. Images were aggregated in the order
of their acquisition. Furthermore, the potential of the feature selection and transformation
approaches and their effects on the accuracy of GSV prediction are analysed in Section 4.2.
The effects of combining a small number of images within the “sliding window” for GSV
prediction are reported in detail in Section 4.3.

4.1. Accuracy of GSV Prediction
4.1.1. Single SAR Images and Seasonal Variation of the Predictions

Figure 6 shows the accuracy of the GSV predictions when using feature variables
derived from single SAR images acquired from November 2014 to July 2018. The accu-
racy metrics are shown in the order of image acquisition. RMSE varies within the range
85–94 m3/ha (rRMSE 50–55%) for various polarizations. Overall, the dynamics are quite
variable, as expected for C-band imagery, which is strongly affected by environmental
conditions. For MLR, the greatest accuracies were obtained using feature variables selected
for images for the month of June for 2015, 2016, and 2017. For SVR and RF a similar
observation can be made, with an optimum in early 2016. For all image and polarization
combinations, the combined VV and VH polarizations provide smaller RMSEs than any
single polarization alone, and provide VV-pol somewhat smaller than VH-pol. Scatter-
plots of the different GSV prediction methods for several selected sets of Sentinel-1 image
features are shown in Figure 7.
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MLR

SVR RF

log-MLR

Figure 6. RMSEs of the predicted GSV using individual images (both polarizations) with MLR,
log-MLR, SVR, and RF.

Figure 7. Scatterplots illustrating prediction performance for various methods and features. Rows
correspond to the MLR, log-MLR, SVR, and RF methods. The first column shows predictions
using only one image (acquired 8 January 2016), the second column shows predictions using eight
consecutive scenes (21 November 2015–25 February 2016), the third column shows predictions using
the 10 best Lasso features, and the last column shows predictions using all 192 features.
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4.1.2. Accumulated SAR Time Series

We further tested the accuracy of the GSV predictions by using feature variables
for multiple images (SAR time series) in modelling with MLR, SVR, and RF, and with
three polarization options, VH, VV, and VV plus VH. The variations in RMSE for the GSV
predictions are illustrated in Figure 8. Here, the images were accumulated in the order
of their acquisition. GSV prediction for any given date was performed using all images
acquired until the date on x-axis. Altogether, twelve RMSE curves obtained as a function of
the number of accumulated images used in GSV prediction are presented in Figure 8.

VH VV VH&VV

Figure 8. Accuracy of predicted GSV with image features in the order of image acquisition.

A nearly monotonic decrease in RMSE for the GSV predictions with all the polarization
combinations and all three prediction methods can be seen. The RMSE rapidly decreases
initially, then levels off shortly after July 2015, by which time more than 15 images have
accumulated in the SAR time series. RMSE decreases somewhat faster for VV-pol than for
VH-pol, with an RMSE of approximately 80 m3/ha for VV and approximately 82 m3/ha
for VH for July 2015. Combined VH and VV had a smaller RMSE for GSV prediction than
either VV or VH alone, less than 79 m3/ha (rRMSE 47%) for the same date.

For the majority of our experiments, combinations of image sets, polarizations, and
prediction methods SVR produced somewhat smaller RMSEs than MLR or RF, about
1.0 m3/ha smaller, whereas there was practically no difference between the RMSEs for
MLR and RF except for a short period from 2016 to 2017 for VH-pol.

4.2. Feature Selection

Here, we evaluated the potential of Sentinel-1 for GSV prediction using selected sets of
images, in contrast to using images in the order of their acquisition dates as in Section 4.1.2.
The idea was to achieve the greatest GSV prediction accuracy using a minimum number
of images. In further analyses, we evaluated several feature selection approaches. When
particular images were selected, their features were used in stand-level GSV prediction.

The results of GSV prediction using different feature selections and transformation
approaches to form multitemporal SAR stacks are presented in Figure 9. Both polarizations
were used together; thus, the original feature pool consists of 192 features. The PCA results
are shown in Figure 9 as a benchmark. In the figures, only the first 50 components are
shown, as there is no accuracy improvement beyond this number.

The SVR method produced slightly smaller RMSEs than MLR or RF, similar to the
results in Section 4.1.2 (Figure 8). RF produced somewhat smaller RMSEs than MLR. In
particular, MLR had larger RMSEs when using the initial 20-25 features and the features
selected using radiometric contrast and mutual information.

All three studied regression methods demonstrated smaller RMSEs when using Lasso,
RF-Sel, and Wrapper compared to RC, MI, or ik-NN.

Interestingly, GSV prediction accuracy with RF started to decrease when more than
20 PCA features were included in the model. A likely reason for this is that the PCA tail
components consist largely of noise.

Other approaches, particularly MLR and SVR, appeared to be more robust in this
respect, with consistent decreases even when incorporating noise-like PCA features. The
achieved “plateau” of RMSE was approximately 75.1 m3/ha (rRMSE 44%).
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Figure 9. RMSE dependence for various feature sets. All 192 features (VH+VV) are ranked, with
the top 50 shown in the figure. Features are ranked using RC, MI, ik-NN, RF-Sel, Lasso, and PCA,
respectively. All four regression methods are used in the evaluation.

Among all examined feature selection methods, Lasso, RF-Sel, and Wrapper had
similar levels of performance. The RMSEs for all regression methods reached less than
78 m3/ha when only the top 20 features were used. With only 20 features, we were able to
obtain a prediction accuracy similar to the PCA upper bound benchmark. The performance
of ik-NN was slightly worse, achieving 79 m3/ha RMSE for GSV prediction. The accuracy
measure of MI exhibited an inconsistent “stepped” trend of decrease, suggesting that this
feature selection approach is not ideal, with slow convergence to smaller RMSE values.
Radiometric contrast appeared to be the least effective in selecting features, with RMSE
decreasing at the slowest pace and not reaching the best possible values within the 50 top
features.

This indicates that a blind feature selection approach with no reference data, such as
RC, is generally suboptimal. However, in the absence of reference data it was the only
approach with RMSEs that were better than the prediction results in Figure 8, where no
feature selection was done at all.

To facilitate better comparison of the Lasso, RF-Sel, and Wrapper approaches, we show
the respective RMSE dependencies in Figure 10. It is evident from the plot that wrapper
has a smaller RMSE, particularly when fewer than 10 features are selected. This suggests
that the SFS mechanism helps to improve the selection performance of the wrapper method
even though it uses the same proxy model as RF-Sel. However, as the number of selected
features increases, the RMSE curves of all studied selection approaches tend to converge.
This implies two points: (1) wrapper can be considered the best feature selection in the
context of our study, particularly when a small number of features is required; (2) when
more than the top 10 features are allowed in a prediction, the superiority of wrapper is less
apparent. Additionally, considering that the heavy computational workload associated
with wrapper grows exponentially with the number of features selected, we recommend
using Lasso instead in such cases. Lasso is significantly faster and demonstrates good
feature selection performance. In Figure 7, we present the scatter plots using the top 10
Lasso features, which provides GSV prediction performance similar to the scenario in
which all features are used. This further supports our conclusion on the efficiency of the
Lasso approach for SAR feature selection.

Upon analyzing the feature selection performance using various polarizations, we
found that the effect of polarizations was relatively small, especially for Lasso, RF-Sel, and
Wrapper. These algorithms consistently selected appropriate features for GSV prediction
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regardless of whether VV-pol or VH-pol was utilized. Higher accuracy was achieved
by incorporating both VH and VV polarizations. MI had the strongest sensitivity in feature
selection with respect to different polarizations. Feature selected using VV-pol was much
better than with VH-pol in terms of overall prediction performance. This resulted in the
deteriorated selection performance of VH and VV in combination. This phenomenon can
be clearly seen in Figure 11a. Regarding RC-based feature selection, it was difficult to
achieve competitive performance regardless of the polarization used.

Figure 10. RMSE dependence on the number of input features at various polarizations with SVR as
the regression method.

Figure 11. RMSE dependence on the number of input features at various polarizations with
MLR/RF/SVR as regression methods: (a) Mutual Information feature selection and (b) Lasso feature
selection.

In summary, the wrapper method demonstrates the most accurate feature selection,
consistently yielding the best GSV accuracy for all regression models. Lasso proved a viable
option when computational resources are limited. Features selected using VH polarization
are slightly better than those selected using VV polarization. Lastly, SVR is confirmed to be
the most accurate regression method in our study.

Table 2 shows the feature selection results for the three polarization combinations.
For both VV and VH, the key features belonged mostly to images acquired under frozen
conditions. However, several “dry summer” images acquired in May and June were
included by the most accurate Lasso and ik-NN approaches. We performed additional
experiments using Monte Carlo testing of random combinations of 10 images representing
frozen ground conditions (VV and VH features combined) in GSV prediction using the
SVR approach. After fifty trials, the RMSE was 79.3± 1.1 m3/ha and never exceeded
the accuracy of the top 10 Lasso approach of 77.1 m3/ha when all images were used
(Table 2). The corresponding accuracy for 10 ik-NN selected features using all possible
images reached 78.5 m3/ha, exceeding the absolute majority of trials with ten exclusively
frozen condition images. Similar dynamics were observed for other regression approaches,
indicating that the idea of using dry summer images in addition to frozen condition images
should be examined in further studies. Cross-pol performed slightly more accurately than
co-pol. Several images, such as those acquired on March 2nd 2015 and January 8th 2016,
had both polarizations among the selected features, indicating that near-optimal GSV
prediction can be achieved while using only a few carefully selected images instead of the
whole SAR image stack. This observation is in line with PCA feature selection, as discussed
above.
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Table 2. Feature selection results using several feature selection approaches.

Contrast Mutual Info ik-NN Lasso RF-Sel Wrapper

Image # Timestamp Pol. Image # Timestamp Pol. Image # Timestamp Pol. Image # Timestamp Pol. Image # Timestamp Pol. Image # Timestamp Pol.

VH-pol only, 96 images, 96 features

33 2016-01-20 VH 32 2016-01-08 VH 9 2015-03-02 VH 32 2016-01-08 VH 32 2016-01-08 VH 32 2016-01-08 VH
51 2016-10-10 VH 33 2016-01-20 VH 33 2016-01-20 VH 7 2015-02-06 VH 33 2016-01-20 VH 87 2018-02-02 VH
9 2015-03-02 VH 26 2015-10-28 VH 32 2016-01-08 VH 92 2018-04-03 VH 87 2018-02-02 VH 26 2015-10-28 VH

32 2016-01-08 VH 9 2015-03-02 VH 38 2016-04-13 VH 33 2016-01-20 VH 92 2018-04-03 VH 8 2015-02-18 VH
38 2016-04-13 VH 30 2015-12-15 VH 11 2015-03-26 VH 8 2015-02-18 VH 26 2015-10-28 VH 66 2017-04-08 VH
25 2015-10-16 VH 31 2015-12-27 VH 94 2018-04-27 VH 87 2018-02-02 VH 7 2015-02-06 VH 92 2018-04-03 VH
63 2017-03-03 VH 25 2015-10-16 VH 64 2017-03-15 VH 29 2015-12-03 VH 31 2015-12-27 VH 33 2016-01-20 VH
93 2018-04-15 VH 1 2014-10-09 VH 88 2018-02-14 VH 26 2015-10-28 VH 67 2017-04-20 VH 7 2015-02-06 VH
37 2016-04-01 VH 16 2015-06-06 VH 87 2018-02-02 VH 11 2015-03-26 VH 9 2015-03-02 VH 51 2016-10-10 VH
68 2017-05-02 VH 37 2016-04-01 VH 61 2017-02-07 VH 71 2017-06-07 VH 85 2018-01-09 VH 29 2015-12-03 VH

VV-pol only, 96 images, 96 features

9 2015-03-02 VV 9 2015-03-02 VV 25 2015-10-16 VV 32 2016-01-08 VV 9 2015-03-02 VV 9 2015-03-02 VV
51 2016-10-10 VV 51 2016-10-10 VV 67 2017-04-20 VV 11 2015-03-26 VV 92 2018-04-03 VV 87 2018-02-02 VV
96 2018-05-21 VV 33 2016-01-20 VV 9 2015-03-02 VV 92 2018-04-03 VV 32 2016-01-08 VV 32 2016-01-08 VV
33 2016-01-20 VV 32 2016-01-08 VV 23 2015-09-10 VV 7 2015-02-06 VV 87 2018-02-02 VV 91 2018-03-22 VV
50 2016-09-28 VV 16 2015-06-06 VV 15 2015-05-25 VV 38 2016-04-13 VV 91 2018-03-22 VV 38 2016-04-13 VV
49 2016-09-16 VV 54 2016-11-15 VV 69 2017-05-14 VV 31 2015-12-27 VV 51 2016-10-10 VV 8 2015-02-18 VV
21 2015-08-17 VV 52 2016-10-22 VV 32 2016-01-08 VV 89 2018-02-26 VV 38 2016-04-13 VV 89 2018-02-26 VV
52 2016-10-22 VV 87 2018-02-02 VV 51 2016-10-10 VV 91 2018-03-22 VV 33 2016-01-20 VV 21 2015-08-17 VV
53 2016-11-03 VV 41 2016-05-31 VV 90 2018-03-10 VV 8 2015-02-18 VV 7 2015-02-06 VV 29 2015-12-03 VV
41 2016-05-31 VV 42 2016-06-12 VV 72 2017-06-19 VV 9 2015-03-02 VV 88 2018-02-14 VV 85 2018-01-09 VV

VH-pol and VV-pol combined, 96 images, 192 features

33 2016-01-20 VH 32 2016-01-08 VH 32 2016-01-08 VH 11 2015-03-26 VH 32 2016-01-08 VH 32 2016-01-08 VH
51 2016-10-10 VH 33 2016-01-20 VH 93 2018-04-15 VH 32 2016-01-08 VH 92 2018-04-03 VV 92 2018-04-03 VV
9 2015-03-02 VH 26 2015-10-28 VH 64 2017-03-15 VH 7 2015-02-06 VH 33 2016-01-20 VH 38 2016-04-13 VV
9 2015-03-02 VV 9 2015-03-02 VV 10 2015-03-14 VH 32 2016-01-08 VV 87 2018-02-02 VV 7 2015-02-06 VV

32 2016-01-08 VH 9 2015-03-02 VH 11 2015-03-26 VH 29 2015-12-03 VH 91 2018-03-22 VV 70 2017-05-26 VV
38 2016-04-13 VH 51 2016-10-10 VV 18 2015-06-30 VV 7 2015-02-06 VV 7 2015-02-06 VV 91 2018-03-22 VV
25 2015-10-16 VH 30 2015-12-15 VH 92 2018-04-03 VV 92 2018-04-03 VV 32 2016-01-08 VV 26 2015-10-28 VH
51 2016-10-10 VV 31 2015-12-27 VH 59 2017-01-14 VH 89 2018-02-26 VV 26 2015-10-28 VH 7 2015-02-06 VH
63 2017-03-03 VH 25 2015-10-16 VH 62 2017-02-19 VH 71 2017-06-07 VH 38 2016-04-13 VV 32 2016-01-08 VV
93 2018-04-15 VH 1 2014-10-09 VH 89 2018-02-26 VV 26 2015-10-28 VH 87 2018-02-02 VH 67 2017-04-20 VH
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4.3. Sliding Window Analysis

Our sliding window analyses started by selecting a suitable window size for further
tests (Section 3.3). For this purpose, we used SVR as the prediction method and tested
several window sizes from one (corresponding to only one image) to as many as 15 images.

The results of GSV prediction using sliding windows of different sizes are shown in
Figure 12. The date of the first image within a sliding window is shown on the x-axis. The
RMSE varied from 85.3 m3/ha to 93.5 m3/ha, with an average RMSE of ∼90 m3/ha for a
sliding window size Nw equal to one, that is, when only one image at a time was used to
predict GSV. The greatest accuracy was achieved using the image acquired on 8 January
2016. No pronounced RMSE seasonal dynamics can be observed. Furthermore, as Nw grew
larger, the RMSE gradually decreased. The largest RMSE with Nw = 4 was about 92 m3/ha.
The largest RMSE was smaller than 88 m3/ha with Nw = 15.

Figure 12. RMSE of GSV prediction as a function of image acquisition date for various sliding
windows when using the SVR approach. The window sizes are 1, 4, 8, and 16 (shown in (a–d),
respectively). Solid curves show the RMSE for experiments with all stands, while dashed curves
show the RMSE results when using stands with biomass of less than 150 m3/ha.

The seasonal patterns indicated by the RMSE curves first become apparent and then
more pronounced when expanding the sliding window size.

For example, in Figure 12b the seasonal pattern is not very clear, whereas in Figure 12c
annual variations can be readily observed; the local minima of the RMSE curves are clearly
visible in every winter, while the local maxima can be found every summer. When the
window size is very large, approaching six months, the second peaks are almost eliminated
and the three main annual peaks become clearly visible (Figure 12d).

Note that the x-axis tick marks denote acquisition dates for the first Sentinel-1 image
within each sliding window, whereas all images within the window contribute to GSV
prediction. The temporal resolution decreases when the window size increases, with the
RMSE temporal variation becoming smooth. The width of the extreme is particularly
affected. Consider the situation around January 2016 as an example. When the window
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size is small, i.e., 1 to 4, there is a strong temporal fluctuation in RMSE, and the “valleys”
(e.g., 8 January 2016) are sharp, as shown in Figure 12a. When the window size increases
to half a year in Figure 12d, the fluctuation becomes smoother, as do the major “peaks”.
The reason for this is that the image acquired on 8 January 2016 contributed strongly to GSV
prediction with all sliding windows that include this image, exhibiting large prediction
accuracies. This complicated the selection of an optimal season for GSV prediction. Thus, a
balance between preserving seasonal patterns without sacrificing temporal resolution needs
to be made. Based on our trade-off analysis, a window size of eight is most suitable. Using
this window size, we proceeded to analyse GSV prediction using different polarizations
and estimation methods.

The actual date of the RMSE minimum can be somewhat delayed compared to the
date shown on x-axis due to larger window size. A window size of eight corresponds to
approximately three months in the Sentinel-1 time series. The RMSE minimum around
December means that the optimal timing for SAR images acquisition is in the winter around
January and February. The peaks around May indicate that the acquisition times in the
summer around June and July are not optimal for GSV prediction in boreal forests when
using C-band SAR time series imagery.

Different Regressions over an Eight-Image Sliding Window

In Figure 12, a window size of eight is suggested as the best sliding window size.
To study the influence of different regression methods on the sliding window size, we
used MLR and RF in addition to SVR in this subsection. As shown in Figure 13, the
seasonal pattern is obvious with all regression methods. Seasonal RMSE extrema occurred
every summer and winter. The overall RMSE levels and dynamic range were nearly the
same for all regression approaches, with MLR underperforming in the autumn of 2016.
The differences among polarizations were more apparent, favoring VV over VH and overall
suggesting combined use of both polarization channels.

MLR

SVR RF

log-MLR

Figure 13. RMSEs of various prediction methods using an eight-image sliding window.

In summary, our sliding window analysis provided a more detailed perspective on
the temporal dynamics and facilitated our determination of the optimal timing for image
acquisition.

5. Discussion
5.1. On GSV Prediction Methods

Among the different prediction methods, SVM, log-MLR, and RF showed similar
temporal dynamics, with no strong differences in GSV prediction. MLR with no log-
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transformation was less accurate, and seems to be the least suitable. RF and SVR produced
somewhat greater accuracy than log-MLR in the majority of our experiments. MLR with
log-transformation of the target variable had somewhat greater variance particularly for
larger GSV values; however, it provided the most accurate explanatory model for greater
GSV values (Figure 7). No earlier benchmarking studies with C-band data in boreal forests
could be found in the literature, while studies with C-band data have been reported for
tropical forests [26].

When using only one polarization as the feature variable, no large differences in
accuracy were found, with VV alone providing slightly more accurate GSV predictions
than VH alone in non-frozen conditions and VH being more optimal in frozen conditions.
When limiting analysis to stands with only smaller values of GSV, VH polarization starts to
produce consistently more accurate results. In the small-biomass scenario VH is more sen-
sitive to biomass, as cross-pol mostly contains volumetric scattering in forest environments.
This discrepancy can be explained by somewhat smaller extinction at VV, contributing
to its greater sensitivity to large-biomass forest when the ground is not visible. Under
frozen conditions, when the ground is more visible, VV becomes suboptimal compared to
VH even when all forest stands are considered, as VV-pol contains both scattering from
the ground and volumetric scattering. For both scenarios of GSV values, the use of both
polarizations in combination provided the most accurate predictions. The observation
that VH is more suitable is supported by earlier studies; however, no analysis of different
biomass classes was reported in those studies.

5.2. The Effects of Seasonality on GSV Prediction

The observation that C-band backscatter images acquired in frozen conditions are
more suitable for forest prediction in boreal forests has been reported in earlier studies with
ERS by [14,20] and ASAR [13]. Our study confirms this observation using Sentinel-1 images,
though the difference was relatively weak when single images were used. Moreover, our
feature selection experiments (when the 10 most accurate features were selected using the
Lasso and ik-NN approaches) indicate that adding dry summer images in addition to frozen
condition images provides more accurate GSV predictions compared to using exclusively
frozen condition images. Naturally, combining dry summer SAR images with frozen
SAR images provides a more comprehensive dataset that captures seasonal variations and
various levels of canopy penetration, facilitating data fusion. In our opinion, important
contributing factors include deeper penetration into frozen canopy in winter (sensitivity
to somewhat larger GSV values) and better sensitivity to relatively biomass within dry
summer images. On the other hand, when only dry summer images are used the SAR
signal becomes saturated very quickly, and separation of moderate and large GSV becomes
impossible. Autumn and spring images can be most problematic in this context, as rainy
conditions reduce radiometric contrast between tall vegetation and sparcely vegetated
areas, a finding that is in line with previous studies [13].

Using the sliding window approach suggested in this study for combining features
calculated from consecutive Sentinel-1 images as inputs to the regression approach was
able to facilitate detection of strong seasonality in GSV predictions compared to using single
images. This difference is clearly visible in Figure 12. It is important to note that seasonality
is not studied here at the level of backscatter (input variable), but rather at the level of GSV
prediction (output variable). Using assemblages of features calculated from consecutive
images with varying widths of sliding windows suggests there are optimal timing periods
when Sentinel-1 images should be acquired to produce optimal GSV predictions. The
use of a longer sliding window permits compensation for the presence of features from
suboptimal images and taking advantage of “multitemporal variability” within multi-
variable regression models, as features calculated from several consecutive images can be
used. Our results suggest that even autumn and spring images can be used in principle.
This is in contrast with single image retrieval followed by weighting estimates according
to accuracy of predictions from individual images [13]. In the latter approach, the most
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accurate strategy is to completely discard autumn and spring images, when the forest
biomass to C-band SAR relationship can be most unpredictable. Our results with multi-
variable regression models indicate that late autumn and early spring datatakes can be
included. For the window size of eight, which corresponds to three months of observations,
the optimal start can be early as December and as late as February based on three years of
observations.

The use of PCA and several feature selection approaches confirms that a subset of
features calculated using a subset of Sentinel-1 images can be enough to achieve a near
optimal GSV prediction. Interestingly, feature selection using MI and RC led to the least
accurate GSV predictions. However, RC is the most feasible approach for image selection,
particularly when no reference data are available, and is often used for image removal
or weighting [13]. Lasso was the most suitable option for selecting the features for GSV
prediction, and approached PCA-based performance in terms of how quickly the near-
optimal prediction was achieved. Lasso was closely followed by the ik-NN method. Based
on feature ranking with majority voting, the Sentinel-1 image #32 acquired on 8 January
2016 was the most popular. In addition to images acquired in winter, images acquired
in the spring and autumn were sometimes selected. Among the most selected features,
VH appeared somewhat more often than VV. No earlier benchmarking studies on feature
selection with C-band data in boreal forests could be found in the literature.

5.3. Comparison with Previous Studies in Terms of GSV Accuracy and Unit Size

Presently, the number of relevant publications on C-band-based prediction of GSV is
relatively limited compared to L-band and multisensor studies, primarily because of the
relatively small prediction accuracy. The role of C-band data, particularly Sentinel-1, is
quite minor in the multi-sensor studies where C-band images are used along with other
SAR and optical datasets [23,24], although accurate results have been reported with a
combination of sensors. The results are quite unsatisfactory when using C-band data alone.
Our results compare favourably with other published research using C-band SAR data in
terms of GSV prediction accuracy [4,5,12–14,23,24], and are more representative in terms of
reference data, feature selection approaches, and studied regression models, and compared
to the majority of other studies use smaller measurement units. Below, we compare our
experiments with several representative studies to highlight the relevance of our results.

Use of a parametric semiempirical model in a study by [14] with set of ERS-1 VV-pol
images showed that rRMSEs of 25–30% can be obtained in boreal forests with a forest block
size larger than 20 ha. Combining ERS-1 images acquired in November and August 1993
was considered optimal, which supports our observation that C-band data acquired in
non-winter seasons can be used. The accuracy with smaller of forest stands was much lower.

In a study by [12] with ERS-1 data in boreal forests pursuing GSV prediction using
inversion of a parametric physics-based model, limiting analysis to stands larger than
10 ha led to rRMSEs of 34–71%, with the most accurate estimates for mid-December and
mid-March. This result is in agreement with our Sentinel-1 images selected using different
feature selection approaches. However, incorporating stands with sizes as small as 1 ha
increased the rRMSE to more than 120% for separate images. Combining predictions
from individual SAR images using multiple regression facilitated a strong reduction in
RMSE. However, when ERS-1 images were mixed with JERS (L-band SAR) it was difficult
to judge specific contributions, especially because JERS data are much more suitable for
GSV prediction.

The BIOMASAR algorithm [13], which has WCM model inversion at its core, was
used with hypertemporal C-band ASAR data in ScanSAR mode (inferior to Sentinel-1 in
terms of resolution, but exhibiting high radiometric quality due to a large number of looks)
for boreal forest GSV prediction, resulting in rRMSEs between 34.2% and 48.1% at a 1 km
pixel size. Larger errors were obtained at 100 m (47.7–60.4% over Swedish test sites and
70.9–96.2% over Central Siberian test sites).



Remote Sens. 2023, 15, 3489 22 of 26

A study of boreal forests in the Krasnoyarsk region of Russia [24] tested, among
other experiments, time series of strip map RADARSAT-2 data acquired in regular and
ultrafine modes for AGB prediction, achieving rRMSEs of 42% and 47% in AGB prediction
with a machine learning approach. The mean AGB was approximately 86 t/ha. The time
series dynamics were not explored. AGB was predicted using various cross-pol ratios and
Haralick features in addition to the average backscatter.

In a recent comprehensive study with several satellite C-band sensors, the rRMSE was
approximately 90% when predicting AGB [76]. However, the error for branch biomass
was smaller at around 80%. In the case of VV polarization, which included ERS-2 images
acquired in all seasons, the error was greater than 100%. The prediction performance of
C-band data depended strongly on the imaging conditions and varied in a large range.
The smallest errors were associated with images acquired under stable frozen conditions in
winter, which is similar to our findings. The greatest errors were generally associated with
images acquired in periods of snow melt in the spring, which is consistent with our results
when using separate SAR images. As ERS-2 has only VV-pol, no separate polarization
analysis was possible. It is important to keep in mind that the average and peak values of
GSV in Hyytiälä forest are somewhat smaller compared to Remningstorp forest [76].

When comparing our findings to previous studies, as well as to [10], where 30% RMSE
was achieved using only twelve Sentinel-1 images, it is important to note that we used
only stand-level backscatter as an independent variable. No ratios or textural features were
used, as the aim was to analyse the seasonal dynamics and optimal timing of Sentinel-1
data backscatter. It is very likely that RMSEs would further decrease if other stand-level
variables (features) were included in the analysis, which is in line with other previous
studies ([10,77]). This issue needs extensive additional analysis. Furthermore, we did not
pursue analysis of GSV prediction accuracy as a function of unit area size; however, we
expect the prediction accuracy to improve as the unit area size becomes larger, similar
to [12,14,76].

6. Conclusions

The utility of very long times series of Sentinel-1 SAR data for boreal forest GSV
prediction was tested. We discovered seasonality in GSV predictions from multitemporal
C-band time series, suggesting an optimal timing for image collection in early spring and
autumn. Several prediction methods led to similar results. The minimum RMSE was
75.6 m3/ha (rRMSE 44%) when all 96 images were used. Temporal aggregation of images
over one year greatly decreased RMSEs compared to a single image. Feature selection
facilitated nearly optimal results when using only 10 images (45% relative RMSE) instead
of the entire SAR stack, resulting in reduced computational complexity. Among the feature
selection approaches, Lasso produced the greatest prediction accuracy, followed by ik-NN
and RF. When an eight-image sliding window time series was used instead of feature
selection, a relative RMSE of 47% was be achieved when the timing of image acquisition
was optimal.

A comparison to prior works indicates that no one has yet studied the temporal
dynamics of GSV prediction in boreal forests (or elsewhere) in the fashion presented here,
i.e., using assemblages of consecutive Sentinel-1 images (a “sliding window” approach).
Use of a sliding window resulted in much stronger annual periodicity in GSV prediction
compared to single images at the 1 ha stand level. Feature selection approaches have been
used very sporadically, and the methods used here (correlation, radiometric contrast) were
suboptimal, as indicated by our experiments. The possibility of combining winter and dry
summer images instead of using only winter images needs further investigation, as our
feature selection experiments support the idea of combining corresponding features within
a multivariate model where temporal variability is inherently captured.
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ALS airborne laser scanning
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GRDH ground-range detected high-resolution
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ik-NN improved k-nearest neighbors
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Lasso least absolute shrinkage and selection operator
LSE least squares estimation
MAE mean absolute error
MI mutual information
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SVR support vector regression
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33. Dostálová, A.; Wagner, W.; Milenković, M.; Hollaus, M. Annual seasonality in Sentinel-1 signal for forest mapping and forest
type classification. Int. J. Remote Sens. 2018, 39, 7738–7760. [CrossRef]

http://dx.doi.org/10.3390/f9060303
http://dx.doi.org/10.3390/rs11040414
http://dx.doi.org/10.1080/01431161.2018.1530808
http://dx.doi.org/10.3390/rs11040384
http://dx.doi.org/10.1016/j.rse.2011.05.028
http://dx.doi.org/10.1109/36.739154
http://dx.doi.org/10.1016/j.rse.2010.09.018
http://dx.doi.org/10.1109/36.752211
http://dx.doi.org/10.1016/j.rse.2005.05.002
http://dx.doi.org/10.1080/01431160600646037
http://dx.doi.org/10.1016/j.rse.2012.05.029
http://dx.doi.org/10.1109/JSTARS.2013.2241018
http://dx.doi.org/10.3390/rs9100999
http://dx.doi.org/10.1109/36.499781
http://dx.doi.org/10.1029/RS013i002p00357
http://dx.doi.org/10.3390/rs10040608
http://dx.doi.org/10.1117/1.JRS.12.016008
http://dx.doi.org/10.3390/rs10101550
http://dx.doi.org/10.1109/LGRS.2013.2255098
http://dx.doi.org/10.1109/JSTARS.2011.2176720
http://dx.doi.org/10.3390/rs10071151
http://dx.doi.org/10.3390/rs14184434
http://dx.doi.org/10.3390/rs14092079
http://dx.doi.org/10.3390/f10121073
http://dx.doi.org/10.3390/f10080641
http://dx.doi.org/10.1080/01431161.2018.1479788


Remote Sens. 2023, 15, 3489 25 of 26

34. Frison, P.L.; Fruneau, B.; Kmiha, S.; Soudani, K.; Dufrêne, E.; Le Toan, T.; Koleck, T.; Villard, L.; Mougin, E.; Rudant, J.P. Potential
of Sentinel-1 Data for Monitoring Temperate Mixed Forest Phenology. Remote Sens. 2018, 10, 2049. [CrossRef]

35. Udali, A.; Lingua, E.; Persson, H.J. Assessing Forest Type and Tree Species Classification Using Sentinel-1 C-Band SAR Data in
Southern Sweden. Remote Sens. 2021, 13, 3237. [CrossRef]

36. Soudani, K.; Delpierre, N.; Berveiller, D.; Hmimina, G.; Vincent, G.; Morfin, A.; Éric Dufrêne. Potential of C-band Synthetic
Aperture Radar Sentinel-1 time-series for the monitoring of phenological cycles in a deciduous forest. Int. J. Appl. Earth Obs.
Geoinf. 2021, 104, 102505. [CrossRef]

37. Huang, X.; Ziniti, B.; Torbick, N.; Ducey, M.J. Assessment of Forest above Ground Biomass Estimation Using Multi-Temporal
C-band Sentinel-1 and Polarimetric L-band PALSAR-2 Data. Remote Sens. 2018, 10, 1424. [CrossRef]

38. Tomppo, E.; Halme, M. Using coarse scale forest variables as ancillary information and weighting of variables in k-NN estimation:
A genetic algorithm approach. Remote Sens. Environ. 2004, 92, 1–20. [CrossRef]

39. Tomppo, E.; Haakana, M.; Katila, M.; Peräsaari, J. Multi-Source National Forest Inventory—Methods and Applications: Managing
Forest Ecosystems; Springer: Dordrecht, The Netherlands, 2008.

40. Tomppo, E.; Olsson, H.; Ståhl, G.; Nilsson, M.; Hagner, O.; Katila, M. Combining national forest inventory field plots and remote
sensing data for forest databases. Remote Sens. Environ. 2008, 112, 1982–1999. [CrossRef]

41. Korhonen, L.; Hadi; Packalen, P.; Rautiainen, M. Comparison of Sentinel-2 and Landsat 8 in the estimation of boreal forest canopy
cover and leaf area index. Remote Sens. Environ. 2017, 195, 259–274. [CrossRef]

42. Veloso, A.; Mermoz, S.; Bouvet, A.; Le Toan, T.; Planells, M.; Dejoux, J.F.; Ceschia, E. Understanding the temporal behavior of
crops using Sentinel-1 and Sentinel-2-like data for agricultural applications. Remote Sens. Environ. 2017, 199, 415–426. [CrossRef]

43. Tomppo, E.; Antropov, O.; Praks, J. Cropland Classification Using Sentinel-1 Time Series: Methodological Performance and
Prediction Uncertainty Assessment. Remote Sens. 2019, 11, 2480. [CrossRef]

44. Cui, Z.; Kerekes, J.P. Potential of Red Edge Spectral Bands in Future Landsat Satellites on Agroecosystem Canopy Green Leaf
Area Index Retrieval. Remote Sens. 2018, 10, 1458. [CrossRef]

45. Karjalainen, T.; Kellomäki, S. Greenhouse gas inventory for land use changes and forestry in Finland based on international
guidelines. Mitig Adapt. Strat. Glob. Chang. 1996, 1, 51–71. [CrossRef]

46. Tomppo, E. National forest inventory of Finland and its role estimating the carbon balance of forests. Biotechnol. Agron. Soc.
Environ. 2000, 4, 281–284.

47. Small, D.; Miranda, N.; Zuberbühler, L.; Schubert, A.; Meier, E. Terrain-corrected Gamma: Improved thematic land-cover retrieval
for SAR with robust radiometric terrain correction. In Proceedings of the ESA Living Planet Symposium, Bergen, Norway, 28
June–2 July 2010; pp. 1–8.

48. Finnish Forest Centre Collection of Forest Resource Information; Finnish Forest Centre: Kuopio, Finland, 2019.
49. Luoto, M. Forest Inventory in Finland; Finnish Forest Centre: Kuopio, Finland, 2020.
50. Dobson, M.; Ulaby, F.; LeToan, T.; Beaudoin, A.; Kasischke, E.; Christensen, N. Dependence of radar backscatter on coniferous

forest biomass. IEEE Trans. Geosci. Remote Sens. 1992, 30, 412–415. [CrossRef]
51. Rauste, Y.; HameE, T.; Pulliainen, J.; Heiska, K.; Hallikainen, M. Radar-based forest biomass estimation. Int. J. Remote Sens. 1994,

15, 2797–2808. [CrossRef]
52. Rignot, E.; Way, J.; Williams, C.; Viereck, L. Radar estimates of aboveground biomass in boreal forests of interior Alaska. IEEE

Trans. Geosci. Remote Sens. 1994, 32, 1117–1124. [CrossRef]
53. Kasischke, E.; Christensen, N.; Bourgeau-Chavez, L. Correlating radar backscatter with components of biomass in loblolly pine

forests. IEEE Trans. Geosci. Remote Sens. 1995, 33, 643–659. [CrossRef]
54. Tsui, O.W.; Coops, N.C.; Wulder, M.A.; Marshall, P.L.; McCardle, A. Using multi-frequency radar and discrete-return LiDAR

measurements to estimate above-ground biomass and biomass components in a coastal temperate forest. ISPRS J. Photogramm.
Remote Sens. 2012, 69, 121–133. [CrossRef]

55. Hame, T.; Rauste, Y.; Antropov, O.; Ahola, H.A.; Kilpi, J. Improved Mapping of Tropical Forests with Optical and SAR Imagery,
Part II: Above Ground Biomass Estimation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 92–101. [CrossRef]

56. Berninger, A.; Lohberger, S.; Stängel, M.; Siegert, F. SAR-Based Estimation of Above-Ground Biomass and Its Changes in Tropical
Forests of Kalimantan Using L- and C-Band. Remote Sens. 2018, 10, 831. [CrossRef]

57. Baskerville, C.L. Use of Logarithmic Regression in the Estimation of Plant Biomass. Can. J. For. Res. 1972, 2, 49–53. [CrossRef]
58. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
59. Vapnik, V.; Golowich, S.; Smola, A. Support vector method for function approximation, regression estimation, and signal

processing. In Proceedings of the Advances in Neural Information Processing Systems, Denver, CO, USA, 2–5 December 1997;
Mozer, M., Jordan, M., Petsche, T., Eds.; MIT Press: Cambridge, MA, USA, 1997; pp. 281–287.

60. Gunn, S.R. Support vector machines for classification and regression. ISIS Tech. Rep. 1998, 14, 5–16.
61. Smola, A.J.; Schölkopf, B. A tutorial on support vector regression. Stat. Comput. 2004, 14, 199–222. [CrossRef]
62. Neumann, M.; Saatchi, S.S.; Ulander, L.M.; Fransson, J.E. Assessing performance of L-and P-band polarimetric interferometric

SAR data in estimating boreal forest above-ground biomass. IEEE Trans. Geosci. Remote Sens. 2012, 50, 714–726. [CrossRef]
63. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
64. Karlson, M.; Ostwald, M.; Reese, H.; Sanou, J.; Tankoano, B.; Mattsson, E. Mapping tree canopy cover and aboveground biomass

in Sudano-Sahelian woodlands using Landsat 8 and random forest. Remote Sens. 2015, 7, 10017–10041. [CrossRef]

http://dx.doi.org/10.3390/rs10122049
http://dx.doi.org/10.3390/rs13163237
http://dx.doi.org/10.1016/j.jag.2021.102505
http://dx.doi.org/10.3390/rs10091424
http://dx.doi.org/10.1016/j.rse.2004.04.003
http://dx.doi.org/10.1016/j.rse.2007.03.032
http://dx.doi.org/10.1016/j.rse.2017.03.021
http://dx.doi.org/10.1016/j.rse.2017.07.015
http://dx.doi.org/10.3390/rs11212480
http://dx.doi.org/10.3390/rs10091458
http://dx.doi.org/10.1007/BF00625615
http://dx.doi.org/10.1109/36.134090
http://dx.doi.org/10.1080/01431169408954285
http://dx.doi.org/10.1109/36.312903
http://dx.doi.org/10.1109/36.387580
http://dx.doi.org/10.1016/j.isprsjprs.2012.02.009
http://dx.doi.org/10.1109/JSTARS.2013.2241020
http://dx.doi.org/10.3390/rs10060831
http://dx.doi.org/10.1139/x72-009
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1023/B:STCO.0000035301.49549.88
http://dx.doi.org/10.1109/TGRS.2011.2176133
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.3390/rs70810017


Remote Sens. 2023, 15, 3489 26 of 26
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