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Abstract: The Puuc Biocultural State Reserve (PBSR) is a unique model for tropical dry forest conser-
vation in Mexico. Preserving forest biodiversity and carbon within the PBSR depends on maintaining
low-impact productive activities coordinated by multiple communal and private landowners. In
this study, we used state-of-the-art remote sensing data to investigate past spatial patterns in forest
clearing dynamics and their relation to forest carbon density and forest plant species richness and
diversity in the context of the forest conservation goals of the PBSR. We used a Landsat-based con-
tinuous change detection product for the 2000–2021 period and compared it to carbon density and
tree species richness models generated from ALOS-2 PALSAR 2 imagery and national scale forest
inventory data. The estimated error-adjusted area of detected annual forest clearings from the year
2000 until the year 2021 was 230,511 ha in total (±19,979 ha). The analysis of annual forest clearing
frequency and area suggests that although forest clearing was significantly more intensive outside of
the PBSR than within the PBSR during the entire 2000–2021 period, there is no evidence suggesting
that the frequency and magnitude of forest clearing changed over the years after the creation of the
PBSR in 2011. However, an emergent hotspot analysis shows that high spatiotemporal clustering of
forest clearing events (hotspots) during the 2012–2021 period was less common than prior to 2011,
and these more recent hotspots have been confined to areas outside the PBSR. After comparing forest
clearing events to carbon density and tree species richness models, the results show that landowners
outside the PBSR often clear forests with lower carbon density and species diversity than those inside
the PBSR. This suggests that, compared to landowners outside the PBSR, landowners within the
PBSR might be practicing longer fallow periods allowing forests to attain higher carbon density and
tree species richness and hence better soil nutrient recovery after land abandonment. In conclusion,
our results show that the PBSR effectively acted as a stabilizing forest management scheme during the
2012–2021 period, minimizing the impact of productive activities by lowering the frequency of forest
clearing events and preserving late secondary forests within the PBSR. We recommend continuing
efforts to provide alternative optimal field data collection strategies and modeling techniques to
spatially predict key tropical forest attributes. Combining these models with continuous change
detection datasets will allow for underlying ecological processes to be revealed and the generation of
information better adapted to forest governance scales.
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1. Introduction

It is estimated that about 30% of terrestrial species have been globally threatened
or driven to extinction since the 13th century, a process caused by habitat destruction
resulting from the expansion of anthropogenic land uses and ecosystem disturbances.
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Refs. [1,2] estimated that the current rate of massive conversion and degradation of ecosys-
tems by humans further threatens the extinction of up to 30% of all extant species by
the mid-21st century, an event comparable to some of the mass extinctions that occurred
in the past from climatic or geological events. The transformation of ecosystems into
anthropogenic land uses is the result of an increasing demand for productive lands all
around the globe, driven in part by national and international policies for the reduction of
poverty and food security. In the face of this ongoing loss, our cultural response has been
to increase the number of protected areas to set aside remnants of biological diversity from
human-dominated areas [3].

More than 200,000 protected areas exist today, and although the number of protected
areas has been increasing globally, these protect only 15% of the planet’s lands and between
10 and 14% of the planet’s water [3].

Due to the current climate change and biodiversity crisis [3], the conservation of global
forested lands have been prioritized for their capacity to sequester carbon and preserve
biological diversity [4,5]. Cadman et al. [4], for example, report that deforestation and forest
degradation account for nearly 20% of global greenhouse gas (GHG) emissions. Tropical
forest reserves are especially important in this context since they preserve 68% of the global
carbon stored in terrestrial ecosystems and harbor the highest degree of biological diversity
on the planet [6,7].

The effectiveness of protected areas or tropical reserves in reducing or eliminating
forest loss and preserving carbon stocks and biodiversity depends on specific regional
and/or local factors; however, there is evidence that protected areas have been effective
overall. Bruner et al. [8] suggested that the majority of parks in tropical countries have
been successful at stopping land clearing and mitigating logging, hunting, fire, and grazing.
A national-level study by Blackman et al. [9] in Mexico, as well as global studies by
Laurance et al. [7] and Coetzee et al. [10], provided evidence that parks have preserved
species and their tropical forest habitats.

Nonetheless, tropical protected areas are often criticized for not providing adequate
protection for biodiversity. Data published by Laurance et al. [7] revealed that about half
of all reserves have been effective or performed passably, but the rest are experiencing
an erosion of biodiversity, often alarmingly widespread taxonomically and functionally.
As stated by Rodriguez and Rodriguez-Clark [11], underfunded and understaffed park
agencies are challenged by pressure exerted by human populations living around and
within national parks and other protected areas. The fact is that these protected areas,
once isolated from highly populated areas and distant from threats, are now embedded in
social–ecological land systems characterized by patches of preserved or managed natural
ecosystems in a ‘matrix’ of urban, agricultural and livestock ranching that has expanded
rapidly, increasing land conflicts between stakeholders as well as degradation outside and
inside the protected areas.

In the case of the Puuc Biocultural State Reserve (PBSR), a tropical dry forest-dominated
reserve located in the Central Yucatan Peninsula, Mexico, effectiveness depends on coordi-
nating multiple communities and entities that form this special state park. The PBSR was
established in 2011 by the Yucatan State Government primarily as a means to preserve the
biological diversity of this tropical dry forest landscape, its carbon sequestration capacity,
its historical value for Mayan culture and the sustainable livelihoods persisting in the
region [12]. This type of reserve is the first of its kind in Mexico. It covers the territory of
five municipalities that have historically been inhabited by low-density human populations
dedicated to small traditional agricultural practices (milpas) and cattle ranching in the
form of communal properties (ejidos) and private properties. Some of these communities
implement sustainable forestry projects as well. The PBSR was established as a corridor
connecting the forested areas of the south of Campeche, and Quintana Roo states with the
Celestún Biosphere Reserve in northeastern Yucatan [12].

The main activities that cause forest disturbances in the PBSR are agricultural activities
such as cattle ranching (which is concentrated in small areas in the north and southeast of
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the reserve), the cultivation of vegetables such as corn, beans, sorghum and citric fruits, and
forestry activities related to charcoal production and house construction. These activities
are mostly implemented in milpa systems. Milpa systems are traditional Mayan land
management schemes that involve slash-and-burn agriculture of multiple crops. Crops are
followed by fallow after at least 4 years, which allows for forest regrowth and soil nutrient
recovery (a period called ‘barbecho’).

The PBSR management plan requires community-based planning of all productive
activities coordinated by an inter-municipal board. It is important to note that 55% of
the reserve is managed by ejidos while the rest are private properties. All activities are
planned to minimize environmental impact and safeguard the ecological sustainability
needed to preserve the ecosystem services that the region provides to its inhabitants and
the surrounding communities [12]. Before its creation, more than 86,000 hectares had
been reported as forested areas within the reserve, which represents more than 63% of its
extent. The PBSR strives to maintain a tight balance between productive activities and
forest conservation through community-based governance. However, the intermunicipal
board has also identified threats to this balance. The PBSR has documented forest loss and
disturbance through the expansion of cattle ranching (often incentivized by government
subsidies), unsustainable forestry and hunting activities, road construction and increased
forest clearing due to the shortening of the barbecho or fallow period. The extent to which
these activities have transformed the landscape after the creation of the PBSR has not been
assessed. More than 10 years after its creation, an assessment of the forest cover dynamics
before and after the creation of the reserve can help understand the role of the PBSR in this
socioecological system.

Over the past several years, there have been significant advances in the design of
continuous land cover change (CLCC) mapping algorithms that take advantage of the
high-quality Landsat data archive that became freely available in 2008 [13,14]. CLCC
algorithms produce annual land cover change maps showing the location and extent of
deforestation events occurred in every single year. In addition, numerous applications have
used the power of multispectral and hyperspectral optical, radar, and LiDAR sensors for
mapping ecosystem age, biomass and carbon stocks, alpha and beta diversity, biochemical
heterogeneity, tree height, vertical structure, and complexity, among other attributes [15]. In
tropical forests, state-of-the-art methodologies using multispectral, hyperspectral imagery
and/or LiDAR usually achieve R2 values of ~0.5–0.7 for canopy functional trait mapping,
while categorical maps of plant functional types can achieve overall accuracies of ~0.8 [16].

In this study, we integrated state-of-the-art remote sensing tools and products for
assessing forest clearing dynamics in the context of the forest conservation goals of the
PBSR. We analyzed forest clearing dynamics using an original forest loss product derived
from the analysis of the time series of Landsat 5, 7 and 8 from the year 2000 until 2021.
We compared it to spatially explicit models of carbon density and tree species richness
derived by using L-band radar backscatter data, radar texture metrics, and climatic and
field data [17]. In the context of the PBSR management objectives, the goal of the study
is to answer the following questions: (a) How has the creation of the PBSR impacted
the frequency and area of forest loss within its boundaries? (b) Are productive activities
contemplated in the PBSR governance model compatible with the maintenance of carbon
density and species richness?

2. Methods
2.1. Study Area

The study area was defined as the area within the PBSR boundaries and the adjacent
and wider landscape around the reserve (Figure 1). This area was defined by all municipal-
ities intercepting a 25 km area of influence around the PBSR. This included municipalities
immediately adjacent to the PBSR and municipalities adjacent to these. Some municipalities
extend far beyond the 25 km area of influence and therefore were only represented partially
in the analysis. Municipalities completely included in the study area were Oxkutzcab, Santa
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Elena, Muna, Ticul, Akil and Dzan in the Yucatan state. The study area included partial
coverage of the municipalities Hopelchen, Calkini and Hecelchakan in Campeche state
and the municipalities of Tekax, Tzucacab, Chacsinkin, Tixmehuac, Teabo, Mani, Mama,
Chapab, Sacalum, Abala, Opichen, Kopoma, Maxcanu and Halacho in the Yucatan state.
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The vegetation communities in this region are predominantly secondary semi-deciduous
forests that can reach a canopy tree height of 15–20 m, losing 50–75% of their leaves during
the dry season. Annual rainfall ranges from 1000 to 1500 mm with an annual temperature
of 25.9 ◦C to 26.6 ◦C. The elevation of the terrain in the area ranges from 60 to 250 m above
sea level. The dominant species are Neomillspaughia emarginata, Gymnopodium floribundum,
Bursera simaruba, Piscidia piscipula and Lysiloma latisiliquum. The local geomorphology com-
bines flat areas with limestone hills of moderate slopes. The landscape consists mainly of for-
est land (94% of the area), mostly dominated by forest stands of different successional ages.

2.2. Semi-Automated Forest Disturbance Detection from 2000 to 2021
2.2.1. Generation of a Baseline Map

The detection and mapping of forest loss events were performed using a semi-
automated continuous change detection method that involves the user verification of
change thresholds for each time step. Overall, the method consisted of detecting changes in
vegetation index values every three months over known forested areas (post-classification
change detection) from the year 2000 until the end of the year 2021.

First, we produced a baseline forest cover map for an initial time step in the year
2000. We downloaded a cloud-free (<5%) Landsat 5 (L5) scene (20/46) surface reflectance
product for a single date (28 March) for the year 2000 using the USGS EROS Science
Processing Architecture (ESPA) online interface. Then, we used R packages (raster, rpart,
randomForest, gdal and rgeos) for image pre-processing, cloud masking and supervised
classification using the Random Forest algorithm.

For classification, we collected training data through on-screen interpretation of the
L5 scene in an RGB453 false color composite and very high-resolution imagery available in
ArcGIS Online (ESRI), in combination with the INEGI VI Series Land Cover Classification
map. We arbitrarily chose a quantity of ~800 locations as the target for training data
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collection. The number of training polygons per class was calculated through proportional
allocation using the original land cover proportions in the INEGI land cover map. The
proportional allocation equation used was Sh = (Nh/N) ∗ n, where Sh is the sample size
per class, Nh is the class size, N is the total landscape size, and n is the desired total number
of samples. A total of 836 polygons were digitized, with 595 polygons for the forest class
and 241 polygons for the Non-Forest class. The forest class represented all forest types
defined in the INEGI land cover map, and the Non-Forest Class represented anthropogenic
land covers and water features. Finally, the Random Forest classifier was performed using
visible, near-infrared and short-wave infrared bands as well as a Normalized Difference
Moisture Index (NDMI) and a Normalized Burn Ratio 2 (NBR2) products from the L5 scene.

To evaluate the accuracy of the baseline map, we implemented a stratified random
sampling approach for generating validation points and an area-based error matrix [18,19].
Through this method, we calculated the overall user’s and producer’s accuracy with
error-adjusted area estimates calculated at a 95% confidence interval. Based on the extent
of forest/non-forest land covers, we estimated the optimal size of samples per class for
accuracy assessment. We used the proportional allocation formula to estimate the number
of samples per class. We targeted a total of 800 samples for validation purposes as a match
to the number of samples used for training the image classification. The proportional
allocation formula resulted in 621 samples for the forest cover and 179 samples for the
non-forest cover. Samples were collected using a 250 × 250 m grid over the baseline map
in ArcGIS 10.7. Cell grids per class were randomly selected, and each cell’s centroid point
was generated. These centroid points were used for map-to-reference data comparisons
using Google Earth Pro.

2.2.2. Post-Classification Change Detection

We used a post-classification change detection approach in order to minimize error
propagation over the 20-year time series [14]. For post-classification change detection,
we used the Normalized Burn Ratio 2 (NBR2) vegetation index products from Landsat 5,
Landsat 7 and Landsat 8 SR tier 1 image collections. We used the NBR2, given its overall
better performance than other indices in detecting a change in tropical dry forests, as
evidenced by Smith et al. [20] for the same study area. Other authors have also reported
improved performance from using NBR2 for detecting forest change in time series of re-
motely sensed data [21,22]. Using Google Earth Engine (GEE), we filtered Landsat imagery
to four quarters every year from 31 January to March (Q1), 1 April to 30 June (Q2), 7 July
to 30 September (Q3) and 1 October to 31 December (Q4). For each quarter, we selected
only clear observations, masking clouds and cloud shadows to every scene using the pixel
qa product, and generated a composite of maximum NBR2 values for every quarter.

Each NBR2 quarter composite was inspected in ArcGIS, and a threshold for values that
were <−1.5 standard deviations from the mean was applied in order to isolate non- or little
vegetated surfaces. The threshold was a generalized approximation to the 1.65 thresholds
used by Hamunyela et al. [23]. We inspected the ability of the 1.65 thresholds to depict
non-vegetated areas and determined that 1.5 was slightly more conservative and provided
a better delineation of non-vegetated areas using the NBR2 product. This process was done
interactively through visual inspection and manual thresholding in ArcGIS. In some cases,
thresholds were slightly adjusted to values between <−0.5 and <−1.5 standard deviations
to match the exact dimensions of non-vegetated surfaces. Variations of this standard
deviation threshold were used to improve the delineation of areas with negative NBR2
values that appear to be probable forest disturbance events. Binary maps of vegetated (0)
and non-vegetated surfaces (1) were generated. These products, however, did not represent
the final forest disturbances for a given year.

We subtracted these rasters from the forest mask of the previous year in order to isolate
forest disturbances. We then added all quarter forest disturbance masks in order to produce
annual forest disturbance maps. Following Hamunyela et al. [23], we flagged forest distur-
bances only after two or more consecutive observations of low NBR2 values, and in some
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cases, we allowed all possible observations to be included in the annual product. This was
done given that cloud contamination and L7 missing data affect the probability of detecting
consecutive observations. Changes in quarter NBR2 values following the cultivation of
recently cleared land can also mask the detection of these consecutive observations. Isolated
pixels were successfully filtered using a focal 3 × 3 majority filter leaving the more regularly
shaped forest disturbances intact. For every time step, we achieved a final annual product
only after satisfactory visual inspections. Final deforestation polygons were limited to areas
larger than 0.18 ha in order to eliminate spurious isolated pixels.

To assess the accuracy of the annual forest-clearing product, we implemented a two-
stage cluster sampling design to generate validation locations. Using a 5 km × 5 km grid,
we calculated the percentage of forest clearings detected per cell using the combined annual
forest clearing dataset. This allowed us to generate a grid with forest clearing percentages.
We categorized the grid using the Jenks optimization method (Natural breaks) in ArcGIS
in four classes stable forest or no loss (128 cells), low forest loss (1005 cells), intermediate
forest loss (194 cells) and high forest loss (29 cells). We then used the Neyman optimal
allocation formula [24], which takes into account the number of cells and the standard
deviation of forest cleared area per cell, to calculate the number of sampling points per
class needed for validation in 25% of the landscape. We targeted 800 samples for validation
purposes as a match to the number of samples used for training the image classification
and for validation of the baseline map. The Neyman optical allocation method estimated
that proper representativeness of the landscape would require selecting 9 cells in the stable
forest class, 627 in the low clearing class, 124 in the intermediate clearing class and 40 in
the high clearing class. Within these sets of cells, we re-calculated the area with stable land
use and land cover (no forest cover change) and with forest change (forest clearings) and
further estimated the number of sampling points needed for validation by proportional
allocation. This resulted in 593 sampling points generated to cover stable land cover and
207 sampling points to cover the forest-loss class (for a total of 800 validation points). Each
of the samples was individually inspected in Google Earth Pro, and using the historical
imagery tool, we looked for evidence of change between 2000–2021 to validate the map
class. An area-weighted confusion matrix was used to compute overall producer’s and
user’s accuracies, along with standard errors and forest clearing areas estimated at a 95%
confidence interval [25,26].

2.3. Carbon Density and Tree Species Richness Models

The methodology to derive carbon density and species richness maps for the study area
is thoroughly explained in Hernandez-Stefanoni et al. [17]. In their study, authors generated
spatial models of tree species richness and carbon density for the entire Yucatan Peninsula
of Mexico (Figure 2). Field data on tree species richness and aboveground biomass (Mg/ha;
used as a measure of carbon density) was obtained from the National Forest Inventory
(NFI) of Mexico from surveys conducted between 2009 and 2014. A total of 2847 plots
were used, and these were distributed in the forested areas in a stratified sampling scheme
depending on the vegetation type. Each field plot consisted of four circular 400 m2 sub-
plots distributed within an area of 1 ha. All trees with a diameter at breast height (DBH,
1.3 m) ≥7.5 cm were identified at the species level, and their diameters and heights were
measured. AGB stocks per plot were calculated in standard units (Mg ha−1) using local
and regional allometric equations, which were developed by vegetation type, plant growth
form and DBH size.

The study used ALOS-2 PALSAR-2 (Advanced Land Observing Satellite Phased Array
L-band Synthetic Aperture Radar) mosaic tiles for the year 2015—with 25 m resolution and
dual polarization (HH and HV) preprocessed for orthorectification, slope correction, and
radiometric calibration. It used backscatter coefficients (γ◦) and Normalized Difference
Backscatter Index (NDBI) products, as well as variability in backscatter values among
pixels using texture metrics and climatic water deficit (CWD) data. This process generated
24 variables, considering eight texture metrics and three bands (HH, HV and NDBI) that
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were used for AGB and species richness estimations. A random forest regression model
was used to estimate the spatial distribution of AGB and tree species richness from all
explanatory variables. Model validation of the regional maps obtained herein using an
independent data set of plots resulted in a coefficient of determination (R2) of 0.28 and
0.31 and a relative mean square error of 38.5% and 33.0% for aboveground biomass and
species richness, respectively, at the pixel level.
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Figure 2. Carbon density model (A) and tree species richness model (B) generated by Hernandez-
Stefanoni et al. (2021) for the year 2015 and subset to the study area addressed by this study. The
products were generated by regression modeling of ALOS-2 PALSAR-2 (Advanced Land Observing
Satellite Phased Array L-band Synthetic Aperture Radar) mosaic tiles for the year 2015—with 25 m res-
olution and dual polarization (HH and HV) and field data from the Mexico National Forest Inventory.

2.4. Statistical Analysis

In order to assess whether the creation of the PBSR has impacted the frequency and
area of forest loss within its boundaries, we calculated basic statistics on the number of
forest clearing events per year (frequency) and forest loss per year (in hectares/year) in
three different geographic analysis units before and after the year 2011 (date of its creation):
inside the PBSR boundaries, in a 12.5 km buffer ring around the PBSR boundaries and in a
25 km buffer ring around the PBSR. The two buffer distances were arbitrarily selected in
order to compare forest clearing dynamics in the communities within the PBSR and the
communities around it. We then performed pairwise comparisons between geographic
analysis units before and after 2011 using the Kruskal–Wallis rank sum test (kruskal.test())
in R software version 2023.03.0.

Using the Mann–Kendall trend statistic package (Kendall) in R, we also investigated
if there were significant trends in the time series of annual forest area and evaluated
whether these trends were different before and after the creation of the PBSR. Before its
application, we used the acf() and pacf() functions in R to test for autocorrelation and
partial autocorrelation in the time series. Appendix A shows that autocorrelation present
in the series was not significant at any scale.

In order to further investigate if there were significant spatiotemporal patterns in the
frequency of forest clearing events before and after the creation of the PBSR, we used the
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‘Emergent Hotspot Analysis’ or EHSA tool in ArcGIS Pro (ESRI). The EHSA tool aggregates
point into space-time bins. Aggregation of points per year was performed at a 2.5 × 2.5 km
bin size in one-year intervals using hexagon grid cells. To get a measure of the intensity of
feature clustering in each bin, the hotspot analysis uses a space-time implementation of
the Getis-Ord Gi* statistic, which considers the value for each bin within the context of the
values for neighboring bins in space and in time [27]. We selected only adjacent bins (6) to
each hexagon cell as neighboring bins and a temporal frame of three time steps (3 years).
The time series of Getis-Ord Gi* z-scores for each bin and its spatiotemporal neighbors is
then assessed using the Mann–Kendall statistic. The result from this analysis is a clustering
trend z-score, p-value, and binning category for each location. Binning categories are based
on the intensity of the clustering (Z-scores and p-values) for a high number of forest clearing
events (hotspots) and low numbers of forest clearing events values (cold spots). Hotspots
and coldspots are automatically classified into new, consecutive, intensifying, persistent,
diminishing, sporadic and oscillating bin categories based on clustering patterns in time
and space.

We then assessed whether the PBSR governance model minimizes the impact of
productive activities on forest carbon density and tree species richness. For this, we selected
only the annual forest loss detected after 2015 (the year of our reference biomass and
diversity map) and calculated the mean carbon density and the mean tree species richness
for each forest clearing polygon from 2015 until the year 2021. Using a Kruskal–Wallis rank
sum test implemented in R, we tested for differences between the distribution of carbon
density and species richness values in forest loss polygons and an equivalent random
sample in stable forest areas for two geographic analysis units: within the PBSR and
outside of the PBSR up to a surrounding area of 25 km distance from its boundaries.

3. Results
3.1. Forest Cover Baseline and Annual Forest Clearing Dataset

The semi-automated classification of the Landsat 5 scene surface reflectance product
for 28 March 2000 allowed us to produce a forest cover map that was used as a baseline for
detecting changes in forest cover on an annual basis (Figure 3). The baseline forest map
was evaluated using a confusion matrix that showed a high overall accuracy of 94%, with a
producer’s accuracy of 62.7% for the forest class, 91.5% for the non-forest class, and a user’s
accuracy of 96.8% for the forest class and 82.6% for the non-forest class (Table 1). Because
the land cover matrix is diverse and includes tree plantations and horticultural crops, pixels
representing these land uses would likely be included in the forest class, and vice versa;
forest class pixels representing early successional stages would likely be included in the
non-forest class. Nonetheless, we considered the accuracy of the map as satisfactory for
delineating the overall forest cover distribution by the year 2000.

The map shows that the total error-adjusted estimated area of forest cover for the year
2000 was 775,846 ha (±15,001 ha at a 95% confidence interval), representing 79.9% of the
total terrestrial landmass of the study area, which includes the PBSR and a surrounding
buffer of 25 km. Forests are distributed evenly across the study area, with the largest
continuous fragments found near and within the PBSR. Non-forest areas are represented
mostly by rural anthropogenic settlements, towns and small agricultural developments
(mostly milpa) along Highway 184 in the northeastern part of the study area in the state of
Yucatan. The northwestern part of the study area, in the state of Campeche, also has large
areas of non-forested land represented mostly by intensive agriculture developments and
towns along Highway 180.

The annual deforestation dataset was successfully generated with an overall accuracy
of 91% (Table 1). The matrix shows that the forest clearing class had a moderate rate
of commission errors (user’s accuracy of 76.9%), which means areas of no change were
counted as forest cover change on a 23.1% rate, while it shows a lower rate of errors of
omission (producer’s accuracy of 83%). We considered the results satisfactory for showing
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overall forest clearing trends spatially and temporally and comparable to other studies at a
similar geographic scale [28,29].
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the PBSR showing the distribution of forest clearing patches.

Table 1. Area weighted confusion matrix showing the result of the accuracy assessment performed
on the forest baseline map for the year 2000 and the annual forest clearing dataset.

Baseline Forest Cover Map
(Year 2000).

Forests Non-Forests Total Area Proportions Total Number of Samples
Forests 0.77 0.02 0.79 621
Non-forests 0.03 0.17 0.2 179
Estimated Area Proportions 0.81 0.18 0.99 800
Class Area Estimates (hectares) 775,845.40 173,146.82
Standard Error of Area Estimates 0.01 0.01
Standard Error of Area Estimates
(hectares) 7653.58 6879.07

95% Confidence Intervals in Ha 15,001.02 13,482.98
Overall Percent Accuracy (%) 94.01

Unbiased Accuracy User’s Accuracy (%) Producer’s Accuracy (%)
Forest 96.8 62.7
Non-Forest 82.7 91.5

Annual Forest Clearing Map
(2000–2021)

Forests Non-forests Total Area Proportions Total number of samples
Forests 0.71 0.04 0.75 593
Non-forests 0.05 0.20 0.25 120
Estimated Area Proportions 0.76 0.24 1 713
Class Area Estimates (hectares) 728,066.66 230,511.34
Standard Error of Area Estimates 0.01 0.01
Standard Error of Area Estimates
(hectares) 10,706.81 11,687.72

95% Confidence Intervals in Ha 20,985.34 22,907.94
Overall Percent Accuracy (%) 90.95

Unbiased Accuracy User’s Accuracy (%) Producer’s Accuracy (%)
Forest 95.9 53.9
Non-Forest 76.9 83.2
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The estimated error-adjusted area of detected annual forest clearings from the year
2000 until the year 2021 was 230,511 ha in total (±19,979 ha). Results also show a mean
and median forest clearing patch area of 1.26 ha and 0.54 ha, respectively (Std Dev = 3.36),
ranging from patches of 0.20 ha to large forest clearings of 229 ha. The majority of patches
(98%) fall within the 0.20–7.27 ha range, with the rest falling mostly under 50 ha and only
five patches greater than 100 ha.

3.2. Comparisons by Geographical Unit and Time Period

Over the entire study area, annual forest clearings occurred on an average of 1552 clearings
per year with an average area of 1951 ha per year. The extent of deforestation peaked
for the year 2009 with 6237 ha of forest cleared in 4272 events. The year with the lowest
forest clearing detected was 2001, with only 261 ha of forest cleared. In general, the
dynamics of forest removal were highly variable during the whole study period. We
observed the highest and the lowest forest area cleared during the first ten years. After
2011, clearings peaked in 2019, with 3154 ha cleared in 1948 events. Spatially, clearings
were mostly clustered outside the boundaries of the PBSR and less frequent inside the PBSR
(Figure 3). Most of the clearing patches greater or equal to 50 ha (n = 22) were located in
the southeastern and eastern part of the study area inside or near the state of Campeche
and on the northern part of the study area in the state of Yucatan. In Campeche, all of these
corresponded to clearings in landscapes dominated by commercial mechanized agriculture,
while in Yucatan state, these corresponded partially to large contiguous patches of milpa
agriculture and some dedicated to commercial mechanized agriculture.

When analyzed by geographical unit (inside the PBSR and in buffer rings of 12.5 km and
25 km around the reserve), forest clearing dynamics greatly differed (Figure 4). Dynamics
were very low and stable inside the PBSR during the whole study period (Figure 4A).
The average forest clearing area inside the PBSR was 73 ha per year from an average
of 60 events per year (for an average of 1.21 ha per clearing patch). The maximum area
cleared was recorded for 2009, with 280 ha in 180 clearing occurrences. In the 12.5 km
buffer, annual forest clearing was higher, with an average of 698 ha cleared per year and
an average of 582 clearing occurrences per year (for an average of 1.19 ha per clearing
patch). Similarly, the peak forest area cleared was recorded for the year 2009 in the 12.5 km
buffer, with 2797 ha cleared in that year. In the 25 km buffer, the magnitude of the area
cleared and number of occurrences was higher for the years 2000, 2002, 2008, 2009 and
2019 in comparison to the other geographical units of analysis (Figure 4C), with the largest
area cleared registered for the year 2000 and followed by the year 2009. Kruskall–Wallis
tests showed that forest clearing area and frequency per year were significantly different
between geographical units (Table 2). Figure 5 shows the differences in the ranges of forest
area and frequency between geographical units before and after the creation of the PBSR in
2011. In general, we observed a general shift in the magnitude of forest cleared before and
after the creation of the PBSR, especially outside of the PBSR, but the differences were not
significant in these two time periods for any of the geographical units (Table 2).

The Mann–Kendall trend tests showed no temporal trends detected in the area cleared
during the whole study period for the three geographical units (Table 2). There was also no
evidence of significant positive or negative temporal trends in forest area clearing dynamics
before and after the creation of the PBSR, either inside of the reserve or in the 12.5 km and
the 25 km buffer rings (Table 2).

3.3. Emergent Hotspot Analysis

Emerging trends were assessed using the space-time hotspot analysis in order to
investigate whether the creation of the PBSR impacted the spatiotemporal trends in forest
clearing. The analysis is presented for forest clearings detected between 2000 and 2011,
and between the 2012–2021 period. Figure 6 shows the results of this analysis and depicts
the distribution of areas of stable low clearing intensity (e.g., persistent cold spots: low
frequencies and clustering maintained in time and space during the period of study) and



Remote Sens. 2023, 15, 3445 11 of 21

stable high intensity (e.g., persistent hotspots: high frequency and clustering maintained
in time and space during the period of study) of forest loss events. It also shows areas
where recent increasing trends and decreasing trends in forest clearing clustering are
occurring (e.g., new hotspots and cold spots) and where high clustering occasionally
happens (e.g., oscillating hotspots and cold spots). Areas that were not categorized or
deemed to have insufficient data did not record any significant trend across the years.
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Table 2. Summary of results from Kruskall–Wallis Rank Sum tests and Mann–Kendall trend tests.

Kruskall–Wallis Rank Sum Tests X2 df p-Value

Forest clearing (ha)
By geographical unit (inside, 12.5 km, 25 km) 37.97 2 <0.001

By time period(before or after 2011) 1.06 1 0.3029

Frequency of forest clearing events
By geographical unit (inside, 12.5 km, 25 km) 38.41 2 <0.001

By time period(before or after 2011) 0.89 1 0.3439

Carbon density (Mg/ha)
In Forest clearings vs. Random selection (Inside PBSR) 60.12 1 <0.001

In Forest clearings vs. Random selection (Outside PBSR) 1213.7 1 <0.001

Number of species per hectare
In Forest clearings vs. Random selection (Inside PBSR) 85.05 1 <0.001

In Forest clearings vs. Random selection (Outside PBSR) 3422.1 1 <0.001

Mann–Kendall trend tests Score tau p-value

Forest clearing (ha)
Inside (Pre 2011) 16 0.24 0.30367
Inside (Post 2011) 4 0.06 0.83701

12.5 km buffer (Pre 2011) 16 0.24 0.30367
12.5 km buffer (Post 2011) 11 0.24 0.37109

25 km buffer (Pre 2011) 12 0.18 0.45067
25 km buffer (Post 2011) 15 0.33 0.2105

All (Pre 2011) 16 0.24 0.30367
All (Post 2011) 15 0.33 0.2105

Results indicate a widespread occurrence of oscillating high-intensity areas before 2011,
with one cluster of persistent hotspots in the northern part of the study area. Before 2011,
newer or recent hotspots were spread out across the study area. Persistent and oscillating
low-intensity cold spots were evident in the central part of the study area corresponding
with the eastern and western sections of the PBSR. After the creation of the PBSR in 2011,
stable high-intensity areas were less frequent and were present in smaller ranges around
towns in the northern part of the study area and some locations in the southern area that
correspond to the state of Campeche. We observe, after 2011, a reduction of the hotspots in
the middle of the PBSR and more empty cells all across the PBSR, which means there were
no sufficient forest clearing data to compute the spatiotemporal statistical analysis. There
were also fewer persistent cold spots inside the PBSR after 2011. New hotspots after 2011
are mostly located in the northern part of the study area.

3.4. Comparison to Carbon Density and Species Diversity Models

Results show that slash-and-burn activities select areas of lower carbon density and
species richness in comparison to what is available. This pattern was detected inside and
outside the PBSR. Figure 7 shows histogram comparisons of the frequency of forest clearing
events by carbon density and species richness ranges. Frequencies are compared between
carbon density and species richness in forest clearing polygons after 2015 and a similar
number of random locations in forested areas. Inside the PBSR, forest clearing events
cluster around the 99–150 Mg/ha carbon density range and the 33–40 species/ha range.
Outside the PBSR, forest clearing is more widespread and occurs around 42–152 Mg/ha.
It also occurs in a bimodal pattern in relation to tree species richness with a cluster in the
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ranges of 11–19 species/ha and 27–41 species/ha. The Kruskall–Wallis tests show that the
distribution of forest clearing events is significantly different from random in all pairwise
comparisons (Table 2) and is shifted towards lower values in clearings, especially outside
the PBSR (Figure 7).
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Figure 5. (A) Boxplots showing the differences in the distribution of forest clearings in terms of area
for the three geographical units (inside, 12.5 km and 25 km) before and after the creation of the PBSR.
(B) Boxplots showing the differences in the distribution of forest clearings in terms of frequency for
the three geographical units (inside, 12.5 km and 25 km) before and after the creation of the PBSR.
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Figure 6. Maps of emerging hotspots and cold spots trends generated by the EHSA analysis in
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Grey-shaded cells inside the study area refer to cells with insufficient forest-clearing events to perform
a time series hotspot analysis.
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4. Discussion

The implementation of a semi-automated method for mapping annual forest clearings
for the 2000–2021 period using the Landsat archive allowed us to accurately quantify forest
cover change dynamics inside and outside the PBSR. However, results from the accuracy
assessment suggest that omission errors were high for the forest class in the 2000 baseline
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map (Producer’s accuracy of 62.7%) and for the annual forest clearing dataset (producer’s
accuracy of 53.9%). This omission error rate might indicate an underestimation of forest
clearing activities and suggest that the conversion of forests to milpa and other anthro-
pogenic land uses might be occurring at a higher frequency. The use of a post-classification
change detection method using NBR2 thresholding might have underestimated the oc-
currence of a forest clearing in some instances. This could happen if, after moderate to
high rainfall events or land irrigation, a quarter quantification of the NBR2 threshold does
not accurately reflect the separation between forest cover and anthropogenic land uses.
This masking effect could occur given that NBR2 uses short-wave infrared bands highly
sensitive to surface water content.

In spite of these potentially omitted clearing events, the dataset registered 34,138 forest-
clearing events in a pattern consistent with the spatial distribution of slash-and-burn activi-
ties expected for landscapes undergoing socioecological processes where a conservation
area has been in place. The unbiased (error-adjusted) estimation of the total forest area
cleared during the 2000–2021 period was 230,511 ha (±19,979 ha), which adjusts estimates
based on omission errors and commission errors calculated in the accuracy assessment.

Regarding the impact of the creation of the PBSR on the area and frequency of forest
clearings, our results suggest that although forest clearing was significantly more intensive
outside of the PBSR than within the PBSR during the entire 2000–2021 period, there is no
evidence suggesting that the frequency and magnitude of forest clearing changed over
the years after the creation of the PBSR in 2011. Figures 4 and 5 show slight differences
in the magnitude of forest-clearing events from 2000 to 2021, but this pattern was evident
only for the 25 km buffer ring outside the PBSR. In fact, the Mann–Kendall trend statistics
suggest there is no trend in the annual forest clearing time series in any of the geographical
units (entire study area, inside PBSR, in the 12.5 km buffer ring and in the 25 km buffer
ring) and for any of the time periods (pre-2011 and post-2011). The EHSA analysis does
show, however, that forest clearing clustering (hotspots) during the 2012–2021 period was
less common than prior to 2011 and that these new hotspots have been confined to areas
outside the PBSR (Figure 6). In fact, the EHSA analysis was unable to find sufficient forest
clearing data in numerous cells within the boundaries of the PBSR that would yield any
significant spatiotemporal trend during the 2012–2021 period, which means forest clearing
occurred less often within the PBSR. EHSA results, therefore, suggest lower forest clearing
intensity in recent years for the study area, which could be a minimizing effect of the PBSR
on the frequency of forest clearing events inside the reserve. However, this could also
be a product of landscape-scale processes not linked to the creation of the PBSR, such as
migration and socioeconomic processes [12]. Understanding the underlying drivers behind
these patterns will need further research.

For the 2000–2021 period, published literature and national reports show mixed results
regarding the trends in forest clearing for the Yucatan peninsula. Krylov et al. [30] report a
higher annual rate of deforestation for the Yucatan Peninsula in comparison to national
rates. Previous research by Portillo-Quintero and Smith [31] also lists the Yucatan Peninsula
as one of the largest hotspots of forest clearing in the Mesoamerican region. [32] estimated
forest losses of up to 85% in multiple individually managed and parcelized ejidos in the
Yucatan state between 1985 and 2016. Nonetheless, Ellis et al. [33] indicate that even though
annual deforestation is high in the State of Yucatan, it remains lower than in Quintana Roo
and Campeche. When observed at the scale of the PBSR and its surroundings, a rapid
report using the public online portal of the Global Forest Watch shows that tree cover loss
in the same study area (PBSR and its surroundings) does not follow a negative or positive
trend and has been stable since the year 2001 until the year 2021. These results indicate
that the study area has experienced lower deforestation rates compared to the reported
statewide and regional deforestation processes in the Yucatan peninsula. Our results also
show that forest clearing activities have remained low and stable within the PBSR, and
although more frequent than within the PBSR, forest clearing has remained stable in the
surroundings of the PBSR.
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The comparison of the annual forest clearing dataset to remotely sensed carbon density
and tree species models further reveals that the PBSR is controlling agricultural dynamics
within its boundaries. Our results show that landowners are clearing forests with lower carbon
density and tree species diversity in relation to what is available for them at the landscape
scale. This is expected given that milpa systems target early to intermediate secondary forests
after several years of abandonment (barbecho). However, our data indicate that carbon density
and species richness in cleared areas were generally lower (more skewed to the left) relative
to random sites outside the PBSR than inside (Figure 7), suggesting that landowners within
the PBSR might be practicing longer barbecho periods thereby allowing forests to gain higher
carbon density and tree species diversity before slash-and-burn compared to landowners
outside the PBSR. Allowing a longer barbecho period is an important component of the
traditional shifting cultivation strategy that allows the recovery of soil fertility and results in
crops of higher yields [34]. Bray et al. [35] reported similar patterns in the milpa systems of
Central Quintana Roo, where longer barbecho periods and the maintenance of late secondary
forests are attributed as causes for lower observed deforestation. The PBSR management
plan clearly indicates that the practice of short barbecho periods threatens the maintenance of
biodiversity and sustainability of agricultural systems in the region and, therefore, promotes
the use of longer barbecho periods.

5. Conclusions

Since its creation in 2011, the management goal of the PBSR has been to preserve sustain-
able livelihoods for the ‘ejidatarios’ and private landowners that are part of it. It also aims to
secure the provision of ecosystem services for a human population of more than 130,000 living
in its surroundings. By combining products from the analysis and transformation of remotely
sensed data (Landsat archive; ALOS-2, PALSAR-2), our study was able to reveal lower forest
clearing rates suggesting different underlying socioecological processes occurring in the study
area compared to patterns of forest clearing reported at the state and regional scale. Our
results suggest that the PBSR effectively acts as a stabilizing forest governance scheme that
reduces the impact of productive activities by lowering the frequency of forest clearing events
and preserving late secondary forests within its boundaries.

While the integrated analysis of remotely sensed forest attributes such as biomass,
carbon density and species richness requires extensive efforts in data collection at significant
financial costs, the implementation of continuous change detection methods using the
Landsat or Sentinel archive can be accurately achieved with open-source GIS software and
cloud-based platforms at low costs. In this study, we combined carbon density and tree
species diversity models at 25 m pixel resolution that were generated by leveraging national-
scale forest inventory data with a Landsat-based continuous change detection product.
Given the urgency for more integrated assessments that can help guide conservation
efforts, the remote sensing community should continue to concentrate efforts on providing
alternative optimal field data collection strategies and modeling techniques to spatially
predict key tropical forest attributes. These efforts should target the minimization of
financial costs while still yielding accurate results. Ultimately, integrating remote sensing-
based models at sub-national and local scales can speed up the generation of knowledge
about the spatial variability in socioecological processes and generate information better
adapted to forest governance scales.
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Appendix A

Mann–Kendall Statistic Autocorrelation Testing

The presence of serial correlation among forest clearing events can be investigated by
using the acf() and pacf() functions in R, which are used for computing the autocorrelation
and partial autocorrelation in a time series.

1. Time series of forest disturbance data inside the PUUC reserve

The autocorrelation and partial autocorrelation present in this series are not significant.
The majority of spikes in the ACF and partial ACF plots fall within the horizontal band
defined by the blue dotted lines, beyond which autocorrelations and partial autocorrelations
would be interpreted as significant.
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2. Time series of forest disturbance data 12.5 km from the PUUC reserve

The autocorrelation and partial autocorrelation present in this series are not significant.
The majority of spikes in the ACF and partial ACF plots fall within the horizontal band
defined by the blue dotted lines, beyond which autocorrelations and partial autocorrelations
would be interpreted as significant.
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