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Abstract: Stable and reliable autonomous localization technology is fundamental for realizing au-
tonomous driving. Localization systems based on global positioning system (GPS), cameras, LIDAR,
etc., can be affected by building occlusion or drastic changes in the environment. These effects can
degrade the localization accuracy and even cause the problem of localization failure. Localizing
ground-penetrating radar (LGPR) as a new type of localization can rely only on robust subsurface
information for autonomous localization. LGPR is mostly a 2D-2D registration process. This paper
describes the LGPR as a slice-to-volume registration (SVR) problem and proposes an end-to-end
TSVR-Net-based regression localization method. Firstly, the information of different dimensions in 3D
data is used to ensure the high discriminative power of the data. Then the attention module is added
to the design to make the network pay attention to important information and high discriminative
regions while balancing the information weights of different dimensions. Eventually, it can directly
regress to predict the current data location on the map. We designed several sets of experiments to
verify the method’s effectiveness by a step-by-step analysis. The superiority of the proposed method
over the current state-of-the-art LGPR method is also verified on five datasets. The experimental
results show that both the deep learning method and the increase in dimensional information can
improve the stability of the localization system. The proposed method exhibits excellent localization
accuracy and better stability, providing a new concept to realize the stable and reliable real-time
localization of ground-penetrating radar images.

Keywords: localization; place recognition; localizing ground-penetrating radar; slice-to-volume
registration; end-to-end; attention mechanism

1. Introduction

As the foundation of autonomous driving, autonomous localization is an important
area of current research on autonomous driving technology [1]. Usually, autonomous
vehicle localization requires centimetre-level localization error to ensure the vehicle’s usual
driving and safe operation. The current mainstream sensors include global positioning
system (GPS) [2,3], inertial motion unit (IMU) [4], cameras [5,6], and LIDAR [7–10].

Using GPS/IMU technology for localization, GPS signals may be blocked by vege-
tation and buildings; IMU suffers from cumulative errors. Both of these problems can
degrade the localization results [1]. By iterating on trajectory matching [11] or with the
help of environmental information [12], it is possible to achieve lane level navigation
and localization. Camera-based localization is a current research hotspot in the field of
computer vision (CV) [13–15], but the method is prone to mismatch under insufficient
light and significant climate change. LIDAR localization can be significantly weakened
or obstructed by the LIDAR beam in bad weather, such as rain or fog, and is prone to
localization failure [16,17].
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Ground-penetrating radar (GPR) is a new location technology that can guarantee vehi-
cle localization accuracy in harsh environments such as a lack of road markings, insufficient
light, rain, and snow. GPR is a type of radar that detects targets not visible underground or
inside objects. It does not need to use information from the above-ground environment
and can rely on solely robust underground information for autonomous localization.

The application of GPR systems to localization research was first used in robotics,
with the main application in surveying and mapping [18,19]. The real application of
GPR systems to localization started in 2013. The concept of LGPR was first introduced
by Cornick and Koechling et al. at MIT Lincoln Laboratory, USA [20]. A new model
of vehicle localization based on a priori maps was proposed, and LGPR systems for
autonomous driving were developed. The correlation maximizing optimization technique
was used to achieve registration between current images and the a priori maps. In 2020,
Carnegie Mellon University identified the localization problem as a model for factor graph
inference [21]. Robot localization using a learning-based sensor model in a GPS-rejected
environment. This method requires the fusion of ground-penetrating radar data with
odometers, and requires the ground-penetrating radar to revisit the same location. In 2022,
the Chinese Academy of Sciences proposed GPR localization using DCNN assistance [22].
They constructed fingerprint maps by extracting hyperbolic features from GPR images
through Fast-RCNN and accelerated the matching computation using particle swarm
optimization, thus ensuring real-time localization. However, due to the uncertainty of
subsurface information, the hyperbolic features were not always evident, so the abundance
of subsurface targets limited the accuracy of the method subsurface. Zhang et al. focused
on subsurface-rich texture stripe features, designing a point feature matching algorithm for
GPR images from the perspective of edge extraction [23], and acted on texture information-
rich along-track GPR data matching. However, the method detects many redundant point
features on the cross-track data lacking sufficient features and could not be applied to
localization tasks.

The existing LGPR is mostly a 2D-2D image registration. Due to the single structure
of GPR images and few typical features, the 2D-2D registration has low discrimination
power and is prone to mismatching problems. In this paper, from GPR data and scene
descriptions, the essence of the LGPR problem is classified as a slice-to-volume registration
(SVR) problem. The concept is derived from medical image registration and fusion and
was first used in the medical field for motion correction, volume reconstruction, and image-
guided interventions [24]. The traditional approach of SVR is to transform the 2D-3D
registration problem into a 2D-2D-based optimal matching search problem, i.e., based
on 2D-2D matching using similarity metrics, the optimal transformation is searched and
solved by an optimization algorithm for registration. In recent years, with the development
of deep learning technology, some new methods and models have emerged. Salehi et
al. used CNN to regress the transform parameters to achieve SVR [25]. Hou et al. [26]
proposed the concept of SVR-Net to use CNN to regress the transform parameters to obtain
the location information of real-time slices. Deep learning methods have shown good
localization and a better real-time performance in medical image registration.

In this paper, an end-to-end TSVR-Net-based regression localization method is pro-
posed for GPR image features. By inputting a current image, the location of that image
in the map data is directly predicted. Compared with the method of correlation, our
method shows better stability. Furthermore, the prediction time of the method is only a few
milliseconds for a single datum, showing a better real-time performance than optimiza-
tion algorithms.

Our main contributions are:

• We formulate the LGPR problem as an SVR problem. On this basis, we construct a twin
slices-to-volume registration (TSVR) model using two data dimensions. This solves
the problem of weak discriminability of the single-dimension data and improves the
stability of the LGPR system.
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• An end-to-end TSVR-Net is designed to introduce an attention mechanism to the
network to focus on important information and discriminative regions, weaken the in-
fluence of clutter interference, balance different dimensional information, and achieve
the accurate and stable real-time localization.

We used the method on several datasets and validated its superiority over the state-
of-the-art LGPR methods. In the rest of the sections, we first present the preparation of
this work in Section 2. Then, the proposed model and methods are described in detail in
Section 3. The experimental setup and parameter design are described in Section 4, and the
results are analysed and discussed in Section 5. Finally, we conclude the paper in Section 6.

2. Preliminaries
2.1. Interpretation of 3D GPR Data

The GPR emits high-frequency electromagnetic waves to the ground and obtains
subsurface information by analysing the reflection of electromagnetic waves received by
the radar. The difference in the dielectric constant inside the detection target causes changes
in the waveform and amplitude of the electromagnetic waves during propagation; therefore,
it can construct GPR detection data based on this information.

The reflected signal data format received by a single-channel GPR is a one-dimensional
waveform, as shown in Figure 1a, called an A-scan. The radar scanning the area of interest
can obtain multiple A-scans, as shown in Figure 1b, to obtain a two-dimensional radar
image, called a B-scan. The multi-channel radar scanning of the area of interest can obtain
a three-dimensional image. The two-dimensional slice extracted along the along-track (x)
direction is called the B-scan, containing the subsurface length–depth direction information.
The two-dimensional slice extracted along the depth (t) direction is called the C-scan,
containing the subsurface length–width direction information; the two-dimensional slice
extracted along the cross-track (y) direction is called the D-scan, containing the subsurface
width–depth direction information [27].
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Figure 1. GPR data formats and images. The top image represents the data format of the GPR
reflections, where the x-axis represents the vehicle travel direction (along-track), the y-axis represents
the radar channel dimension direction (cross-track), and the t-axis represents the time (depth) dimen-
sion of the radar’s downward data acquisition. The image at the bottom is the waveform or image
representation of the data collected by GPR in each dimension. From left to right are the A-scan,
B-scan, C-scan, D-scan, and 3D data.

2.2. Principle of LGPR

Lincoln Laboratory proposed the concept of LGPR as an a priori map-based vehicle
localization model. The method mainly consists of map creation and real-time localization,
as shown in Figure 2. In this paper, we denote the approach proposed by MIT as the
baseline method.
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Figure 2. LGPR localization process. The process is mainly divided into map creation in the solid box
and real-time localization in the dashed box. Firstly, the pre-collected data and location labels are
interpolated to the grid to obtain the map data with GPR data and location labels. Then, the current
scanned image is registered to the grid map, and the corresponding localization label of the image
marked by the red box is obtained through registration.

Among them, the subsurface environment map is created by collecting GPR data,
followed by offline processing of the collected data. The processing involves slice interpola-
tion, location label design, data pre-processing, etc. Finally, each slice of data is combined
with the corresponding location label to obtain the map data with the location label. Real-
time localization is a correlation calculation between a single frame of the subsurface data
collected by the GPR in real-time and the previous map data using normalized correlation.
Subsequently, the particle swarm optimization (PSO) algorithm [28] searches for the loca-
tion with the highest correlation between the current data and the pre-stored grid data to
obtain the localization results.

Later, Ort et al. [29] conducted an extended LGPR experiment under variable weather
conditions and found that the real-time data in the rain and snow showed a weak correlation
with the a priori map, weakening the robustness of the system navigation and localization.
In this paper, we have studied and analyzed this situation. Figure 3 shows the GPR images
of the same road section acquired under different weather (clear and rain), from left to
right, the original, low-frequency, and high-frequency, respectively. The overall contour
and shape in both images remain unchanged, but there are different degrees of variation
and blurring of detail edges. By frequency domain analysis, correlations were calculated
for low and high-frequency images, as shown in Table 1, and the low-frequency images
showed better correlations.

Table 1. GPR image frequency band correlation calculation.

Raw Images Low-Frequency
Images

High-Frequency
Image

Correlation 0.4460 0.6897 0.4211

The baseline is used to quantify the effect of low-frequency images on image stability.
The localization results of low-frequency and raw images are plotted as line graphs, as
shown in Figure 4. Multiple sets of results show that using low-frequency images could
improve the stability of image registration and is more conducive to achieving robust
system localization.



Remote Sens. 2023, 15, 3428 5 of 20

Clear

Rain

Low frequency information High frequency informationOriginal image

Figure 3. GPR image correlation in clear and rainy weather. The first and second rows show the
analysis of the GPR images obtained from scanning the same road section on clear and rainy days,
respectively. The left side is the raw image scanned, the middle is the low-frequency image, and the
right is the high-frequency image.
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Figure 4. Comparison of baseline localization errors between low-frequency and raw images. The line
graph plots the error obtained by comparing the registration localization with the actual localization
for 30 sets of data using the baseline. The blue line in the figure indicates the localization error of
the low-frequency image registration, and the red line indicates the localization error of the raw
image registration.

3. Proposed Method

In this paper, we describe the essence of a vehicle-mounted GPR localization problem
as an SVR problem. Starting from the features of the GPR data, we propose a TSVR model
applicable to GPR robust localization. According to the model formulation, a TSVR-Net
regression network is designed based on SVR-Net, capable of end-to-end GPR localization.

3.1. TSVR Model

The localization of GPR images requires the registration of the real-time collected
images with pre-collected maps. The pre-collected maps of multi-channel GPR comprises
3D volume data, and the GPR data collected in real-time is a 2D image. Therefore, the
essence of the GPR localization problem is a 2D image to 3D volume data registration
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problem. We import the SVR model in the medical field to GPR image registration and
describe the localization of GPR images as an SVR problem.

However, the number of radar channels usually limits the D-scan images acquired
by multi-channel GPR in real-time. The system scans images of small size and contains
few features. When this dimensional image is only used as an input to large-scale registra-
tion, mismatches are prone to occur due to the poor discrimination of single-dimensional
images. Considering that GPR platform motion is a continuous process, we can achieve
a more robust localization by increasing the dimensional information or the number of
neighbouring slices.

We preform correlation analysis on the slice data of the three dimensions of the volume
data separately, as shown in Figure 5. The smaller the red box in the image and the more
concentrated the distribution, the higher the discriminative image power. By comparing
the correlation surface data of the three dimensions, we found that the B-scan has stronger
discriminative power in the along-track direction, and D-scan has stronger discriminative
power in the cross-track direction. C-scan has more correlation peaks in volume with
weaker overall discriminative power. To address the characteristics of the three dimensions
of the GPR data, we select B-scan and D-scan data as the registration images and use the
increase in data dimensions to improve the stability of the system localization. We propose
a TSVR model applicable to localizing GPR. The model can be abstracted into the following
mathematical representation:

T = argmax
T

M(S, V; T) (1)

where S =
[
Scross, Salong

]
denotes the set of 2D slices obtained during real-time localization,

where Scross denotes the slice in the cross-track direction that corresponds to the D-scan
image, and Salong denotes the slice in the along-track direction that corresponds to the
B-scan image. They are used to form the data form of the T-slices, as shown in Figure 6.
V denotes the pre-stored 3D data map, and M denotes the image similarity metric.

B-scan

C-scan

D-scan

Figure 5. Correlation surface analysis of the sliced data in different dimensions. From top to bottom
are the correlation surface results for the B-scan, C-scan, and D-scan on the volume at the location (45,
4, 0) of the volume data, respectively. The bright yellow colour in the image indicates a correlation of
1, and the dark blue colour indicates a correlation of −1, where the red box area is the correlation
peak area.
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T-slices3D scanning maskGPR Volmue

Figure 6. T-slices production process.

3.2. Attention Mechanism

GPR images have obvious media layering and hyperbolic structural features, as shown
in Figure 7. These two regions can provide more features for image registration. Therefore,
paying attention to the media layering and hyperbolic feature regions in GPR image
registration is an effective strategy to improve registration accuracy.
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Figure 7. Typical GPR image. The red box region in the image has a clear black-white layering,
demonstrating the layered characteristics of the GPR image, caused by the different dielectric con-
stants of different geological layers. The yellow box region in the image demonstrates the hyperbolic
feature of the subsurface target reacting to the image.

As an effective way to control feature weights, the attention mechanism is widely
used in CV [30] such as image classification [31,32], target detection [33], and medical
image processing [34]. We add the attention mechanism to GPR image registration by
combining spatial and channel attention to select image regions and features with high
discriminative power.

3.2.1. Channel Attention Mechanism: ECA-Net

ECA-Net [35] is a local cross-channel interaction strategy that does not utilize dimen-
sionality reduction. It can adaptively select the size of a one-dimensional convolution
kernel. The network module is shown in Figure 8. It can obtain significant performance
gains without increasing model complexity. Firstly, differing from attention mechanisms
such as SE-Net [31], ECA-Net avoids the effect of dimensional reduction on the channel
attention learning effect. Secondly, ECA-Net implements a local cross-channel interaction
strategy using 1 × 1 convolution to achieve adaptive adjustment of the convolution kernel
size k, calculated by:

k = ψ(C) =
∣∣∣∣ log2(C)

γ
+

b
γ

∣∣∣∣
odd

(2)

where C is the input channel dimension, γ = 2, b = 1, and |t|odd denotes the nearest odd.
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Figure 8. The architecture of our network and attention modules. The blue box shows the architecture
of our network. The green box is the channel attention module (using ECA). The orange box is the
spatial attention module. The convolutional layer configuration is denoted as: kernel size, number of
channels, and stride. GAP denotes global average pooling. GMP denotes global max pooling. The
symbol indicates matrix multiplication. Feature concatenation is fusion of all the channel dimensions.

3.2.2. Spatial Attention Mechanism

Spatial attention is a module that enhances feature representation of critical regions
of the image. The spatial attention module first reduces the dimension of the channel to
obtain the maximum and mean pooling results. Second, the two pooling results are stitched
together in the channel dimension, and the convolutional layers fuse the features. Finally,
spatial feature weight descriptors are generated by the sigmoid operation. The descriptors
are superimposed onto the original image to enhance the feature representation of critical
regions in the image.

3.3. Twin Slices-to-Volume Registration Net

Based on the formulation of the TSVR model, we propose a TSVR-Net based model
on the SVR-Net study [26]. This model can realize the end-to-end location parameter
regression prediction (due to the limitation of network generalization capability, it is more
challenging to achieve end-to-end image registration. However, since the GPR localization
problem is based on a priori map registration, each road is trained separately to require less
generalization capability to achieve the end-to-end network prediction), with the network
architecture is shown in Figure 8, mathematically represented by:

T̂i = ψ(ωi, θ) (3)

where θ denotes the network parameters and ωi ∈ V denotes a series of slice sets obtained
from the volume data V.

Through the analysis of different weather GPR images in Section 2.2, we demon-
strate that low-frequency information enables more robust localization. Therefore, a mean
pooling layer is added to the network to achieve low-pass filtering [36], leading to more
robust registration.
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The SVR-Net regression network only uses information from a single dimension
and will show lower discriminability in another dimension, affecting the accuracy of the
registration. TSVR-Net fully utilizes the volume data information of GPR images as well as
B-scan and D-scan two-dimensional information. It can improve the amount of information
while ensuring the image set has high discriminative power. However, since the B-scan
and D-scan correspond to different physical resolutions and polarization methods when
the multi-channel radar performs data acquisition, using the same parameter weights for
feature extraction will deteriorate the extraction effect. Therefore, we do not use parameter
sharing for image feature extraction but train the two dimensions separately and perform
feature fusion on the extracted underlying features to obtain the fused feature F1.

F1 = fconcat

(
f1(Scross), f2

(
Salong

))
(4)

where, f1(•) and f2(•) denote the feature extraction for D-scan and B-scan images, re-
spectively. fconcat(•) denotes feature concatenation performed for channel dimensions in
this network.

Due to the unknown nature of subsurface information, the image information distri-
bution of different road regions is different. In order to make full use of the rich regions
of image information, we start from two perspectives. Firstly, we combine channel atten-
tion and spatial attention when extracting the image features [32], paying attention to the
features in the regions with higher image discrimination. Secondly, we add the channel at-
tention mechanism to control the weights of each dimension in the regression when fusing
the features of different dimensions to obtain the new fused features F. Subsequently, we
input F into the network for training.

F = φ
(

fconcat

(
ϕ1( f1(Scross)), ϕ2

(
f2

(
Salong

))))
(5)

where ϕ1(•) and ϕ2(•) denote the channel and spatial attention to the D-scan and B-scan
image features, respectively, and φ(•) denotes the channel attention mechanism. The spatial
attention finds the important parts of the image for processing. First, the channel itself is
downscaled to obtain the results of maximum pooling and average pooling. Then the two
pooling results are concatenated in the channel dimension and fed into a one-dimensional
convolution. ECA-Net is used for channel attention.

Finally, the feature vectors extracted from all channels of the convolutional layer
are connected and integrated using a fully-connected layer. To reduce the possibility of
overfitting, the network design adds a dropout layer between the fully connected layers,
and finally, each output node corresponds to a localization parameter T̂i.

4. Experiment and Parameter Design
4.1. Data Collection

In this section, we evaluate the network’s performance through experimental vali-
dation and compare it with the baseline. To perform a comprehensive evaluation of the
proposed method, we performed multiple sets of experimental data acquisition in different
outdoor scenarios, containing various conditions such as different times and weather. The
system platform used for data acquisition is shown in Figure 9, mainly including 3D-Radar,
distance measuring instrument (DMI), a vehicle-mounted platform, a real-time kinematic
(RTK) and a high-performance computer. The detailed parameter settings of the system are
shown in Table 2. The experimental site was selected at the Yuntang campus of Changsha
University of Technology, and the collected data are shown in Figure 10.
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Figure 9. GPR data acquisition equipment.

Table 2. GPR system parameters.

Parameters Parameter Values

Radar type Stepped frequency continuous wave
Frequency bandwidth 2.8 GHz (200–3000 MHz)
Array dimensions 1845 mm × 795 mm × 150 mm
Number of channels (number of pairs
of elements) 20

Elements spacing 75 mm
Polarization mode Linear (scanning direction)
Sampling interval 0.07 m
Detection depth 2–3 m
Vehicle platform travel speed 10 km/h

Figure 10. Actual measurement data recording section schematic. Among them, the red, yellow, and
blue boxes represent asphalt, masonry, and cement road sections, respectively.

First, we study high-precision registration and localization. To reduce the impact
of multi-sensor errors, data collection is strictly collected according to the preset track.
The starting point is strictly aligned during data recording and travels in a straight line
according to the preset track. The DMI external trigger is used to operate the GPR system,
and the DMI data provides the location truth. At the same time, we analyse the effect of
the proposed method for navigation and localization with the data truth provided by RTK.

4.2. Data Preparation

Maps and real-time slices are prepared based on the collected data and used in the
baseline and proposed methods. The GPR data were preprocessed using the 3D-Radar
software 3dr-Examiner for background removal.

The baseline method can extract a single D-scan image from the 3D data directly for
registration. For the proposed method, the data production is borrowed from the triplanar
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structure of GPR target detection [37]. The first step is to extract the three-dimensional
mask window from the volume data according to the radar system to determine the
window size set to x, y, z. The width is defined by the number of channels in the multi-
channel GPR system. The length is consistent with the number of channels to ensure the
integrity of the information depth towards taking the full depth of the acquisition. Both
x and y are 20 pixels and the z-axis is represents the depth-wise sampling points of the
corresponding data.

The window is panned across the along-track and cross-track directions to obtain
multiple 3D masks, as shown in Figure 6. The last slice of the D-scan and corresponding
B-scan of the 10th channel in each mask window is taken as the slicing group for network
training and testing.

4.3. Methods and Parameter Setup

To verify the rationality of our proposed method, we compare it to the other five meth-
ods in Table 3. Among them, the baseline method is the most state-of-the-art algorithm in
GPR image localization, and the SVR-A, SVR-C, SVR-TC, and SVR-FC methods are the
step-by-step verification of the rationality of our proposed method. SVR-A and SVR-C
are used to demonstrate the feasibility of predicting location parameters using SVR-Net
regression. SVR-TC and SVR-FC verify the improvement in system localization perfor-
mance by introducing twin slice information. SVR-TC trains two-dimensional images as a
two-channel (TC) input network of one tensor. SVR-FC inputs images of two dimensions
into two networks, respectively, and performs feature concatenation (FC) after the second
convolution. Multiple sets of ablation experiments are conducted to analyse the localization
effect of the proposed TSVR-Net.

Table 3. Method descriptions.

Methods Similarity Measures Optimizer

Baseline NCC PSO

Average Pooling Input Image Input Format Feature
Concatenation Attention

SVR-A X B-scan [227, 227, 1]
SVR-C X D-scan [227, 227, 1]

SVR-TC X B-scan, D-scan [227, 227, 2]
SVR-FC X B-scan, D-scan [227, 227, 1] [227, 227, 1] X
TSVR X B-scan, D-scan [227, 227, 1] [227, 227, 1] X X

The baseline experimental platform uses MATLAB 2019b and a 3.2 GHz AMD CPU.
Among them, the PSO method is a 3DOF search. The main parameters include a population
size of 80 and an iteration number of 100. All experiments for the deep learning method
were trained on a computer with an NVIDIA RTX 3060 GPU, and the data were tested
using the CPU.

5. Results and Discussion

In this section, we identify and analyse the superiority of the attention mechanism in
terms of network performance through visualization. Furthermore, we compare the local-
ization effect of the proposed algorithm against the five methods mentioned in Section 4.3.

5.1. Network Training Visualization

Three networks that can extract individual D-scan feature maps, TSVR, SVR-C, and
SVR-FC, are selected to visualize the effect of feature map extraction. The feature images
before extracting the conv3 of these three networks are shown in Figure 11. We find
that the SVR-C network, which does not incorporate the attention mechanism, learns
features with low differentiation, and the features are fuzzy and similar to each other.
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The SVR-FC network utilizes shallower and less stable information in the subsurface, not
conducive to achieving robust registration and localization. The TSVR extracts features
from a wider distribution area, including the upper-medium stratification information and
the deeper robust information. TSVR gives different weights to different spatial regions
and feature maps, showing a more favourable effect on feature extraction for registration
and localization.

SVR-C SVR-FCRaw image TSVR

Figure 11. Feature map visualization of the input conv3 layer. The left-most image is the input D-scan
image. The following three images are the feature map collections of TSVR, SVR-C, and SVR-FC
networks, respectively. Each feature map collection is obtained by arranging 256 feature maps in a
16 × 16 format.

5.2. Quantitative Analysis

We have collected data on three common types of pavements: masonry, asphalt, and
cement, including different conditions at different times of the day and in different weather.

Table 4 records the type of data collected, and information about the road section,
weather, lane, and road length. The amount of information is calculated for the collected
road sections, and the data is quantified using grey information entropy, expressed as:

H = −∑
i

pi log2(pi) (6)

where pi represents the number of pixels whose grey value is i, and the higher the infor-
mation entropy is, the more information it contains. We quantify the B-scan collected data
for each road section to obtain the information volume of each road section, as shown in
Table 5.

Table 4. Data description.

Road Type Weather Lane Route_id Length

Asphalt Clear Left, centre, right 1 180 m
Asphalt Rain Center 1 180 m
Masonry Clear Left, centre, right 2 60 m
Masonry Rain Center 2 60 m
Cement Clear Left, centre, right 3 20 m

Table 5. Information entropy.

Asphalt
(Clear)

Asphalt
(Rain)

Masonry
(Clear)

Masonry
(Rain)

Cement
(Clear)

entropy 6.0909 6.0816 5.7603 4.8716 4.2013
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We classified the measured data to produce five different datasets, subsequently
quantifying the proposed method on these five datasets. The calculation of the localization
error is performed using the l2 parametric number, denoted as error =

∥∥T̂i − Ti
∥∥

2. The
statistical error distribution is also plotted as a boxplot, as shown in Figure 12, for the
statistical error distribution of the localization accuracy on the five datasets under the six
methods. The B-scan images of each dataset are shown in Figure 13.

(e)dataset E(d)dataset D

(a)dataset A (b)dataset B (c)dataset C

Figure 12. Comparison of the localization errors under different localization methods. The results
of comparing the localization errors of different methods on five datasets are shown in the figure.
Each boxplot shows the six methods, baseline, SVR-A, SVR-C, SVR-TC, SVR-FC, and TSVR, from left
to right. The statistical results for each method contain a median value line, a coloured box, upper
and lower boundary horizontal lines, and several diamond-shaped discrete points. The horizontal
line in the coloured box indicates the median value of the localization error. The upper and lower
boundaries of the box indicate the 25th and 75th percentile, respectively, and the upper and lower
black boundary transversals indicate the maximum and minimum errors after removing the discrete
values, respectively. A cross-sectional comparison of each boxplot demonstrates the localization
performance of different methods.

5.2.1. The Same Weather of Asphalt Pavement

This dataset contains GPR data collected on the same asphalt road section during clear
weather. The B-scan image shows that the underground media in this area is clearly layered
and has obvious underground targets. From the information entropy, this dataset contains
a high amount of information. The data includes left, centre, and right images [38]. The
complete images obtained by concatenating the left and right are used as the map data for
this dataset, while the centre is used as real-time images for testing, as shown in Figure 14.

As shown in Table 6 and Figure 12a, the proposed method outperforms the baseline
method in terms of localization. The SVR-based deep learning method has less long-range
dispersion than the baseline, indicating that the deep learning-based localization method is
more robust.
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（a）dataset A （b）dataset B （c）dataset C

（d）dataset D （e）dataset E
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Figure 13. B-scan images of the dataset. The two images of each dataset are the B-scan images of one
channel extracted from the GPR data acquired at two different times. Among them, the volume data
corresponding to the left image is used as the pre-collected map data, and the right image is used as
the sliced data collected in real-time.

Left

Right

Center

Figure 14. Multi-lane mapping. (1) Left, (2) right and (3) centre. The left and right can be used to
create a consistent map.
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Table 6. Metrics of the different methods under dataset A.

Methods Error Median (m) Error Var (m2)

Baseline 0.2134 1.4429
SVR-A 0.1089 0.1699
SVR-C 0.0855 0.1246

SVR-TC 0.0938 0.0921
SVR-FC 0.0871 0.1134
TSVR 0.0745 0.0506

The localization effect of the SVR-C method is slightly better than the SVR-A method
on this dataset. By adding dimensional information, the SVR-TC and SVR-FC methods
have similar results in terms of localization accuracy as the SVR-A and SVR-C methods only
using a single dimension; however, the stability of the localization is higher, indicating that
adding dimensional information can improve the stability of localization. Among them, the
TSVR method, which utilizes multi-dimensional information and attention mechanisms,
performs best, indicating that increasing the dimensional information effectively improves
the localization accuracy. However, attention needs to be paid to the valid information of
each dimension.

5.2.2. The Same Weather of Masonry Pavement

Dataset B comprises GPR data from multiple trips to the masonry section collected in
clear weather at different times. There are abundant subsurface targets under the masonry
sections, but there are undulations in the road surface and significant clutter interference.
The data form is the same as dataset A.

As shown in Table 7 and Figure 12b, the localization effect on the dataset of the
masonry road section was degraded compared to the asphalt road section. This is likely
due to the large clutter interference on the road section, which deteriorates the localization
effect. However, our proposed method still outperforms the baseline method. The existence
of clutter interference seriously affects the stability of single-slice registration. Currently,
the SVR-TC, SVR-FC, and TSVR methods with increased dimensional information all show
higher stability than the single-slice method. SVR-TC and SVR-FC have better localization
accuracy than SVR-C but still have a gap with SVR-A. In comparison, the TSVR method
still shows the best localization accuracy and better stability.

Table 7. Metrics of the different methods under dataset B.

Methods Error Median (m) Error Var (m2)

Baseline 0.3009 0.9654
SVR-A 0.1326 0.2345
SVR-C 0.2248 0.2190

SVR-TC 0.1456 0.1410
SVR-FC 0.1617 0.1415
TSVR 0.1059 0.1686

5.2.3. The Same Weather of Cement Pavement

Dataset C contains GPR data collected from multiple cement road sections during clear
weather at different times. There are no obvious underground targets or media stratification
in this section. From the B-scan image, it is challenging to observe obvious underground
targets and media stratification, and from the information entropy, the road section contains
less information.

As shown in Table 8 and Figure 12c, the performance of the baseline method signifi-
cantly decreases on road sections with no obvious targets and less information. At the same
time, most of the SVR methods have a lower decline with a substantially better localization
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performance than the baseline method. This proves that the SVR method is still effective in
locating GPR data with limited information.

By comparing the two methods, SVR-A and SVR-C, we find that the SVR-A method
is significantly worse than the SVR-C method for this dataset. This difference may be
caused by different polarization methods and subsurface feature distribution, indicating
the poor discrimination of B-scan images for sections with less information. The three
methods of adding dimensional information showed significant advantages at this time.
The localization error of the TSVR method is only 0.2528 m, much lower than the SVR-A
method at 0.8275 m. This indicates that image discrimination is low when the amount
of information is low, and it is very effective to increase the amount of information by
introducing multiple slices to improve the discrimination of image matching.

Table 8. Metrics of the different methods under dataset C.

Methods Error Median (m) Error Var (m2)

Baseline 1.5166 2.0620
SVR-A 0.8275 1.7316
SVR-C 0.5448 0.5439

SVR-TC 0.2848 0.5112
SVR-FC 0.4882 0.5631
TSVR 0.2528 0.4797

5.2.4. Different Weather of Asphalt Pavement

Dataset D comprises GPR data of the same asphalt pavement collected in different
weather conditions (clear and rain days). The underground features in this area are consis-
tent with dataset A. However, the subsurface water content changes with the weather, and
there are different degrees of variation and blurring in the images on clear and rain days.

As shown in Table 9 and Figure 12d, compared with dataset A, both the baseline and
SVR methods have more discrete values, and the localization performance is degraded.
However, the TSVR method still outperforms the baseline method and has higher localiza-
tion accuracy and stability.

Table 9. Metrics of the different methods under dataset D.

Methods Error Median (m) Error Var (m2)

Baseline 0.1870 3.1185
SVR-A 0.1510 0.6568
SVR-C 0.1373 1.5713

SVR-TC 0.1884 1.0519
SVR-FC 0.3838 0.7729
TSVR 0.1207 1.0784

In this dataset, we find that the localization accuracy of both the SVR-TC and SVR-
FC methods is significantly worse than the method using only a single slice. Due to the
rich feature information in this section, the single-dimensional image already has high
discriminative power. Although increasing the dimensionality can increase the amount
of information, utilizing it without screening can weaken the discriminatory power of
the image and deteriorate the localization effect. The TSVR method, which also adds
dimensional information, still shows the best localization effect among all the methods,
indicating that introducing an attention mechanism when utilizing multi-dimensional
information is very effective.

5.2.5. Different Weather of Masonry Pavement

Dataset E contains GPR data of the same masonry pavement collected in different
weather conditions (clear and rain days). The subsurface characteristics of this area are
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consistent with dataset B. However, because the drainage performance of the masonry
section is weaker than the asphalt pavement, the difference in images between clear and
rain days is more pronounced.

The dielectric constant affects the GPR data, which are more pronounced in the
masonry pavement than in the asphalt pavement. Therefore, the localization performance
is degraded under this dataset, as shown in Table 10.

Table 10. Metrics of the different methods under dataset E.

Methods Error Median (m) Error Var (m2)

Baseline 0.5278 6.7629
SVR-A 0.3031 1.9535
SVR-C 0.2922 1.1548

SVR-TC 0.3073 1.4566
SVR-FC 0.3235 2.0670
TSVR 0.2268 1.2289

Although the localization performance of all the methods degrades, the baseline
degradation is more evident than that of the SVR method, and the localization effect of
the proposed method is still significantly better than that of the baseline. This demon-
strates the effectiveness of the proposed method in LGPR problems and its robustness to
weather variations.

Further, we find their effects are similar under this dataset by comparing the four
methods of SVR-A, SVR-C, SVR-FC, and SVR-TC. However, the TSVR method still shows
the optimal effect, indicating that the TSVR method is most suitable for GPR localization
problems in various situations with high stability.

Table 11 shows the average run time for a single sample of each method in the five
datasets. To visually represent the localization effect of the TSVR method, we plotted
the localization track of the TSVR method in the World Geodetic System 1984 (WGS-84)
coordinate system on a section of road about 250 m long, as shown in Figure 15. Finally, we
summarized the analysis of the results as follows.

Table 11. Running time comparisons in CPU.

Methods Time (per/s)

Baseline 2.0955
SVR-A 0.0230
SVR-C 0.0234

SVR-TC 0.0244
SVR-FC 0.0298
TSVR 0.0273

• The rich subsurface information is beneficial to the matching localization of GPR
images. The proposed and baseline methods both show better localization results in
the subsurface target-rich and media-stratified road sections corresponding to datasets
A and B.

• Weather changes can deteriorate the stability of system localization. Datasets D and
E both have worse localization error than datasets A and B for both the baseline and
deep learning methods.

• The use of deep learning methods can ensure higher stability of system localization.
Comparing the baseline and SVR-C methods, SVR-C outperforms the baseline method
in terms of the mean and variance of errors.

• Increasing the dimensional information of GPR images is beneficial to improve the
stability of the localization system. Comparing SVR-TC, SVR-FC, and TSVR with



Remote Sens. 2023, 15, 3428 18 of 20

SVR-A and SVR-C, the former three with increased dimensional information showed
significant advantages on a larger number of datasets.

• Deep learning methods have higher real-time performance and nearly 60 times faster
location prediction speed than the baseline method, which could be better applied to
real-time localization.

• The TSVR method combines multi-dimensional and attention mechanisms to show
optimal localization accuracy as well as better stability on all five datasets, significantly
improving the accuracy, stability and real-time performance of GPR image localization.

Figure 15. Localization track of the TSVR method in the WGS-84 coordinate system.

6. Conclusions

GPR localization is a new mode based on map localization, utilizing underground
robust features to achieve reliable autonomous localization in environments such as GPS
rejection and harsh weather. In this paper, we described GPR localization as an SVR model
and proposed an end-to-end regression localization network. At the same time, in response
to the low information content of GPR images, we used mutually perpendicular data slices
to increase the information content of GPR images, thus proposing the TSVR model. The
increase in information volume not only brings more robust features, but also adds new
interference. Therefore, we have added an attention mechanism module in the network
design to balance the information weights of two dimensions in the network, focusing on
robust feature regions and ensuring that GPR images have high discrimination.

We constructed five datasets with different road sections and weather conditions by
actual acquisition and verified the effectiveness of the proposed method step by step on the
five datasets. The experimental results show that the proposed method can improve the
discrimination of GPR images and achieve more robust matching localization. Compared
with the baseline, our method significantly improves the accuracy and stability of GPR
system localization with stronger real-time performance. Although the proposed method
shows some advantages in accuracy, stability, and real-time acquisition, the amount of map
storage data for network training increased compared to the original data. Based on this
work, we hope to gradually realize the compression of the training storage data for the
realistic deployment of this system.
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