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Abstract: The analysis of marine environmental parameters plays a significant role in various
aspects, including sea surface target detection, the monitoring of the marine ecological environment,
marine meteorology and disaster forecasting, and the monitoring of internal waves in the ocean.
In particular, for sea surface target detection, the accurate and high-resolution input of marine
environmental parameters is crucial for multi-scale sea surface modeling and the prediction of sea
clutter characteristics. In this paper, based on the low-resolution wind speed, significant wave height,
and wave period data provided by ECMWF for the surrounding seas of China (specified latitude and
longitude range), a deep learning model based on a residual structure is proposed. By introducing
an attention module, the model effectively addresses the poor modeling performance of traditional
methods like nearest neighbor interpolation and linear interpolation at the edge positions in the image.
Experimental results demonstrate that with the proposed approach, when the spatial resolution of
wind speed increases from 0.5◦ to 0.25◦, the results achieve a mean square error (MSE) of 0.713, a
peak signal-to-noise ratio (PSNR) of 49.598, and a structural similarity index measure (SSIM) of 0.981.
When the spatial resolution of the significant wave height increases from 1◦ to 0.5◦, the results achieve
a MSE of 1.319, a PSNR of 46.928, and an SSIM of 0.957. When the spatial resolution of the wave
period increases from 1◦ to 0.5◦, the results achieve a MSE of 2.299, a PSNR of 44.515, and an SSIM
of 0.940. The proposed method can generate high-resolution marine environmental parameter data
for the surrounding seas of China at any given moment, providing data support for subsequent sea
surface modeling and for the prediction of sea clutter characteristics.

Keywords: the marine environmental parameters; super resolution; convolutional neural networks;
attention mechanisms; remote sensing

1. Introduction

The Marine environment plays a crucial role in the Earth’s ecosystem, with far-reaching
impacts on climate patterns and close connections to human production and livelihood [1].
Marine environmental parameters, including waves, wind speed, wind direction, tempera-
ture, salinity, etc., play a crucial role in the modeling and understanding of the dynamic
changes in the ocean [2,3]. Modeling these marine environmental parameters provides
valuable insights into activities occurring both on and beneath the sea. Utilizing ocean
environment observation data for modeling enables us to gain a better understanding of
the dynamics of the ocean.
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The methods for obtaining marine environmental parameters mainly include direct
observation methods and advanced remote sensing techniques [4]. Direct observation
methods include ship-based observations, buoy observations, and fixed observation sta-
tions. These methods collect marine environmental parameters in marine regions, such
as sea surface temperature, wind speed, and wave period, to understand changes in the
marine environment [5]. Direct observations are typically made by deploying buoys and
anemometers on the sea surface. For instance, the China Institute of Radio Propagation
placed Datawell Waverider 4 and Lufft WS700-UMB instruments in the Yellow Sea to
directly observe marine environmental parameters such as significant wave height, wind
speed, and wave period [6]. This observation method enables the acquisition of marine
environmental data, providing support for predicting sea clutter characteristics. Direct
observation methods are limited by equipment and vessels, which restrict their ability to
achieve wide spatial and temporal coverage. Moreover, observations are often intermit-
tent and cannot collect data continuously and in real time. The observed data also have
limitations in terms of their temporal and spatial resolutions [7].

On the other hand, remote-sensing technologies, such as satellite remote sensing,
airborne remote sensing, and submarine remote sensing, offer the potential to observe
the marine environment over larger areas and at higher resolutions [8]. Remote-sensing
satellite observation data are typically provided by local or national meteorological or-
ganizations [9]. The European Center for Mesoscale Weather Forecasting (ECMWF) [10]
has provided global numerical weather forecast data, meteorological reanalysis data, and
specific data for various needs since 1979. The ERA-Interim reanalysis data offer oceanic
environmental parameter data from January 1979 to August 2019, including wave height,
wave direction, wind direction, and wave period. Since August 2019, these reanalysis data
have been migrated to the ERA5 database. ERA5 data, in addition to the European Space
Agency’s ERS-1/-2 remote sensing satellites and NASA’s QuikSCAT satellite, incorporate
various satellite analysis data. The data feature higher spatiotemporal resolution, more
accurate hourly estimates of atmospheric variables, and an extensive range of satellite ob-
servations, providing valuable support for various research purposes. Our research group
utilizes ECMWF data to provide marine environmental parameters for the surrounding
marine areas of China (0◦N–45◦N, 105◦E–135◦E). We perform multi-scale sea surface mod-
eling [11,12] and analyze sea clutter characteristics [6] in the vicinity of the data collection
points to support subsequent sea surface target detection. In order to monitor sea surface
targets over larger regions, it is necessary to conduct real sea surface modeling and analysis
of sea clutter characteristics over a wide area [13]. Therefore, there is an urgent need to
process the marine environmental data provided by ECMWF for the surrounding marine
areas of China at a high resolution.

The most common techniques for high-resolution data reconstruction involve using tra-
ditional interpolation techniques, such as the nearest neighbor interpolation algorithm, the
linear interpolation algorithm, the bilinear interpolation algorithm, the spline interpolation
algorithm and the cubic interpolation algorithm. The nearest neighbor interpolation [14]
selects the value of the nearest point to the requested data point’s location. This algorithm,
however, does not consider the values of other neighboring points, limiting its performance
for coarsening purposes. The linear interpolation [15] involves constructing a straight
line between the two given points and using it to estimate the unknown value at a point
between them. A linear interpolation algorithm may not always be adequate or suitable
for contexts that require higher precision or reliability. The spline interpolation [16] fits the
spline functions to the available data points and minimizes the overall error or deviation
from the underlying trend. However, the spline interpolation algorithm may overfit the
data, resulting in a curve that perfectly fits the data but fails to generalize well to new
data. The cubic interpolation [17] estimates intermediate values between two known
data points by using a cubic polynomial function based on the two adjacent data points.
However, when fitting the curve to data points with a cubic polynomial, oscillations may
be introduced between the data points, leading to inaccurate and unreliable results. The
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traditional methods have been widely adopted for their simplicity and computational
efficiency. However, these methods often struggle to achieve superior performance in terms
of effectiveness.

Currently, high-resolution reconstruction methods commonly rely on image-based
approaches [18–21]. These methods show limited effectiveness in reconstructing edge
details for the data used in this study, with little improvement compared to traditional
methods, but requiring more computational time. Recently, some researchers proposed
deep learning-based high-resolution methods for ocean environmental parameters. For
example, Aurelien et al. [22] employed the SRCNN model for the high-resolution recon-
struction of sea surface temperature and conducted experiments with different parameters
of the SRCNN model. Similar to SRCNN, they encountered difficulties in accurately re-
constructing the fine details of the data. Wang et al. [23] applied the LightGBM algorithm
to establish a model for the high-resolution reconstruction of sea surface salinity data.
They also pointed out that the reconstruction results of the proposed method in certain
sea areas of China were unsatisfactory. Su et al. [24] utilized two methods, a convolutional
neural network (CNN) and a light gradient boosting machine (LightGBM), to reconstruct
high-resolution deep-sea temperature data. The time-series CNN model achieved better
performance. But due to the use of a shorter time series, the reconstruction accuracy was
not very high, and it did not focus on reconstructing the details of the data.

To enhance the focus on specific features at particular positions, attention mechanisms
have been introduced in various fields of artificial intelligence, such as visual caption-
ing [25], scene segmentation [26], semantic segmentation [27], machine translation [28,29],
text classification [30], speech recognition [31], and time-series analysis [32], within differ-
ent CNN architectures. The attention mechanism works similarly to the human brain’s
attention process [33]. The attention mechanism makes the model focus on a specific part
or feature in the input and assigns different weights according to its importance in the
task. Hu et al. [34] proposed SENet, which combines channel attention and channel-wise
feature fusion to suppress unimportant channels. However, its effectiveness in suppressing
unimportant pixels is limited. Woo et al. [35] introduced spatial attention, combining
channel attention and spatial attention. However, they overlooked the channel–spatial
interactions and lost information in the process. Misra et al. [36] utilized attention weights
between the channel, spatial width, and spatial height dimensions to improve efficiency.
However, attention operations were still applied to two dimensions at a time. Liu et al. [37]
proposed the global attention mechanism (GAM) module in the field of image classifica-
tion, which is capable of capturing important features across three dimensions, enabling
focusing on important information and the suppression of unimportant information. Chen
et al. [38], in the person re-identification (ReID), observed that most attention mechanisms
fail to adequately capture the fine-grained details of input features. They introduced the
high-order attention (HOA) module, which utilizes a high-order polynomial predictor to
capture subtle variations among the data.

In this study, we introduce two attention modules to enhance attention on edge details:
the GAM attention module [37] and the high order attention (HOA) module [38]. The
GAM module is more effective in enhancing the network’s attention for specific features,
which is used in the feature extraction part; the HOA module is capable of capturing
more fine-grained features, which is used in the feature refinement part. The network has
successfully increased the resolution of the input marine environmental parameters by
two or four times, and it can be further extended to achieve even higher resolutions in
the future.

The rest of this paper is organized as follows. Section 2 describes the method used in
this paper. In Section 3, the optimal settings selected according to the different experimental
setups are presented. Section 4 verifies the effectiveness by comparing it with traditional in-
terpolation methods. Section 5 discusses the results and explores future research directions.
Section 6 summarizes our research findings.
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2. Methodology

The structure of a network and its constituent modules play a crucial role in the
effective functioning of any network. In this section, we explain the design of the network
we have employed in this article and highlight its major components.

2.1. Network Structure

As shown in Figure 1, the network used in this study mainly consists of a feature
extraction part and a feature refinement part. The initial features are first extracted from
the low-resolution input data. The results are passed into a GAM module; the results from
the GAM module are then input to the HOA module, along with the results from the prior
residual structure for feature refinement; and finally, the reconstructed high-resolution data
are output through the upsampling part.

The feature extraction network uses several feature connection groups to form the
residual structure, and then the residual results are fed into the GAM module to extract
features. In this paper, weighted channel cascade (WCC), a new network connection
technique similar to the structure utilized in [39], is used in place of a straightforward
element summing connection. The results, which are based on the Conv-ReLU-Conv
structure, are fed into a 1 × 1 convolutional layer using the WCC connection to form a
residual block, and the results of the residual block are fed into the 1 × 1 convolutional
layer with the original input through the WCC connection, thus forming a residual group.
In addition, the residual group forms the part of the feature extraction using the Conv-
ReLU-Conv structure with WCC concatenation.

Since the resolution of the data used in this paper is low, the feature refinement part
has a simple structure, using only one HOA module for the connection. An R = 1 HOA
module is used for the edge part, and an R = 3 HOA module is used for the non-edge part.
This is then fed into an upsampling layer to obtain high-resolution data.

CC

R=3GAM CGroup
1

Group
2

Group
3

Upscaling Module

Concatenation group

HOA ModuleR=3

GAM ModuleGAM

R=1CGroup
1

Group
2

Group
3

edge dectct edge

Feature Extraction Feature Refinemint

3x3 Conv

1x1 Conv

Figure 1. Overview of the proposed network.

2.2. Attentional Mechanisms

After observing the data, it was found that the reconstruction of the edge part of the
results obtained by extracting features only through convolutional layers is poor, sometimes
even worse than the results of traditional interpolation methods. In order to improve the
feature extraction and refinement of the edge parts, we add two attention modules to the
network used in this article.

2.2.1. GAM Module

Figure 2 depicts the GAM module employed in this paper. It can be seen that the GAM
module leverages the channel attention mechanism and the spatial attention mechanism.
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Output Features

Channel Attention
Module

element-wise multiplicationInput Features

Spatial Attention 
Module

Figure 2. Overview of GAM module.

To elucidate the functionality of the channel attention mechanism employed in the
GAM module, Figure 3 provides a schematic representation. A dimension transformation
is performed on the input feature map before feeding it into the multilayer perceptron
(MLP) [40]. Then, the transformed feature map is converted back to its original dimension
and processed through sigmoid activation before being outputted. The resulting feature
maps are enriched with informative channel-wise representations that contribute to the
task performance.

MLP SigmoidS CM（F）1Input Features

SC x W x H
permutation

W x H x C reverse permutation

Figure 3. Channel attention module.

Figure 4 illustrates the spatial attention mechanism employed in the GAM module.
The spatial attention mechanism employs convolution processing [41] to enhance its perfor-
mance. This is achieved by reducing the number of channels through a 7 × 7 convolution
kernel, which reduces the computational requirements. The resulting feature maps are
then increased back to their original channel count and outputted via the sigmoid acti-
vation function. To ensure maximum information utilization, the max pooling operation
is eliminated from the process. These modifications significantly improve the network’s
performance by enriching the feature maps with more informative spatial representations.

C x H x WC x H x W C/r x H x W

7 x 7 Conv

SigmoidSInput Features

S7 x 7 Conv

（F）2SM

Figure 4. Spatial attention module.

2.2.2. HOA Module

The figures, namely Figures 5 and 6, illustrate the cases of R = 1 and R = 3 in the
HOA module.

ReLU，1x1Conv，Sigmoid ⊙

R = 1

Z11 x 1 Conv

Figure 5. Illustration of HOA modules in the case of R = 1.
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Z2
1

1 x 1 Conv

1 x 1 Conv
Z2

2 ⊙ Z2 ReLU, 1x1Conv

ReLU, 1x1Conv1 x 1 Conv
Z1

⊙SigmoidΣ

Z3
3

1 x 1 Conv
Z3

2 ⊙

1 x 1 Conv
Z3

1

1 x 1 Conv

Z3
ReLU, 1x1Conv

R = 3

Figure 6. Illustration of HOA modules in the case of R = 3.

Given an input feature X, which is a 3D tensor with C channels, H height and
W width, it is fed into R 1 × 1 convolutional layers to obtain R intermediate features{

ZR
R , ZR

R−1, ZR
R−2, . . . , ZR

1
}

, where each ZR is also a tensor of size H × W × C. Similarly, at

level R − 1,
{

ZR−1
R−1 , ZR−1

R−2 , ZR−1
R−3 , . . . , ZR−1

1

}
are obtained through R − 1 1 × 1 convolutional

layers. From level R to level 1, a total of R(R + 1)/2 Z are generated. For every level,
combine the generated Zm

i to obtain Zm:

Zm = Zm
1 � Zm

1 � · · · � Zm
m =

m

∏
i=1

Zm
i , (1)

where i = 1, 2, . . . , m, m = 1, 2, . . . , R, � is elementwise product. Then, add the generated
Zm to the ReLU activation function and a 1 × 1 convolutional layer, and combine the
obtained features into the sigmoid activation function, which can be expressed as

YR = Sigmoid

(
R

∑
m=1

Fm(Zm)

)
, (2)

where Fm is the ReLU activation function and a 1 × 1 convolutional layer. Finally, similar to
other attention mechanisms [42], multiply the received YR by the input feature X to obtain
the final output.

Within the HOA module, an increase in the variable R leads to a corresponding
increase in the quantity of information attainable. This, in turn, provides the model with a
greater overall capacity for effective representation.

3. Experiments
3.1. Settings

Data on marine environmental parameters used in this study were taken from the
European Center for Mesoscale Weather Forecasting (ECMWF) for coastal waters in China
(0◦N–45◦N, 105◦E–135◦E). The daily sampling interval of the data is 1 h. The parameters
include mean wave direction (MWD), significant wave height (SWH), mean wave period
(MWP), 10 meter U wind component (U10) and 10 meter V wind component (V10). In
order to obtain wind speed (WS) data, u10 and v10 need to be preprocessed in advance:

Wind =

√
(u10)2 + (v10)2 (3)

Due to U10 and V10 both having a spatial resolution of 0.25◦, the spatial resolution
of WS remains unchanged at 0.25◦. Moreover, the spatial resolution of MWD, SWH and
MWP is 0.5◦. Some properties of these datasets are shown in Table 1. To account for the
effects of time on certain marine environmental parameters, the training data consist of
four parameters, each with 8186 data points, taken from all time points between January
and April of 2016 to 2020. The test data still include these four parameters, each with 41
data points, taken from all time points between 21 and 23 January 2021. Before training,
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the training data are also expanded by 90◦ rotation, horizontal and vertical flipping, and
enlargement.

Table 1. Training dataset information.

Marine
Environmental

Parameter
Number Resolution Data Size

wind 8186 0.25◦ 181 × 121
swh 8186 0.5◦ 91 × 61
mwd 8186 0.5◦ 91 × 61
mwp 8186 0.5◦ 91 × 61

In this paper, low-resolution data are generated using three methods: alternate down-
sampling (alternately select values from rows and columns), maximum downsampling,
and average downsampling. The data were downsampled by scale factors of 2 and 4.
Table 2 displays some properties of the datasets. The downsampled data are used as the
input for the high-resolution reconstruction model.

Table 2. Training dataset information after downsampling.

Marine
Environmental

Parameter
Number Resolution

Data Size with a
Downsampling

Factor of 2

Data Size with a
Downsampling

Factor of 4

wind 8186 0.25◦ 91 × 61 45 × 30
swh 8186 0.5◦ 45 × 30 23 × 15
mwd 8186 0.5◦ 45 × 30 23 × 15
mwp 8186 0.5◦ 45 × 30 23 × 15

After comparing several classic optimization approach, the model parameters were
updated using the Adam optimization approach [43], with 1 and 2 set to 0.9 and 0.999,
respectively. The learning rate was initially set at 0.001, with a tenfold reduction for each of
the following 50 epochs and the remaining unchanged for the final 50 epochs. An NVIDIA
GeForce RTX 3090 GPU and CUDA 11.4 were used in this paper.

3.2. Loss Function

In this paper, the following three loss functions are tested, and the convergence effect
of loss is compared to select the loss function with the best convergence effect:

• MSE loss function [44]. Given the same input data x, the MSE loss function can be
formulated as

MSELossFunction =
1
N

N

∑
i=1

(
ytrue − ypredicted

)2
(4)

where N is the total training data, ytrue is the true output of the input data x, and
ypredicted is the predicted output of the input data x.

• L1 loss function [45]. Given the same input data x, the L1 loss function can be
formulated as

L1LossFunction =
N

∑
i=1

∣∣∣ytrue − ypredicted

∣∣∣ (5)

• SmoothL1 loss function [46]. Given the same input data x, the SmoothL1 loss function
can be formulated as
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SmoothL1LossFunction =
1
N

N

∑
i=1

 0.5 ∗
(

ytrue − ypredicted

)2
, if

∣∣∣ytrue − ypredicted

∣∣∣ < 1∣∣∣ytrue − ypredicted

∣∣∣− 0.5, otherwise
(6)

Figure 7 shows the comparison of the loss function convergence effects. We conducted
the experiments with our method with different loss functions and data downsampled
with the same downsampling method and compared the results at various high-resolution
scales.

0 4 0 8 0 1 2 0 1 6 0 2 0 0
0 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6

1 3 0 1 4 0 1 5 0 1 6 00 . 0 0

0 . 0 1

0 . 0 2

0 . 0 3

Lo
ss

e p o c h

 M S E  L o s s
 L 1  L o s s
 S m o o t h L 1  L o s s

(a)

0 4 0 8 0 1 2 0 1 6 0 2 0 0
0 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6

1 3 0 1 4 0 1 5 0 1 6 00 . 0 0

0 . 0 2

0 . 0 4

Lo
ss

e p o c h

 M S E  L o s s
 L 1  L o s s
 S m o o t h L 1  L o s s

(b)

Figure 7. The convergence effect of different loss functions. (a) The high-resolution scale factor is 2×.
(b) The high-resolution scale factor is 4× .

From Figure 7, it can be seen that the model loss performs best when using the
SmoothL1 function as the loss function. Therefore, the SmoothL1 loss function is chosen as
the loss function for training.

3.3. Evaluation Criteria

In this paper, three commonly used evaluation criteria are used to compare the experi-
mental results, which are the mean squared error (MSE) [47], the peak signal-to-noise ratio
(PSNR) [48], and the structural similarity index measure (SSIM) [49]:

• The MSE measures the average squared difference between the estimated values and
the actual value. Given an actual value Yi and predicted value Ŷi, the MSE value is

MSE =
1
N

N

∑
i=1

(
Yi − Ŷi

)2, (7)

• The PSNR is an objective criterion for evaluating images and is used to measure the
difference between two images. Given an actual value Y and predicted value Ŷ, the
PSNR value is

PSNR(Y, Ŷ) = 10 log10
max2

MSE(Y, Ŷ)
, (8)

The max value is the maximum possible pixel value of the given value, usually 255.
The higher the PSNR value, the better the reconstruction effect of the estimated image
and the higher the similarity to the actual image.

• The SSIM is used to measure the similarity between two images. Given an actual
value Y and predicted values Ŷ, the PSNR value is

SSIM(Y, Ŷ) =
(
2µYµŶ + c1

)(
2σYŶ + c2

)(
µ2

Y + µ2
Ŷ
+ c1

)(
σ2

Y + σ2
Ŷ
+ c2

) , (9)

where µY (µŶ) represents the pixel sample mean of Y (Ŷ), σY (σŶ) represents the
variance of Y (Ŷ), and σYŶ is the covariance between Y and Ŷ. Compared with the
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MSE and PSNR, the SSIM is closer to the human visual system. The higher the SSIM
value, the higher the similarity between the two images.

3.4. Traditional Method

In this paper, the MSE results of four traditional interpolation methods are compared:
the nearest neighbor interpolation algorithm, the linear interpolation algorithm, the spline
interpolation algorithm, and the cubic interpolation algorithm. The results are displayed in
Figure 8. Based on these experiments, the best traditional interpolation method is chosen
for comparison.
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Figure 8. The mean MSE value of different interpolation methods. (a) The high-resolution scale is 2×.
(b) The high-resolution scale is 4×.

Figure 8 shows a comparison of the MSE results for four interpolation algorithms. The
results indicate that the linear interpolation algorithm achieves the smallest MSE. Thus,
in this paper, the linear interpolation algorithm will represent traditional interpolation
algorithms and compare with the proposed model.

3.5. Downsampling Method

To determine which downsampling method loses the least amount of detail, we com-
pared three downsampling methods: alternate downsampling, maximum downsampling,
and average downsampling. We conducted experiments using data downsampled with
different downsampling methods and compared the results at various high-resolution
scales. The results are displayed in Figure 9. Based on these experiments, the most effective
downsampling method is chosen for training. A comparison is made of mean MSE values
for different downsampling factors using the same down-sampling method on various
marine environmental parameters.
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Figure 9. The mean MSE of our method. (a) The high-resolution scale is 2×. (b) The high-resolution
scale is 4×.

Figure 9 shows that alternate downsampling minimized the mean MSE value between
the data obtained by the model and the original data. However, there were instances where
average downsampling exhibited a lower mean MSE value. Therefore, in the following
text, the results of using both downsampling methods are used as representatives of this
model and are compared with traditional methods.



Remote Sens. 2023, 1, 33419 10 of 21

Figure 10 compares the mean MSE value of traditional interpolation methods when
using different downsampling methods. The figure shows that for different marine envi-
ronmental parameters, the best results are obtained when the data are downsampled using
the alternate downsampling method. Therefore, when applying traditional interpolation
algorithms to the data in the following text, we choose data that have been downsampled
using the alternate downsampling method for interpolation.
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Figure 10. The mean MSE values of traditional method. (a) The high-resolution scale is 2×. (b) The
high-resolution scale is 4×.

3.6. Ablation Study

This section introduces a series of experiments to verify the validity of the modules
utilized in this paper. First, a baseline model without attention modules is evaluated,
and it is predominantly comprised of three convolutional layers, one activation layer, one
pooling layer, and one upsampling layer. Then, we conduct the experiment with only the
GAM module. Experiments are then conducted to study the impact of HOA modules
with different orders, including R = 11 to R = 3 HOA modules; R = 1 to R = 2 HOA
modules; R = 1 HOA module; R = 2 HOA module; and R = 3 HOA module. Finally,
we experimentally study the modules presented in this paper, including the R = 3 HOA
module and the GAM module. All experiments maintain the same experimental settings,
except for the network architecture. The evaluation metrics used are the MSE, PSNR and
SSIM mentioned earlier, the results of which are shown in Table 3. The evaluation process
involves a comparison of images rather than a direct comparison of data.

Table 3. Compare the experimental results with different modules. All models are tested on the same
dataset with consistent experimental settings.

Model MSE PSNR SSIM

Baseline model 4.575 41.527 0.915
Model with GAM Module 3.467 42.723 0.932

R = 1 to R = 3 (HOA Modules) 3.512 42.675 0.927
R = 1 to R = 2 (HOA Modules) 3.438 42.767 0.928

R = 1 (HOA Module) 3.478 42.718 0.944
R = 2 (HOA Module) 3.268 42.988 0.947
R = 3 (HOA Module) 2.978 43.391 0.929

Our model (GAM and HOA Module) 2.299 44.515 0.934
The bold numbers indicates the best performance.

From Equations (7)–(9), it can be inferred that a smaller MSE value indicates a smaller
deviation between the data, a larger PSNR value implies a smaller discrepancy between
images, and a larger SSIM value indicates higher image similarity. From Table 3, it can
be seen that incorporating HOA modules into the network yields improved performance
compared to the baseline model without HOA modules. The model with only one GAM
module performs worse than the models with one R = 2 HOA module or one R = 3
HOA module. Regarding the number of HOA modules, a network with only one HOA
module performs better than those with two or three. As for the order of the HOA module,
a network with one R = 3 HOA module outperforms those with one R = 2 HOA module
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and one R = 1 HOA module. The network architecture proposed in this paper, consisting
of one R = 3 HOA module and one GAM module, achieves the highest performance.

4. Comparison
4.1. Assessment in Terms of Different Metrics

The evaluation metrics results of the reconstruction effects achieved by different
methods are shown in Table 4.

Table 4. Evaluation results of marine environmental data.

Data Scale Factor Evaluation Criteria

Traditional
Method Our Method

Linear
Interpolation

Alternate
Downsampling

Average
Downsampling

WS

2×
MSE 9.285 0.713 0.734

PSNR 38.453 49.598 49.471
SSIM 0.711 0.981 0.977

4×
MSE 9.472 0.755 0.817

PSNR 38.367 49.362 49.015
SSIM 0.703 0.961 0.957

SWH

2×
MSE 1.711 1.339 1.319

PSNR 45.798 46.864 46.928
SSIM 0.948 0.957 0.957

4×
MSE 2.31 1.894 1.883

PSNR 44.5 45.358 45.386
SSIM 0.926 0.942 0.942

MWD

2×
MSE 3.661 3.035 3.693

PSNR 42.501 43.309 42.457
SSIM 0.910 0.930 0.921

4×
MSE 3.798 3.715 3.222

PSNR 42.335 42.431 43.049
SSIM 0.909 0.918 0.913

MWP

2×
MSE 3.862 3.162 2.299

PSNR 42.263 43.148 44.515
SSIM 0.93 0.940 0.934

4×
MSE 3.951 3.741 3.645

PSNR 42.172 42.401 42.513
SSIM 0.939 0.936 0.944

The bold numbers indicates the best performance.

From Table 4 above, it can be seen that the model results obtained in this paper are
always better than traditional interpolation methods. The WS achieves the highest PSNR
value of 49.598, indicating a minimal disparity between the obtained result and the original
image. Similarly, the highest SSIM value of 0.981 confirms the visually impressive quality
of the obtained outcome. Other parameters also exhibit PSNR values above 42 and SSIM
values above 0.910. In the case of the MWD, the overall result is less satisfactory compared
to other parameters. This observation can be attributed to the inherent distribution charac-
teristics of the data. Future improvements will be implemented to address this limitation.
For the method proposed in this paper, the alternate downsampling method generally
yields superior results. It is worth noting that certain cases, such as MWP, exhibit better
results when employing the average downsampling method.

4.2. Visual Results

Referring to Table 4, we give the MSE, PSNR and SSIM values of each class in detail.
The following Figures 11–18 show the qualitative results of different reconstruction methods
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for the given data. For visual analysis, the reconstructed data are presented as graphs. The
colors in the image represent the magnitude of the data, with different color distributions
for each parameter. Overall, darker colors indicate larger data values. We mark out the
positions that display obvious distinctions among different methods.

(a) (b) 38.393/0.706 (c) 49.283/0.975

Figure 11. Comparison of enlarged image details in a specific region of the reconstructed WS data.
The high-resolution scale is 2×. The two values are, respectively, PSNR/SSIM. (a) Original data. (b)
Interpolation method (c) Our method.

From Figure 11, it can be observed that our method closely resembles the distribution
of the original data. Clearly, at the time point of 2021-01-21 4:00, when the high-resolution
scale is 2×, our method reconstructs the distribution of the fine details of the original data,
with a PSNR of 49.283 and an SSIM of 0.975.

(a) (b) 38.31/0.698 (c) 49.296/0.964

Figure 12. Comparison of enlarged image details in a specific region of the reconstructed WS
data. The high-resolution scale is 4×. The two values are, respectively, PSNR/SSIM. (a) Original.
(b) Interpolation method (c) Our method.

From Figure 12, it can be observed that our method accurately reconstructs the edge
distribution of the data, while interpolation methods tend to amplify the edge portions.
At the time point of 2021-01-21 4:00, when the high-resolution scale is 4×, our method’s
reconstruction result exhibits a closer resemblance to the edge distribution of the original
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data, with a PSNR of 49.296 and an SSIM of 0.964. Overall, the results of the 2× high-
resolution reconstruction are better. The 4× high-resolution reconstruction, compared to
the 2× reconstruction, still misses some details.

(a) (b) 45.681/0.956 (c) 45.875/0.957

Figure 13. Comparison of enlarged image details in a specific region of the reconstructed SWH data.
The high-resolution scale is 2×. The two values are, respectively, PSNR/SSIM. (a) Original data.
(b) Interpolation method (c) Our method.

From Figure 13, it can be observed that our method achieves superior results when the
high-resolution scale is 2×, with a PSNR of 45.875 and an SSIM of 0.957 at the time point of
2021-01-21 4:00. It is noticeable that across all methods, the reconstruction effects for certain
parts are not ideal and introduce some data that do not exist in the original data. This
observation may be attributed to the inherent distribution characteristics of the data itself.

(a) (b) 40.367/0.916 (c) 45.37/0.942

Figure 14. Comparison of enlarged image details in a specific region of the reconstructed SWH data.
The high-resolution scale is 4×. The two values are, respectively, PSNR/SSIM. (a) Original data.
(b) Interpolation method (c) Our method.

From Figure 14, it is evident that our method produces better results when the high-
resolution scale is 4×. Interpolation methods perform poorly in reconstructing certain
regions, while our method accurately reconstructs this portion of the data. Our method
achieves a PSNR of 45.37 and an SSIM of 0.942 at the time point of 2021-01-21 4:00. Overall,
the results of the 2× high-resolution reconstruction are better.
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(a) (b) 42.266/0.918 (c) 42.922/0.933

Figure 15. Comparison of enlarged image details in a specific region of the reconstructed MWD data.
The high-resolution scale is 2×. The two values are, respectively, PSNR/SSIM. (a) Original data.
(b) Interpolation method (c) Our method.

From Figure 15, it is evident that our method produces better results when the high-
resolution scale is 2×, displaying a higher resemblance to the edges of the original data.
Our method’s reconstruction results closely align with the distribution of the original data,
with a PSNR of 42.922 and an SSIM of 0.933 at the time point of 2021-01-21 4:00. The
interpolation method, on the other hand, shows mediocre performance and is not accurate
enough to capture both the overall distribution and the fine details of the data.

(a) (b) 40.068/0.916 (c) 42.37/0.933

Figure 16. Comparison of enlarged image details in a specific region of the reconstructed MWD data.
The high-resolution scale is 4×. The two values are, respectively, PSNR/SSIM. (a) Original data.
(b) Interpolation method (c) Our method.

From Figure 16, it is evident that our method accurately reconstructs certain details of
the data when the high-resolution scale is 4×, while the interpolation method performs
worse. Our method achieves a PSNR of 42.37 and an SSIM of 0.933 at the time point of 2021-
01-21 4:00. Similarly, the 4× high-resolution reconstruction results are poorer compared to
the 2× high-resolution reconstruction, with inaccurate data distribution in certain regions.
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(a) (b) 42.168/0.905 (c) 42.254/0.913

Figure 17. Comparison of enlarged image details in a specific region of the reconstructed MWP data.
The high-resolution scale is 2×. The two values are, respectively, PSNR/SSIM. (a) Original data.
(b) Interpolation method (c) Our method.

(a) (b) 41.433/0.903 (c) 41.688/0.912

Figure 18. Comparison of enlarged image details in a specific region of the reconstructed MWP data.
The high-resolution scale is 4×. The two values are, respectively, PSNR/SSIM. (a) Original data.
(b) Interpolation method (c) Our method.

From Figures 17 and 18, it is evident that our method accurately reconstructs the edge
distribution of the data, while the interpolation method loses many details. When the
high-resolution scale is 2×, at the time point of 2021-01-21 4:00, our method achieves a
PSNR of 42.254 and an SSIM of 0.913. When the high-resolution scale is 4×, at the time
point of 2021-01-21 4:00, our method achieves a PSNR of 41.688 and an SSIM of 0.912. It can
be observed that each method reconstructs parts that do not exist in the original data. This
could be attributed to the insufficient accuracy of the feature extraction part of the model in
capturing the distribution characteristics of the data.

Based on Table 4 and Figures 11–18, it is evident that our method outperforms interpo-
lation methods in terms of its effectiveness and consistency. Overall, the 2× high-resolution
reconstruction yields the best results. Specifically, for WS, when increasing the resolution
from 0.5◦ to 0.25◦, our method achieves a PSNR value of 49.598 and an SSIM value of 0.981,
while the highest PSNR and SSIM values among traditional interpolation methods were
38.453 and 0.711, respectively. For other parameters, although the performance may not be
as good as that of WS, our method still achieves the best results. For SWH, when increasing
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the resolution from 1◦ to 0.5◦, our method achieves a PSNR value of 46.928 and an SSIM
value of 0.957, while the highest PSNR and SSIM values among traditional interpolation
methods are 45.798 and 0.948, respectively.

5. Discussion

After conducting initial experiments using traditional methods and simple neural
networks, we found that the reconstruction of edge details in the data is consistently poor.
The PSNR and SSIM values for all methods are not sufficiently high. As a result, we
proposed the incorporation of an attention mechanism into the neural network. Initially,
we added a complex attention module to the neural network, but due to the low resolution
of data, the reconstruction results were not satisfactory in terms of the PSNR and SSIM
values. For WS, our method yields a PSNR of 42.324 and an SSIM of 0.912. We conducted
experiments with several different attention module configurations, and ultimately found
that using a single R = 3 HOA module yields the best experimental results. For WS,our
method yields a PSNR of 43.375 and an SSIM of 0.926. However, there are still some
shortcomings in the edge regions. We conducted the experiment with only one GAM
module and the results are worse than the models with only one R = 2 HOA module or
R = 3 HOA module. The GAM module is more effective in enhancing attention to certain
parts while suppressing attention to other parts, while the HOA module focuses more
on capturing subtle details. Therefore, we introduced the GAM module into the feature
extraction part of the model to focus on details and the R = 3 HOA module into the feature
refinement part to refine the detail part. Additionally, we extracted the edge regions of the
data prior to the experiments and employed a R = 1 HOA module to refine the features,
combining the final results to obtain the optimal outcome.

Based on satellite observations of WS, SWH, MWP, and MWD, we conducted high-
resolution reconstruction experiments. After comparing the processed results, our method
consistently outperforms traditional methods. In terms of visual results, our method still
demonstrates significant improvements. The figure below shows a comparison of the
reconstruction of data, where our method accurately reconstructs many detailed parts.

From Figures 19–22, it is evident that our proposed method outperforms the traditional
method in many aspects of detail reconstruction. The traditional methods often lack certain
details or deviate significantly from the original data distribution. In contrast, our method
accurately reconstructs many fine-grained details.

(a)

(b)

Figure 19. Comparison of some details of WS. From left to right, the images represent the original
image, the traditional method and our method. (a,b) represent the comparison of different details.



Remote Sens. 2023, 1, 33419 17 of 21

(a)

(b)

Figure 20. Comparison of some details of SWH. From left to right, the images represent the original
image, the traditional method and our method. (a,b) represent the comparison of different details.

(a)

(b)

Figure 21. Comparison of some details of MWD. From left to right, the images represent the original
image, the traditional method and our method. (a,b) represent the comparison of different details.
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(a)

(b)

Figure 22. Comparison of some details of MWP. From left to right, the images represent the original
image, the traditional method and our method. (a,b) represent the comparison of different details.

From the comparison of the results in Section 4.2, we can see that although our results
are generally better than those of traditional methods, there are still some inaccuracies in
the reconstructed results in certain edge regions. This could be attributed to the attention
module in the feature refinement part, which may not accurately capture subtle variations
in the data features, resulting in insufficient accuracy in refining the features.

Due to the distribution characteristics of certain data, the model was not able to accu-
rately extract and refine features during training, resulting in less satisfactory reconstruction
results. In the case of MWP, shown in the Figure 23, neither the traditional interpolation
methods nor our proposed method were able to reconstruct certain detailed parts. During
the reconstruction process, each method introduced to some extent missing parts that were
not present in the original data. This can have an impact on the subsequent analysis of sea
clutter characteristics and ocean environmental observations.

Figure 23. Comparison of some details of mwp. From left to right, the images represent the original
image, the traditional method, and our method.

The research on the distribution characteristics of the data themselves may not be
sufficient, and the model does not extract enough features during feature extraction, which
leads to inaccurate feature refinement. The attention module in the feature refinement part
may not be the most optimal. From the experimental results in Section 3.6, we can observe
that for the data used in this study, a more complex attention module does not necessarily
lead to better performance. Therefore, in further research, we can improve and expand our
model in the following aspects:
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(1) More marine environmental parameters and data sources can be combined to conduct
further feature analysis of the data, achieving more comprehensive and multidimen-
sional reconstruction results;

(2) Enhancement of attention modules to enhance the extraction and refinement of
important fine-grained features;

(3) Optimization and improvement of network architecture can be studied to enhance
reconstruction accuracy and efficiency.

6. Conclusions

In this paper, we employed a global attention mechanism (GAM) module to expand
input features in spatial and channel dimensions, and utilized a high-order attention (HOA)
module for additional feature learning. The entire network structure is connected using
weighted channel concatenation (WCC) technology. To evaluate the proposed method, three
metrics are employed: the mean square error (MSE), the peak signal-to-noise ratio (PSNR),
and the structural similarity index measure (SSIM). High-resolution reconstructions of the
data provided by the European Center for Mesoscale Weather Forecasting are conducted to
validate the effectiveness of the proposed method. The results demonstrate that our method
achieves notable success in the high-resolution reconstruction of ocean environmental
parameters. From Table 4, it can be observed that the proposed method exhibits the highest
PSNR and SSIM values among all the reconstructed parameters.

In the future, we will combine traditional methods to further improve our model,
modify the network structure to improve the accuracy and precision of the high-resolution
reconstruction of the edge detail parts of marine environmental parameters. This will
contribute to the study of sea clutter characteristics and provide crucial technical support
for achieving offshore target detection and recognition tasks in more complex scenarios.
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