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Abstract: One of the key goals of geodesy is to study the fine structure of the Earth’s gravity
field and construct a high-resolution gravity field model (GFM). Aiming at the current insufficient
resolution problem of the EIGEN_6C4 model, the refined ultra-high degree models EIGEN_3660
and EIGEN_5480 are determined with a spectral expansion approach in this study, which is to
augment EIGEN_6C4 model using topographic potential models (TPMs). A comparative spectral
evaluation for EIGEN_6C4, EIGEN_3660, and EIGEN_5480 models indicates that the gravity field
spectral powers of EIGEN_3660 and EIGEN_5480 models outperform the EIGEN_6C4 model after
degree 2000. The augmented models EIGEN_3660 and EIGEN_5480 are verified using the deflection
of the vertical (DOV) of China and Colorado, gravity data from Australia and mainland America,
and GNSS/leveling in China. The validation results indicate that the accuracy of EIGEN_3660 and
EIGEN_5480 models in determining height anomaly, DOV, and gravity anomaly outperform the
EIGEN_6C4 model, and the EIGEN_5480 model has optimal accuracy. The accuracy of EIGEN_5480
model in determining south–north component and east–west component of the DOV in China has
been improved by about 21.1% and 23.1% compared to the EIGEN_6C4 model, respectively. In the
mountainous Colorado, the accuracy of EIGEN_5480 model in determining south–north component
and east–west component of the DOV has been improved by about 28.2% and 35.2% compared to
EIGEN_6C4 model, respectively. In addition, gravity value comparison results in Australia and
mainland America indicate that the accuracy of the EIGEN_5480 model for deriving gravity anomalies
is improved by 16.5% and 11.3% compared to the EIGEN_6C4 model, respectively.

Keywords: high-resolution gravity field model; topographic potential models; EIGEN_6C4;
augmented gravity field models; accuracy improvement

1. Introduction

The Earth gravity field, a comprehensive reflection of total mass of the Earth, provides
priori constraint on the mechanical behavior of moving objects and determines the Earth
shape and motion state in outer space. One of the key goals of geodesy is to study the fine
structure of the Earth’s gravity field and construct high-resolution gravity field models
(GFMs). The high- and ultra-high-degree gravity field model has been widely used in
geodesy such as global height datum unification, geoid determination, underwater gravity
aided navigation, and missile guidance [1–6].

The satellite gravity missions, a revolutionary gravity measurement technology, pro-
mote of the accuracy improvement of static GFMs. Satellite gravity observations can
provide high-accuracy gravity field information for the low-medium frequency signal.
The GRACE (Gravity Recovery and Climate Experiment) and GOCE (Gravity field and
steady-state Ocean Circulation Exploration) have provided abundant gravity observations
in the past two decades [7–10], which lets us utilize these observations for determining
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higher-accuracy gravity field [11–14]. Although the pure satellite gravity field models have
higher accuracy in medium–long wavelengths, these models have limited spatial resolution
because of satellite orbital altitude attenuation, which means that the pure satellite models
have certain omission errors. The pure satellite models have maximum spatial resolution of
~70 km by combining satellite gravity observations from GRACE and GOCE, SLR (Satellite
Laser Ranging) observation data from LAGEOS 1/2 [15]. In addition, the satellite altimetry
has become the main means to derive marine gravity field [16–18].

In the past decade, gravity field modeling via combining multi-source gravity obser-
vations such as satellite gravity, satellite altimetry, and ground gravity observations has
achieved significant achievements. At present, the high-resolution Earth GFMs containing
EIGEN_6C4, EGM2008, SGM-UGM-2, SGM-UGM-1, GECO, and XGM2019e models have
been determined and widely used [19–24]. The EIGEN-6C4, EGM2008, SGM-UGM-2, SGM-
UGM-1, and GECO models provide a maximum degree of 2190. The ultrahigh-resolution
XGM2019e model has a maximum degree of 5540, which includes topography signals and
provides a remarkable resolution of 2′. As data sources, this model includes the satellite
model in the longer wavelength range up to degree 300 combined with a ground gravity
grid which also covers the shorter wavelengths. The ground observations consist of gravity
anomalies over land and ocean provided by courtesy of the National Geospatial-Intelligence
Agency (15′ resolution) and topographically derived gravity information over land. The
frequency spectrum between degree 719 and degree 2190 in XGM2019e model is derived
from topography signal, which has a difference from EIGEN_6C4, EGM2008, SGM-UGM-2,
SGM-UGM-1, and GECO models. The frequency spectrum beyond degree 2190 is also
derived from topography signal. Therefore, the XGM2019e model provides an authentic res-
olution of 15′ using only the observed ground gravity anomalies. At present, the maximum
resolution of GFMs from the measured ground gravity data is only 10 km. The variance
model of Tscherning and Rapp shows that there is an average omission error of 0.023 m in
geoid, 1.7′′ in deflection of the vertical, and 11.1 mGal in gravity for a gravity field model of
degree 2190 [25–28]. In areas with significant topographic fluctuations, the omission errors
are larger. The Earth gravity field signals have an attenuation with increasing altitude and
the local high-frequency gravity field signals are closely related to topographic fluctuations;
therefore, combining topographic potential information to recover high-frequency gravity
field signals is a feasible strategy. The gravity field modeling using terrain is essentially a
Newton integral problem, we can convert terrain signals to corresponding gravity field
signals by forward modeling theory given the geometry and density distribution of ter-
rain [29–33]. Gravity field modeling can be performed in spatial or spectral domains based
on high-resolution terrain. The high-resolution digital terrain models (DEMs) provide
important data for high-frequency gravity field modeling [34]. Rexer et al. [35] determined
the topographic potential model (TPMs) dV_ELL_Earth2014_5480 with a degree of 5480 by
spherical harmonic analysis, which is gravity field model of an ellipsoidal approximation
represented by Earth’s mass (bedrock, bathymetry, and ice mass). Abrykosov et al. [36]
determined the ROLI_EllApprox_SphN_3660 model with a degree of 3660 [37], which also
is an ellipsoidal approximation model represented by Earth’s topographic mass (bedrock,
bathymetry, lake, and ice mass). These two topographic potential gravity field models
are the ones with degree higher than 2190, although these topographic potential models
contain high-frequency signals, the accuracy of medium–long wavelengths is insufficient.
However, the high-degree GFMs such as EIGEN_6C4 have a higher accuracy in medium–
long wavelengths compared with topographic potential models. Therefore, Combining
EIGEN_6C4 and topographic potential models to construct high-resolution models is a
feasible strategy. Ince et al. [38] determined augmented model by combining EIGEN-6C4
model with the topographic model. Huang et al. [39] evaluated the suitability of augmented
GFMs by combining the Earth gravity field model with the topographic model for realizing
the height datum unification.

The objective of this study is to build high-resolution and high-accuracy models by
combining EIGEN_6C4 and topographic potential models. We utilize a spectral expansion
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approach for constructing refined gravity field models [37], which is a weighted method to
combine EIGEN_6C4 and topographic potential models. Finally, the augmented gravity
field models are verified by GNSS/leveling data in China, deflection of the vertical (DOV)
in China and Colorado, and gravity data from Australia and mainland America.

The article is structured as follows. Section 2 introduces datasets and the method for
determining the augmented GFMs. The results for deriving high-resolution GFMs are
presented in Section 3. Finally, conclusions and discussion are presented in Section 4.

2. Datasets and Methodology
2.1. Datasets
2.1.1. Global Gravity Field Models

We choose three GFMs to construct augmented models in this study: EIGEN_6C4,
dV_ELL_Earth2014_5480, and ROLI_EllApprox_SphN_3660, as shown in Table 1. The
dV_ELL_Earth2014_5480 model with a degree of 5480 is an ellipsoidal approximation
model represented by Earth’s topographic mass (bedrock, bathymetry, and ice mass). The
ROLI_EllApprox_SphN_3660 model with a degree of 3660 is also an ellipsoidal approxima-
tion GFM, which is derived from Earth’s topographic mass (bedrock, bathymetry, lake, and
ice mass). The EIGEN_6C4 model was released by the German Research Center for Geo-
sciences in Potsdam. This model utilizes GRACE observations, GOCE data, and LAGEOS
observations. In addition, the marine gravity information in EIGEN-6C4 model is from
DTU (Technical University of Denmark) altimetry gravity anomaly, and the observed land
gravity data in EIGEN_6C4 model is consistent with EGM2008 model. The least-squares
approach is used for integrating satellite and ground gravity data from degree 2 to 370; in
the degree 370–2190, the global altimetry gravity anomaly data and EGM2008 model data
are used for solving based on the least square method.

Table 1. The introductions of global GFMs are used in this study.

Models Data GM/(m3s−2) a/m

EIGEN_6C4 EGM2008, GOCE, GRACE, altimetry 0.3986004415 × 1015 0.6378136460 × 107

ROLI_EllApprox_SphN_3660 Earth2014 [40] 0.3986004415 × 1015 0.6378136300 × 107

dV_ELL_Earth2014_5480 Earth2014 [40] 0.3986005000 × 1015 0.6378137000 × 107

2.1.2. GNSS/Levelling Data

The GNSS/leveling observations of China are utilized for evaluating accuracy of
GFMs. The high-accuracy first-order spirit levelling height are obtained, which is based on a
Chinese 1985 vertical datum. The level origin with a normal height of 72.2604 m is located in
Qingdao. The least square adjustment is utilized to eliminate accumulated systematic errors
in long-distance leveling. In addition, to obtain normal height in adjustment, the correction
for non-parallelism of level surface, solid-tide correction, gravity anomaly reduction, and
ocean-tide loading correction are performed [41]. The mean square error of leveling per
kilometer after adjustment is ±1 mm. Finally, the 984 GNSS/leveling benchmarks are
utilized to verify the accuracy of GFMs. The GNSS ellipsoidal coordinates reach the
millimeter accuracy level based on ITRF2014 [42]. Figure 1 represents the spatial location
of the GNSS/leveling.

2.1.3. Deflection of the Vertical (DOV) Data

The DOV is also utilized to validate accuracy of the GFMs. Compared with the geoid
height or height anomaly, the short wavelength spectrum power proportion of DOV has
a larger increase [27], which can further reflect the high-frequency gravity field signal.
There are two datasets of DOV data used in this study. The first group is 696 evenly
distributed astronomical geodetic DOV data in mainland China, which has an accuracy
level of ~0.14′′. Figure 2 represents the spatial location of DOV data of mainland China. The
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second DOV dataset is from the Colorado geoid experiment [43], which has an accuracy
level of ~0.04′′ [38]. Figure 3 shows the survey line of DOV in Colorado, USA.
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2.1.4. Gravity Data

To further validate the accuracy of the GFMs, the 1,835,358 evenly distributed gravity
observations from Australia and 822,301 gravity observations from mainland America are
used. The Australia gravity dataset is provided from the Geoscience Australia’s National
Gravity Database, and the America gravity dataset is provided by the National Oceanic
and Atmospheric Administration (NOAA). We can obtain the absolute gravity value of
Earth surface from Geoscience Australia’s National Gravity Database and NOAA; then,
we calculate normal gravity based on the GRS80 reference ellipsoid and apply free-air
correction for deriving the gravity anomalies [44]. Finally, free-air gravity anomalies are
obtained. Figures 4 and 5 represent the distribution of gravity observations of Australia
and mainland America, respectively.
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2.2. Methodology
2.2.1. Method for Determining the Augmented Gravity Field Models

We can combine the topographic potential models and the EIGEN_6C4 model to obtain
combined GFMs via the spectral expansion approach, which is to augment EIGIEN_6C4
model using topographic potential models (TPMs). In order to ensure the smooth transition
of the combination of TPMs and high-degree GFMs [37], we set a certain transition zone, in
which a Hanning function is used to combine EIGEN_6C4 with the corresponding degree of
topographic potential models. Then, the degrees 0~N1 of the refined GFM are the potential
coefficient corresponding to the EIGEN_6C4 model, (N2 + 1)~Nmax (Nmax is the maximum
degree of the topographic potential models) is supplemented by degree corresponding to
topographic potential models. The potential coefficients of transition zone (N1~N2) based
on weighted combination can be expressed as{

CCombine
nm = P1 · C

EIGEN
nm + (1− P1) · C

Topography
nm

SCombine
nm = P1 · S

EIGEN
nm + (1− P1) · S

Topography
nm

(1)

where CCombine
nm and SCombine

n are the potential coefficients of transition zone, respectively,
CEIGEN

nm and SEIGEN
nm are the potential coefficients of the EIGEN_6C4 model, respectively,

CTopography
nm and STopography

nm are the potential coefficients of topographic potential models,
respectively, n and m are the degree and order, respectively, and P1 represents weight. The
weight P1 can be determined by a Hanning function [11,45], which can be expressed by

P1 =
1
2

[
1− cos

(
π(N − dN − n)

2dN

)]
(2)

where N = (N1 + N2)/2 represents the central degree and dN = (N2 − N1)/2 is the half-
bandwidth in transition zone.

The consistency of gravity field models geometric parameters should be considered
when the topographic potential model is used to extend the EIGEN_6C4 model. Therefore,
the geometric parameters are unified to the GRS80 reference ellipsoid before combination.
The parameters are unified by the following equation [46]:{

Cnm
Snm

}
=

GM
GMGRS80

( a
aGRS80

)n
{

CGGM
nm

SGGM
nm

}
(3)
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where Cnm and Snm are potential coefficients of the GFM after parameter conversion, CGGM
nm

and SGGM
nm are potential coefficients of the GFM before parameter conversion,

GM = 3.986005000 × 1014 m3 s−2 is the constants of gravitational constant the GRS80 ellip-
soid [47], and aGRS80 = 6,378,137.0 represents the semimajor axis of ellipsoid. The geometric pa-
rameters of the EIGEN_6C4, dV_ELL_Earth2014_5480, and ROLI_EllApprox_SphN_3660 mod-
els are shown in Table 1. The parameters of the dV_ELL_Earth2014_5480 model are consistent
with the GRS80 ellipsoid. The parameters of EIGEN_6C4 and ROLI_EllApprox_SphN_3660
models can be unified by Equation (3).

Finally, the height anomaly ζ, gravity anomaly ∆g, the east–west component of the
DOV η, and the south–north component of the DOV ξ can be determined from the aug-
mented gravity field models by [48]

ζ =
GMGRS80

γ× r ∑Nmax
n=2

(
aGRS80

r

)n

∑n
m=0 (∆Cnmcos mλ + Snmsin mλ)Pnm(sin ϕ) (4)

∆g =
GMGRS80

r2 ∑Nmax
n=0

(
aGRS80

r

)n

(n− 1)∑n
m=0 (∆Cnmcos mλ + Snmsin mλ)Pnm(sin ϕ) (5)

ξ = −GMGRS80

γ× r2 ∑Nmax
n=0

(
aGRS80

r

)n

∑n
m=0 (∆Cnmcos mλ + Snmsin mλ)

dPnm(sin ϕ)

dϕ
(6)

η = − GMGRS80

γ× r2 × cos ϕ∑Nmax
n=0

(
aGRS80

r

)n

∑n
m=0 (−∆Cnmsin mλ + Snmcos mλ)mPnm(sin ϕ) (7)

where r is the geocentric radial of computation point, γ is the normal gravity, and ϕ and λ
are the latitude and longitude of calculated point, respectively, ∆Cnm represents difference
between even degree (2n, n = 0, 1, 2 . . . , 10) and order zero (m = 0) potential coefficients
of the refined GFMs and the corresponding potential coefficients of normal gravitational
potential. Pnm(sin ϕ) is the normalized associated Legendre function.

2.2.2. Spectral Evaluations of Gravity Field Models

The spectral characteristics of disturbing gravity field in various wavelengths can be
represented by degree variances and cumulative degree variance, which can represent the
signal power of GFM. This paper will calculate degree variance and cumulative degree
variance to analyze spectral accuracy of the GFM. The degree variance and cumulative
degree variance can be represented by the potential coefficients of the GFMs under spherical
approximation, which can be expressed by [49,50]

σ2
n = c2 ×

n

∑
m=0

[
C2

nm(c) + S2
nm(s)

]
(8)

where σ2
n represents the degree variance for GFM, Cnm(c) and Snm(c) represent the spherical

harmonic coefficient, and c represents the scale factor. We can choose different scale factors
to represent spectral accuracy of different disturbing gravity field. Table 2 shows the signal
scale factors for disturbing gravity field.

The cumulative degree variance can be expressed by following equation:

σ2
cum = c2 ×

Nmax

∑
n=0

n

∑
m=0

[
C2

nm(c) + S2
nm(s)

]
(9)
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A relative comparison of the two models can be represented by the cumulative differ-
ence degree variance, which can be expressed by

∆σ2
cum = c2 ×

Nmax

∑
n=0

n

∑
m=0

[
∆C2

nm(c) + ∆S2
nm(s)

]
(10)

where ∆σ2
cum is the cumulative difference degree variance and ∆Cnm(c) and ∆Snm(s) repre-

sent the difference of model potential coefficients.

Table 2. Signal scale factor of function of disturbing gravity field.

Function Factor Unit

geoid R m
Gravity anomaly GM

R2 × (n− 1)× 105 mGal
Gravity disturbance GM

R2 × (n + 1)× 105 mGal
DOV 180× 3600/π × (n2 + n) arcsec

3. Results
3.1. Spectral Accuracy Analysis of GFMs

The degree variance of GFMs is determined to evaluate spectral accuracy of GFM.
Figure 6 shows the square root of degree variance in geoid height, gravity anomaly, and
DOV of different GFM, respectively, which represents signal degree amplitudes of a dis-
turbing gravity field. We can see from the figure that the signal degree amplitudes of
dV_ELL_Earth2014_5480 and ROLI_EllApprox_SphN_3660 models before about degree 900
have a difference from EIGEN_6C4 model because the topographic potential models mainly
reflect the gravity variation caused by the near-surface Earth mass. Therefore, the long
wavelength gravity field signal cannot be well represented in topographic potential models.
However, the higher-degree part of the topographic potential models can effectively repre-
sent high-frequency signals. In addition, the dV_ELL_Earth2014_5480 and ROLI_ EllAp-
prox_SphN_3660 models have certain high-frequency geoid signal after degree 2190 com-
pared to the EIGEN_6C4 model. The gravity field signals of dV_ELL_Earth2014_5480 and
ROLI_ EllApprox_SphN_3660 models are basically consistent before about degree 2000, and
there are some differences after about degree 2000. The dV_ELL_Earth2014_5480 model still
has certain gravity field signal after degree 3660 compared to ROLI_EllApprox_SphN_3660
model. The dV_ELL_Earth2014_5480 model has a jump at about degree 5400, which is
attributed to the characteristics of the spectral forward modelling technique at high spectral
degree. From the above analysis, we can conclude that different gravity field models have
different spectral characteristic. The higher-frequency signals in topographic potential
models can be used to compensate for the high-frequency signal absence of GFMs of
degree 2190.

3.2. Construction of the Augmented GFMs

The dV_ELL_Earth2014_5480 and ROLI_EllApprox_SphN_3660 models are used to
expand EIGEN_6C4 model for constructing refined GFMs. In order to ensure smooth transi-
tion of two GFMs during the combination, a certain transition zone is set to 2000–2100 [37],
i.e., N1 = 2000, N2 = 2100; therefore, the central degree N is 2050 and half-bandwidth dN
is 50. In the transition zone, a weighted method is used to combine EIGEN_6C4 with the
topographic potential models. The degrees 0~2000 of the refined GFMs are the potential
coefficient corresponding to the EIGEN_6C4 model; the degrees beyond 2100 are supple-
mented by the topographic potential models. Finally, the refined models EIGEN_3660 and
EIGEN_5480 are determined.
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Figure 7 shows the square root of geoid degree variance of EIGEN_6C4, EIGEN_3660,
and EIGEN_5480 models. We can see from the figure that the geoid signal amplitudes of
EIGEN_6C4 model are consistent with the EIGEN_3660 and EIGEN_5480 models before
approximately degree 2000. This is due to the EIGEN_3660 and EIGEN_5480 models
fully utilizing gravity field information of the EIGEN_6C4 model before degree 2000. The
geoid signal of EIGEN_3660 and EIGEN_5480 is better than that of the EIGEN_6C4 model
after degree 2000, which is due to the EIGEN_3660 and EIGEN_5480 models including
the high frequency gravity field signal of the TPM. In addition, the geoid signal of the
EIGEN_5480 model outperforms the EIGEN_3660 model after about degree 3660. Therefore,
the EIGEN_6C4 model and topographic potential models can be combined to derive the
combined models. The determined models can retain the low-frequency gravity field
information of the EIGEN_6C4 and the high-frequency signal of the TPMs.

The higher-degree spectral characteristics of the refined GFMs are analyzed to further
analyze the difference between EIGEN_3660 and EIGEN_5480 models. Figure 8 represents
the signal amplitudes of the EIGEN_3660 and EIGEN_5480 models and the cumulative
differences amplitude between both expanded models in terms of geoid height, grav-
ity anomaly, and deflection of the vertical (DOV). We can see from the figure that the
EIGEN_3660 and EIGEN_5480 models have some signal differences in terms of geoid
height, gravity anomaly, and DOV from degree 2000 to 3660. Before about degree 3660,
both expanded models have a geoid cumulative difference of ~1.8 cm, a gravity anomaly
cumulative difference of ~0.8 mGal, and a deflection of the vertical cumulative difference
of ~0.18′′, which is caused by the spectral forward modelling strategy and method. The
cumulative difference between both expanded models from degree 2000 to 3660 can be
ignored considering that the spectral difference is the global average gravity field signal
difference of the corresponding disturbing gravity field. After degree 3660, the signals of
geoid, gravity anomaly, and DOV for the EIGEN_3660 model have disappeared; however,
the EIGEN_5480 model has a certain gravity field signal from degree 3660 to 5480.
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3.3. Accuracy Validation of the Augmented GFMs

To validate accuracy of the refined GFMs obtained in this study, the high-quality
GNSS/levelling data, DOV data, and gravity observations are used.

3.3.1. Accuracy Validation by GNSS/Levelling Data

A total of 984 GNSS/levelling observations from China are utilized to validate accuracy
of the refined models. In addition, the EIGEN_6C4 model is also verified as a comparison.
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Table 3 shows height anomaly differences statistics between the observed values and
EIGEN_6C4, EIGEN_3660, and EIGEN_5480 models.

Table 3. Height anomalies difference statistics between observed values and the GFMs. Unit: m.

Models Max Min Mean STD

EIGEN_6C4 1.284 −1.274 −0.098 0.267
EIGEN_3660 1.285 −1.283 −0.088 0.261
EIGEN_5480 1.362 −1.286 −0.077 0.258

From Table 3, we can see that both expanded models have better accuracy in de-
termining height anomalies than EIGEN_6C4 model. The accuracy of EIGEN_3660 for
deriving height anomalies is improved by about 0.6 cm compared to the EIGEN_6C4
model. The EIGEN_5480 model has a higher accuracy in determining height anomaly
compared to EIGEN_6C4 and EIGEN_3660 models, which is attributed to its higher res-
olution. The accuracy of EIGEN_5480 for obtaining height anomaly has increased by
about 0.9 cm compared to EIGEN_6C4 model, and the improvement range is 3.4%. The
aforementioned results verify the validity of the refined gravity field models derived in
this study. Therefore, considering high-frequency signals can further improve accuracy
for determining height anomaly, the accuracy improvement for EIGEN_5480 model is
attributed to the high-frequency signal of the terrain, which compensates for the omission
errors of the EIGEN_6C4 model and results in accuracy improvement for determining
high-frequency signal.

However, we can find from the results that the refined gravity field models for de-
termining height anomaly have a minor accuracy improvement, which is attributed to
the fact that the spectral power proportion of height anomaly (or geoid height) is mainly
concentrated in medium–long wavelengths and the spectral power proportion of short
wavelengths is limited.

3.3.2. Accuracy Validation by Deflection of the Vertical (DOV) Data

The DOV of China and Colorado are also used to validate the accuracy of GFMs.
Compared with geoid height or height anomaly, the short wavelength spectrum power
proportion of deflection of the vertical (DOV) is larger, which is more sensitive to the
high-frequency gravity field signal.

Table 4 shows statistics for DOV differences between observations and EIGEN_6C4,
EIGEN_3660, and EIGEN_5480 models in China. We can find from the table that both
expanded models have better accuracy in determining deflection of the vertical than the
EIGEN_6C4 model. The accuracy of EIGEN_3660 for deriving the south-north component
of DOV is improved by approximately 19.5% compared to EIGEN_6C4 model. The accuracy
of EIGEN_5480 for deriving the south–north component of DOV is improved by about
21.1% compared to EIGEN_6C4 model. In addition, compared to EIGEN_6C4 model, the
EIGEN_3660 model has an acccuracy improvement of 19.5% for deriving the east–west
component of DOV, and the EIGEN_5480 model has an acccuracy improvement of 23.1%
for deriving the east–west component of DOV.

Table 4. DOV differences statistics between observations and t the gravity field models in China.
Unit: arcsec.

Component of DOV Models Max Min Mean RMS

The meridian component
EIGEN_6C4 17.371 −17.9465 −0.207 2.770
EIGEN_3660 16.009 −21.213 −0.189 2.234
EIGEN_5480 14.418 −14.671 −0.155 2.186

The prime vertical component
EIGEN_6C4 14.9158 −14.5742 0.188 2.823
EIGEN_3660 19.6499 −14.4563 0.115 2.386
EIGEN_5480 14.9582 −11.1469 0.121 2.171
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Table 5 shows statistics for DOV differences between observations and EIGEN_6C4,
EIGEN_3660, and EIGEN_5480 models in Colorado. It can be seen from the table that
both expanded models also have better accuracy in determining deflection of the vertical
than the EIGEN_6C4 model. The accuracy of EIGEN_3660 for deriving the south–north
component of DOV is improved by approximately 19.1% compared to the EIGEN_6C4
model. The accuracy of EIGEN_5480 for deriving the south–north component of DOV is
improved by about 28.2% compared to EIGEN_6C4 model. In addition, compared to the
EIGEN_6C4 model, the EIGEN_3660 model has an acccuracy improvement of 27.2% for
deriving the east–west component of DOV, and the EIGEN_5480 model has an acccuracy
improvement of 35.2% for deriving the east–west component of DOV. The EIGEN_5480
model has a higher accuracy for determining DOV compared to the EIGEN_3660 model,
which is attributed to its higher resolution. From the comparison results of the determined
models for deriving the DOV in mainland China and Colorado, we can find that the
accuracy improvement is larger in Colorado, because the Colorado region is mountainous
and the terrain is rugged.

Table 5. DOV differences statistics between observations and the gravity field models in Colorado.
Unit: arcsec.

Component of DOV Models Max Min Mean RMS

The meridian component
EIGEN_6C4 3.978 −4.680 0.331 1.31
EIGEN_3660 4.222 −3.740 0.267 1.06
EIGEN_5480 2.213 −3.951 0.076 0.94

The prime vertical component
EIGEN_6C4 5.532 −7.851 −0.124 1.62
EIGEN_3660 3.525 −3.956 −0.057 1.18
EIGEN_5480 4.944 −2.150 −0.0429 1.05

The above analysis indicates that the accuracy of the refined models for determining
deflection of the vertical has been improved. The accuracy improvement of DOV deter-
mination is more obvious compared with height anomaly determination. Therefore, the
refined gravity field models plays a well role in determining disturbing gravity field by
introducing topographic gravity field signals.

3.3.3. Accuracy Validation by Gravity Data

The 1,835,358 evenly distributed gravity observations from Australia and 822,301 grav-
ity observations from mainland America are used to further validate the accuracy of the
determined models.

Tables 6 and 7 represent difference statistics between observed gravity anomalies and
EIGEN_6C4, EIGEN_3660, and EIGEN_5480 models in Australia and mainland America,
respectively. We can conclude from the tables that both expanded models have better
accuracy in determining gravity anomaly than the EIGEN_6C4 model. In Australia, the
accuracy of EIGEN_3660 for deriving gravity anomaly is improved by about 10.05% com-
pared to the EIGEN_6C4 model, and the accuracy of EIGEN_5480 for deriving gravity
anomaly is improved by about 16.5% compared to the EIGEN_6C4 model. In mainland
America, the accuracy of EIGEN_3660 for deriving gravity anomaly is improved by about
7.2% compared to the EIGEN_6C4 model. The accuracy of EIGEN_5480 for deriving gravity
anomaly is improved by about 11.3% compared to the EIGEN_6C4 model. Among the
two refined gravity field models, the EIGEN_5480 model has a greater accuracy improve-
ment for gravity anomaly determination.
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Table 6. Gravity anomalies differences statistics between observed gravity anomalies values and the
gravity field models in Australia. Unit: mGal.

Models Max Min Mean RMS

EIGEN_6C4 72.40 −195.50 −0.45 4.79
EIGEN_3660 72.19 −192.95 −0.25 4.31
EIGEN_5480 87.30 −194.40 −0.19 4.00

Table 7. Gravity anomalies differences statistics between observed gravity anomalies values and the
gravity field models in mainland America. Unit: mGal.

Models Max Min Mean RMS

EIGEN_6C4 155.37 −179.61 −0.67 10.49
EIGEN_3660 148.72 −157.28 −0.53 9.73
EIGEN_5480 128.16 −160.59 −0.15 9.30

From the above analysis, it is also shown that the EIGEN_5480 and EIGEN_3660
models have a good accuracy improvement for determining disturbing gravity field, which
also verifies the reliability of the determined models in this paper.

4. Discussion

From Figure 6, we can see from the figure that the signal powers of the topographic po-
tential models have a difference from the EIGEN_6C4 model, which is because topographic
potential models reflect the gravity variation caused by the near-surface Earth mass and
the long wavelength g signal cannot be well represented. However, the higher-degree part
of the topographic potential models contains high-frequency signals, which can be utilized
for compensating the signal deficiency of GFMs of degree 2190. Therefore, combining
the topographic potential models and EIGEN_6C4 model to derive refined gravity field
models is a feasible mean. Numerical results of spectral characteristics analysis show that
the determined EIGEN_3660 and EIGEN_5480 models can retain the low-frequency gravity
field information of EIGEN_6C4 and the high-frequency signal of the TPMs. After about
degree 2190, The signal degree amplitudes of geoid, gravity anomaly and DOV for the
EIGEN_6C4 model have disappeared, and the EIGEN_5480 and EIGEN_3660 models have
a certain gravity field signal. In addition, the EIGEN_3660 and EIGEN_5480 models have
some signal differences in terms of geoid height, gravity anomaly, and DOV from degree
2000 to 3660; such differences may be caused by the spectral forward modeling strategy
and method.

We combine the topographic potential models and EIGEN_6C4 model for deriving
refined GFMs EIGEN_3660 and EIGEN_5480. The results presented in Figure 7 show that
the geoid signal of EIGEN_3660 and EIGEN_5480 is better than that of the EIGEN_6C4
model after degree 2000, which is due to the EIGEN_3660 and EIGEN_5480 models in-
cluding the high-frequency gravity field signal of the TPM. The determined GFMs can
retain the low-frequency information of EIGEN_6C4 and the high-frequency signal of TPM.
In addition, from Tables 3–7, we can see that the accuracy of the determined models for
determining disturbing gravity field has been improved. The accuracy improvement of
DOV and gravity anomaly determination is more obvious compared with height anomaly
determination, which is attributed to the fact that the spectral power proportion of height
anomaly (or geoid height) is mainly concentrated in medium–long wavelengths and the
spectral power proportion of short wavelengths is limited. Therefore, the refined gravity
field models play a significant role in determining disturbing gravity field by introducing
topographic gravity field signals.

The refined gravity field models provide good accuracy for determining the disturbing
gravity field. The validity has been verified by spectral accuracy evaluation and ground
observations. However, the combination of the EIGEN_6C4 model with the TPMs is
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by a simple spherical harmonic coefficient combination, which may have a spectral gap
between them. The simple spherical harmonic coefficient combination has differences
from the normal equation combination. The normal equation combination will be further
implemented to derive the high-resolution GFMs in the future. In addition, the maximum
resolution of the TPMs used in this paper is 2′ (degree 5480); however, the unified topographic
data of land and sea has reached resolution of 15′′ and is developing towards resolution of
3′′. With the continuous release of high-resolution terrain data, global density models, and
improvement of spectral domain forward modelling techniques [37,38], higher-resolution
topographic potential models can be derived in the future, which can further promote the
accuracy and resolution of the determined models obtained by combining EIGEN_6C4 and
topographic potential models.

5. Conclusions

In this paper, we investigate the feasibility of the determination of high-resolution
GFMs by using topographic potential models to expand the EIGEN_6C4 model. Firstly,
the spectral characteristics of EIGEN_6C4 and TPMs are analyzed. Then, the EIGEN_3660
and EIGEN_5480 models are determined by a weighted combination approach. Finally, the
augmented gravity field models are verified by GNSS/leveling data in China, deflection
of the vertical (DOV) data in China and Colorado, and gravity data from Australia and
mainland America.

Numerical results of spectral characteristics analysis show that the dV_ELL_Earth2014_5480
and ROLI_EllApprox_SphN_3660 models have a stronger high-frequency signal power
compared to the EIGEN_6C4 model. The determined GFMs can retain the low-frequency
gravity field information of the EIGEN_6C4 and the high-frequency signal of the TPMs.
After about degree 2190, the signal degree amplitudes of geoid, gravity anomaly, and
DOV for the EIGEN_6C4 model have disappeared, and the EIGEN_5480 and EIGEN_3660
models have a certain gravity field signal. In addition, the EIGEN_3660 and EIGEN_5480
models have some signal differences in terms of geoid height, gravity anomaly, and DOV
from degree 2000 to 3660; such differences may be caused by the spectral forward modelling
modeling strategy and method. After degree 3660, the EIGEN_5480 model has a certain
gravity field signal.

Moreover, the validation results by the GNSS/leveling, DOV, and gravity data show
that the determined EIGEN_3660 and EIGEN_5480 models have better accuracy than the
EIGEN_6C4 model in determination of height anomaly, DOV, and gravity anomaly, and
the EIGEN_5480 model has optimal accuracy. The accuracy of EIGEN_5480 for obtaining
height anomaly has increased by about 3.4%. Compared with EIGEN_6C4 model, the
accuracy of EIGEN_5480 model in determining south–north and east–west components
of the DOV in China has been improved by about 21.1% and 23.1%, respectively. In the
mountainous area of Colorado, the accuracy of the EIGEN_5480 model in determining
south–north and east–west components of DOV has been improved by about 28.2% and
35.2% compared to EIGEN_6C4 model, respectively. In addition, gravity value comparison
results in Australia and mainland America indicate that the accuracy improvement of the
EIGEN_5480 model for deriving gravity anomalies is 16.5% and 11.3% compared to the
EIGEN_6C4 model, respectively.
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