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Abstract: Accurate assessment of the extent of crop distribution and mapping different crop types
are essential for monitoring and managing modern agriculture. Medium and high spatial resolution
remote sensing (RS) for Earth observation and deep learning (DL) constitute one of the most major
and effective tools for crop mapping. In this study, we used high-resolution Sentinel-2 imagery
from Google Earth Engine (GEE) to map paddy rice and winter wheat in the Bengbu city of Anhui
Province, China. We compared the performance of different popular DL backbone networks with
the traditional machine learning (ML) methods, including HRNet, MobileNet, Xception, and Swin
Transformer, within the improved DeepLabv3+ architecture, Segformer and random forest (RF). The
results showed that the Segformer based on the combination of the Transformer architecture encoder
and the lightweight multilayer perceptron (MLP) decoder achieved an overall accuracy (OA) value
of 91.06%, a mean F1 Score (mF1) value of 89.26% and a mean Intersection over Union (mIoU) value
of 80.70%. The Segformer outperformed other DL methods by combining the results of multiple
evaluation metrics. Except for Swin Transformer, which was slightly lower than RF in OA, all DL
methods significantly outperformed RF methods in accuracy for the main mapping objects, with
mIoU improving by about 13.5~26%. The predicted images of paddy rice and winter wheat from the
Segformer were characterized by high mapping accuracy, clear field edges, distinct detail features and
a low false classification rate. Consequently, DL is an efficient option for fast and accurate mapping
of paddy rice and winter wheat based on RS imagery.

Keywords: crop classification; paddy rice and winter wheat; remote sensing; deep learning

1. Introduction

Paddy rice and wheat are the main food crops of China and the world, as well as
commercial and strategic grain reserves [1,2], which have a major impact on human society
and the natural environment [3]. There are winter and spring wheat in China, and winter
wheat accounts for 98% [4]. Accurate mapping of paddy rice and winter wheat, especially
during the growing seasons, is of great importance for maintaining food security and
supporting the formulation of agricultural policies [5]. Traditional mapping of paddy rice
and winter wheat requires many field surveys, which consumes considerable time and
human resources with, however, low data quality [6].
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The rapid development of remote sensing (RS) technology has provided an effective
means of mapping crops in a fast, accurate and timely manner [7,8]. Currently, crop
mapping is mainly based on the spectral reflectance in satellite images and vegetation
phenology indicated by the temporal changes of vegetation indices (NDVI, EVI, etc.).
Jiang et al. [9] analyzed the changes in paddy rice cropping systems in southern China
based on the spectral characteristics of Landsat imagery. Dong et al. [10] proposed a
new spectral similarity method for identifying winter wheat using Sentinel 2A/B image
sequences, called phenology-time weighted dynamic time warping, which considers the
phenological characteristics of winter wheat. Li et al. [4] presented a spectral reconstruction
method based on singular value decomposition for winter wheat mapping, improving the
spectral reference curves and, thus, the mapping results. Han et al. [11] combined MODIS
and Sentinel-1 satellite data to produce a 10 m resolution paddy rice map of Southeast
Northeast Asia from 2017 to 2019, based on the paddy rice transplanting flood signal land
surface water index and paddy rice phenology determined from the backscatter coefficient
changes. However, all these studies focus on a single paddy rice or winter wheat as the
main object of study; however, it is not effective to separate different crops in areas with
a complex cropping structure using only spectral properties or crop phenology [12]. The
rice-wheat rotation (RWR) system is one of the oldest and most common agricultural
practices in the Asian monsoon region, with about 130,000 km2 of land used for RWR in
China [13] every year. The Yangtze-Huaihe economic zone is the main growing area for
paddy rice and winter wheat in China and the main RWR area in the eastern part of the
country [14]. Identifying multiple crops simultaneously in specific regions with complex
cropping systems, such as East China, is still challenging.

In recent years, multiscale satellite observations have been fed into machine learning
(ML) models such as decision trees (DTs), random forests (RFs), support vector machines
(SVMs), and multilayer perceptrons (MLPs) [15–19]. ML models were initially designed
to work with non-temporal, high-dimensional data rather than remotely sensed imagery
with complex semantic features [20]. Today, many ML algorithms are being applied to
satellite imagery to identify multiple crops, as spectral or textural features of multiple
crops can be input into the classifiers [21]. Saini and Ghosh [22] used the extreme gradient
boosting (XGBoost) method to address the similarity of crop spectra in Sentinel-2A images,
achieving better performance than RF [23] and support vector machine methods in multi-
crops mapping. Prins and Van Niekerk [24] used multiple classifiers to classify crops,
finding that XGBoost and RF classifiers have the highest classification accuracy.

Deep learning (DL) is a branch of ML widely used in earth sciences, particularly in
land cover classification and target identification [25]. It stands out in the RS field because
it can clearly distinguish the spectral and spatial features of the original images. Compared
to the traditional spectral, phonologic and ML methods, DL is characterized by the ability
to accommodate large sample sizes without the need for pre-defined task-specific rules [26].
Most studies have constructed deep neural network (DNN) models for specific crop identi-
fication and classification problems, achieving satisfactory results compared to traditional
spectroscopy and ML methods. Kussul et al. [27] found that the convolutional neural
networks (CNNs) outperformed traditional fully connected lightweight MLP architecture
for identifying crops in Ukrainian regions. Marcos et al. [28] propose a CNN architecture
called Rotating Equivariant Vector Field Network for encoding the rotating equivariance of
the network itself, showing better performance in crop mapping than the standard CNNs
while requiring an order of magnitude fewer parameters.

The advent of AlexNet [29] established the dominance of CNNs in computer vision
(CV), and since then CNNs have sprung up. As the performance of devices improved,
some networks with deeper layers were introduced to the segmentation task. There
seems to be a trend towards networks with deeper layers and more complex structures
with more parameters [30], making some CNNs inapplicable on computationally limited
platforms. MobileNet [31], on the other hand, is a model for mobile and embedded vision
applications. The model is based on a streamlined architecture that uses deeply separable
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convolutions to build lightweight DNNs [31]. The Inception [32] model also emerged to
reduce the number of network parameters and to obtain different receptive fields. It can
divide the channel into several channels with different receptive field sizes. Chollet [33]
explored the relationship between Inception and deep separable convolution from the
perspective of the original Inception model, explained deep separable convolution from
a new perspective, and proposed a new architecture inspired by the Inception module,
Xception [33]. However, most current mainstream semantic segmentation (SS) networks are
based on encoder-decoder structures [34]. Most segmentation networks based on encoder-
decoder structures suffer from losing spatial information during the coding process [35].
To overcome these limitations, other advanced parallel structures have been proposed
that extract low-resolution features while preserving high-resolution features throughout
the network [36,37]. For example, in HRNet [38], information fragments in parallel multi-
resolution subnetworks are repeatedly exchanged for multiscale fusion. This multi-scale
fusion allows for an extended high-resolution representation. This simple modification
improves the network’s performance and shows better results in vision tasks [39]. The
Transformer [40] network structure has achieved far better results than other models in
natural language processing (NLP) because it is based entirely on the attention mechanism
and does not require recursive and convolutional structures. Dosovitskiy et al. [41] tried to
separate attention from convolution and apply the pure Transformer directly to a sequence
of patches formed by image splitting; the resulting Vision Transformer (ViT) achieves
excellent image recognition results and a significant reduction in computational resources
compared to advanced convolutional networks. To compensate for the shortcomings of
ViT for visual tasks such as detection and segmentation, Liu et al. [42] proposed a new
visual transformer called Swin Transformer, which can address the two major differences
between visual entities that vary significantly in scale and images with generally higher
pixel resolution than text. And to avoid the overly complex structure of SS models while
maintaining the efficiency and performance of the model operation. Xie, et al. [43] proposed
the Segformer model, which achieved excellent results on segmented datasets and showed
strong zero-shot robustness. However, less research has been done to apply it to the SS of
RS images. Nowadays, there are emerging DL algorithms for crop mapping from satellite
images, and it is somewhat necessary to compare their performances in simultaneously
mapping multiple crops [44]. However, there have been fewer studies on multi-crop
classification using DL methods with paddy rice and winter wheat as the subjects.

The purpose of this study is to apply multiple DL SS networks to bi-objective crop
mapping from Sentinel-2 Multispectral Instrument (MSI) Level 2A images in the Bengbu
region of eastern China, where paddy rice and winter wheat are major food crops. The used
networks include the high-resolution (HRNet) [45], MobileNet, Xception, Swin Transformer,
Segformer and RF. Lastly, we contrast the results of each DL network with those of RF to
assess the combined results of the different methods qualitatively and quantitatively on bi-
objective mapping. The network with the best results could be selected as a methodological
guide for related studies.

2. Materials and Methods
2.1. Study Area

As shown in Figure 1, Bengbu (32◦43′N–33◦30′N and 116◦45′E–118◦04′E) is located in
the northern part of Anhui Province and is a prefecture-level city under the jurisdiction
of Anhui Province. Geographically, Bengbu borders Jiangsu Province and Hongze Lake
to the east, and the Qinling-Huaihe line (the geographical boundary between the north
and the south of China) runs through the city of Bengbu. Bengbu has a flat terrain with a
mainly plain landscape; hills are scattered in the south, with southeast-facing slopes from
the northwest. Bengbu is located in the transition zone between the northern subtropical
humid monsoon climate zone and the southern temperate semi-humid monsoon climate
zone, with an average annual temperature of 15.5 ◦C and annual precipitation of about
905.4 mm. The monsoon climate is remarkable, with four distinct seasons, sufficient light,
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moderate temperature and precipitation, and climatic conditions that meet the climatic
requirements for the growth of most crops [46]. According to the 2021 statistical bulletin on
the national economic and social development of Bengbu City, released by the Statistical
Bureau of Anhui Province, Bengbu City had an annual grain crop cultivation area of
5146.87 km2, of which 2511.69 km2 were winter wheat and 1056.47 km2 was paddy rice.
Paddy rice is mostly single-season medium paddy rice, generally sown in April to May
and matured for harvesting during the National Day; wheat is winter wheat, generally
sown in October and matured for harvesting in June of the following year.
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Figure 1. The location of Anhui Province in China and Bengbu City in Anhui Province (a); Overview
of the distribution of rivers and lakes in and around Bengbu (b). The background is a topographical
map of Bengbu City.

2.2. Data
2.2.1. Sentinel-2 Imagery

Sentinel-2 is a high-resolution multispectral imaging satellite under the European
Space Agency’s Copernicus Programme, consisting of two satellites (2A and 2B), launched
in June 2015 and March 2017, respectively. Its spatial resolutions are 10m (visible and NIR),
20 m (red edge and SWIR) and 60m (atmospheric bands), respectively. Sentinel-2 imageries
are suitable for terrestrial monitoring, including vegetation, soil and water cover, inland
waterways, coastal areas, and emergency relief services.

In this study, we utilize atmospherically and geometrically corrected low-level at-
mospheric reflectance Sentinel-2 Level-2A (L2A) product data from Google Earth En-
gine (GEE) for large area classification of multiple crops without additional data pre-
processing. Sentinel-2 L2A data (2019 and later) are available from the GEE platform
(https://developers.google.com/earth-engine/datasets/catalog/sentinel-2, accessed on
20 March 2022). 2018 L2A products were produced via the Sen2Cor plug-in. Based on this,
we selected images for feature extraction of paddy rice and winter wheat from April 2018
to 2021. Sentinel-2’s QA60 band images with less than 10% clouds are selected by filtering
with the de-clouding function; a median extraction operation is then used to obtain images
that meet the conditions.

2.2.2. Crops Phenology Information

Phenology refers to the periodic changes with a certain pattern formed by organisms
under the influence of various external environmental conditions, such as temperature and

https://developers.google.com/earth-engine/datasets/catalog/sentinel-2
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humidity, over a long period. Different crops usually have different phenological infor-
mation, and the same crop has different phenological information in different regions [6].
From Xu and Fu [47], we obtained information on the main crops and their phenology in
the study area. Figure 2 shows the main crop phenological information in Bengbu, where
paddy rice (mostly single-season medium paddy rice), winter wheat, peanut, corn, and
summer soybean are mainly cultivated. Among them, paddy rice and winter wheat are
roughly complementary in terms of phenological timing, but there is a period of overlap in
April and May each year. The spatial distribution of crop cultivation in Bengbu is relatively
stable, with a few cases of crop rotation in a certain field, making this study feasible to a
certain degree. This study selected the paddy rice sowing and germination period and
the winter wheat tasseling period, i.e., late March to early May, for screening RS images
generating training and test samples.
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Figure 2. Phenology calendar of major crops in Bengbu.

2.2.3. Production of Auxiliary Reference

Paddy rice and winter wheat have similar spectral features at specific periods, making
it impossible to use manual visual interpretation to distinguish the two crops. Therefore,
we set the corresponding normalized difference vegetation index (NDVI) thresholds for the
classification masks of the two crops by the temporal variation of NDVI values in different
phenological periods of paddy rice and winter wheat, such as the sowing, transplanting,
tasseling, maturing, and harvesting periods. The mask is added to the RS image layer as a
secondary reference for subsequent labeling.

2.3. Methods

This study compares the performance of CNN- and Transformer-based models—HRNet,
MobileNet, Xception, Swin Transformer and Segformer—and the RF model in classifying
Bengbu’s paddy rice and winter wheat. Figure 3 describes the main workflow of this study,
including data acquisition and processing, model training and result comparison. We use
DeepLabv3+ (the most representative architecture in SS tasks) as the main framework for
embedding the four CNNs and the Swin Transformer. Also, the Segformer is used as an-
other Transformer model representative and the traditional decision tree classifier, the RF,
as a method compared to DL methods. The codes used in this study can be obtained on-
line at https://github.com/tensorflow/models/tree/master/research/deeplab, (accessed on
1 August 2022) and https://github.com/NVlabs/SegFormer (accessed on 10 November 2022).

https://github.com/tensorflow/models/tree/master/research/deeplab
https://github.com/NVlabs/SegFormer


Remote Sens. 2023, 15, 3417 6 of 21
Remote Sens. 2023, 15, x FOR PEER REVIEW 6 of 21 
 

 

 

Figure 3. Schematic diagram of the workflow of this study. Including local processing and Google 

Earth Engine (GEE) cloud platform processing. 

2.3.1. Data Preprocessing and Annotation 

In this study, we construct paddy rice and winter wheat datasets of high-resolution 

Sentinel-2 MSI of farmland in Bengbu City in April from 2018 to 2021; 2019 data are used 

as the test set and the remaining years as the training set. Images of the dataset are labeled 

as paddy rice or winter wheat, using the auxiliary reference mask proposed in Section 

2.2.3; paddy rice was labeled as red, winter wheat as green, and other crops and back-

ground as black. To fairly compare the performance of each network, the image patch size 

is kept at 256 × 256 pixels for all networks [35]. Data augmentation techniques are a data 

space solution to solve the limited problems of learning sample quantity and quality in 

supervised learning, which mainly consists of a set of techniques to increase the size and 

quality of the training dataset, enabling to build better DL models and maximize the use 

of the existing data [48]. DL models are data-intensive; to increase sample size, data aug-

mentation techniques such as horizontal flip, vertical flip and diagonal mirroring are used 

to increase the sample size from 3126 to 12,648. A total of image patches from 2019 are 

used as the test set, while the remaining samples are used for training and validation. 

Figure 4 shows the samples of the paddy rice and wheat dataset and their corresponding 

labels in Bengbu. 
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Earth Engine (GEE) cloud platform processing.

2.3.1. Data Preprocessing and Annotation

In this study, we construct paddy rice and winter wheat datasets of high-resolution
Sentinel-2 MSI of farmland in Bengbu City in April from 2018 to 2021; 2019 data are used
as the test set and the remaining years as the training set. Images of the dataset are labeled
as paddy rice or winter wheat, using the auxiliary reference mask proposed in Section 2.2.3;
paddy rice was labeled as red, winter wheat as green, and other crops and background
as black. To fairly compare the performance of each network, the image patch size is
kept at 256 × 256 pixels for all networks [35]. Data augmentation techniques are a data
space solution to solve the limited problems of learning sample quantity and quality in
supervised learning, which mainly consists of a set of techniques to increase the size and
quality of the training dataset, enabling to build better DL models and maximize the
use of the existing data [48]. DL models are data-intensive; to increase sample size, data
augmentation techniques such as horizontal flip, vertical flip and diagonal mirroring are
used to increase the sample size from 3126 to 12,648. A total of image patches from 2019
are used as the test set, while the remaining samples are used for training and validation.
Figure 4 shows the samples of the paddy rice and wheat dataset and their corresponding
labels in Bengbu.
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Figure 4. Sentinel-2 images of paddy rice and winter wheat in Bengbu and their corresponding labels,
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Columns (a,c,e) are the original images, and columns (b,d,f) are the corresponding labels.

2.3.2. The Improved DeepLabv3+

DeepLabv3 is a deep convolutional neural network (DCNN) incorporating Atrous
convolution [49–52], originally proposed to solve the problem of multi-scale object segmen-
tation [53]. DeepLabv3 is designed with cascaded or parallel-running atrous convolutional
modules using different atrous rates and the proposed Atrous Spatial Pyramid Pooling
(ASPP) module for enhancing image-level features and capturing multi-scale semantic
information [54]. Chen et al. [53] added a fast and efficient decoder module to DeepLabv3
for refining the segmentation results. They applied the Xception network to both the ASPP
module and the decoder module to create DeepLabv3+.

As shown in Figure 5, the encoder section processes the input image by using the atrous
convolution module to control the feature resolution and adjust the field of view of the
filter for capturing multi-scale information in the DeepLabv3+ architecture; the depthwise
separable convolution module reduces the computational complexity. Afterwards, the
output stride (OS) parameter is set to 16 to balance the speed and accuracy of network
execution. Then, three additional SS networks are embedded in the ASPP module as feature
extraction backbones by us, which include a 1 × 1 convolution, a dilation convolution
with different sampling rates (12, 24, 36), unlike the original DeepLabv3+, an image-level
pooling for multi-scale feature extraction, and fusion and dimensionality reduction of the
extracted features. The decoder part first upsampled the features generated in the encoder
part by a 4-fold bilinear interpolation. The outputs are concatenated with the corresponding
low-level features of the backbone network in the encoder. Finally, the stacked results pass
through a 3 × 3 convolution for feature refinement and a 4-fold upsampling to produce the
final prediction output.
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Figure 5. The improved DeepLabv3+ architecture with an encoder-decoder structure and atrous
spatial pyramid pooling (ASPP). The green part is the feature extraction part of the encoder, the blue
part is the feature extraction backbone network, and the light brown part is the decoder.

2.3.3. HRNet, MoblieNet, Xception and Swin Transformer

Two additional CNNs (HRNet, MobileNet) are integrated into the DeepLabv3+ archi-
tecture to extend its functionality and maximize SS performance.

HRNet consists mainly of a succession of parallel-connected convolutional subnet-
works with high-to-low resolution. Each can continuously receive and fuse information
from other parallel representations, thus allowing the network to retain high-resolution
information throughout the structure. Sun et al. [39] made some simple modifications to
improve HRNet for application to CV problems. The improved HRNet structure consists
of four stages with repetitive modular multi-resolution blocks, significantly improving
the network’s high-resolution solid learning and multi-level representation capabilities
in SS problems. MobileNet is a class of lightweight DNNs built using deeply separable
convolutions based on streamlined architecture for efficient mobile and embedded vision
application models. Deeply separable convolution can significantly reduce model compu-
tational complexity compared to standard convolution. It can significantly reduce model
size while allowing smaller and faster MobileNet to be built using width and resolution
multipliers. Xception is also a network built using a deeply separable convolutional mod-
ule, which consists of a stack called Extreme Inception; MobileNet and Xception reveal the
power of deeply separable convolution from different perspectives. The Transformer [40]
network structure has achieved far better results than other models in NLP because it is
based entirely on the attention mechanism and does not require recursive and convolutional
structures. Liu et al. [42] proposed a new visual transformer. This Swin transformer is a
hierarchical visual transformer structure represented by a shifted window computation
that allows flexible modeling at different scales with a linear computational complexity
comparable to the image size. The shifted-windowing scheme improves model efficiency
by limiting the self-attention computation to non-overlapping local windows and allowing
cross-window connections [42].
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2.3.4. Segformer

Segformer is a simple, efficient, and powerful SS framework in CV tasks [43,55]. The
VIT [41] variant, Segformer [43], uses the Transformer structure to extract a hierarchi-
cal representation from the input image and shows better performance than previous
CNNs [53,56–59] in SS. Segformer innovatively combines the Transformers structural en-
coder with an MLP decoder. As shown in Figure 6, the Transformer with a hierarchical
structure can output multi-scale features and does not require positional coding, which
allows easy adaptation to arbitrary test resolutions and avoids performance degradation
due to different test and training resolutions in the encoder part. For an image with an
input size of H × W × 3, the network divides it into 4 × 4 sized patches. It uses them as
input to the Transformer encoder for a four-stage multi-level feature extraction at 1/4, 1/8,
1/16, and 1/32 of the original image resolution. These multilevel features are passed to
the All-MLP decoder for the segmentation task at the resolution of H

4 ×
W
4 × Ncls, where

Ncls is the number of categories. Efficient Self-Attention, Mix-FFN and Overlapped Patch
Merging are included in each hierarchical Transformer encoding block. The Efficient Self-
Attention section uses the sequence reduction process to reduce the sequence length using
the reduction rate (R) [60]. Mix-FFN is introduced to directly use the 3 × 3 convolution
in the feedforward network (FFN), which considers the impact of zero padding on loca-
tion information leakage; this reduces network parameters and improves efficiency. The
Overlapped Patch Merging process is used to generate features of the same size as the
non-overlapping process by defining the patch size (K), the stride between two adjacent
patches (S), and the padding size (P) [43].
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encoder and the blue represents the lightweight multilayer perceptron (MLP) decoder.

Segformer also integrates a lightweight decoder consisting of only MLP layers. The
decoder aggregates information from different layers and combines local and global atten-
tion for a powerful semantic representation. The All-MLP decoder consists of four main
steps. First, multi-level features from the encoder are unified in the channel dimension after
the MLP layer. Second, the multilevel features are upsampled to 1/4 and concatenated.
After that, an MLP layer fuses the connected features. Finally, another MLP layer uses the
fused features at a resolution of H

4 ×
W
4 × Ncls for the segmentation task [43].

2.3.5. RF

The RF classifier is an integrated classifier that uses a randomly selected subset of
training samples and variables to generate multiple decision trees [61]. Over the past
20 years, RF classifiers have received increasing attention due to their excellent classification
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results and fast processing speed [62–64]. In the RF’s parameterization, the number of
estimators is set to 30, and the gini coefficients were used as feature evaluation metrics in
the Bagging framework; the maximum number of features is set to auto, the maximum
depth of the decision tree is set as default; the minimum number of samples and the
minimum number of samples of leaf nodes are also set to default values.

2.4. Experimental Setup

To prevent overfitting and underfitting of the model during the network training, we
set uniform training hyperparameters to put the data into the neural network for learning.
For training, we set 250 total epochs, each containing 1320 iterations and the initial learning
rate is set to 0.01, and the minimum learning rate is set to 0.01 times the initial learning
rate with a step learning rate decay. The Adam [65] is used to optimize the weights, where
the parameters β1 and β2 are set to 0.9 and 0.999, respectively. To accelerate the learning
process and model convergence, we set the Nesterov momentum and weight decay to 0.9
and 0.0001, respectively. All experiments are run on a 16GB NVIDIA Tesla T4 GPU, Python
3.7 and Pytorch version 1.7.0.

2.5. Evaluation Metrics

We select the commonly used classification metrics, including overall accuracy (OA),
mean Precision (mP), mean Recall (mR), mean F1 Score (mF1), Intersection over Union
(IoU), mean Intersection over Union (mIoU) and training time. The OA is the number
of crop pixel points correctly predicted as a proportion of the total number of crop pixel
points; precision indicates the number of correctly predicted positives as a proportion of
all predicted positives. Recall shows the percentage of true positives correctly predicted
by the model; F1 Score is the harmonic mean of precision and recall. The IoU represents
the ratio of the intersection of the network’s predictions for a crop category to the true
labels, while mIoU is the average of the IoU of all crop categories. All evaluation metrics
can be obtained by calculating the true positives (TP), true negatives (TN), false positives
(FP) and false negatives (FN) in the confusion matrix. The equations for all indicators
are shown below.

Overall Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 = 2 × precision × recall
precision + recall

(4)

IoUn =
TPn

TPn + FPn + FNn
(5)

mIoU =
1
N

N

∑
n=1

IoUn (6)

where n represents a single class, and N represents all classes.
To more intuitively analyze and compare the fitting ability of each DL network during

training, focal loss [66] is introduced as the loss function. Unlike the traditional cross-
entropy loss function, the focal loss function has a modulating factor, which balances the
multi-classification task by increasing the weight of the less-sampled categories in the loss
function and suppressing the weight of the multi-sample categories. Equation (7) is derived
after adjusting the weights α and γ. Equation (9) is derived from (7) and (8).
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Lfl =


−α
(

1−^
y
)γ

log
^
y, if y = 1

−(1− α)
^
y
γ

log
(

1−^
y
)

, if y = 0
(7)

^
yt =

{ ^
y, if y = 1

1− ^
y, otherwise

(8)

Lfl = −
(

1−^
yt

)γ

log
^
yt (9)

where α ∈ [0, 1] is a weighting factor used to increase the weight of a few categories in the
loss function and balance the loss function distribution (usually set to 0.5); γ > 0 is similar

to the adjustable weighting factor and is usually set to 2;
^
yt reflects how close the prediction

result of a category is to the true value; the larger the
^
yt the more accurate the classification.

3. Results

In this section, we compare the results of each network with those of the RF method
for paddy rice and winter wheat. For HRNet, MobileNet, Swin Transformer and Segformer,
different size variants of these networks are tested, and the optimal number of network
layers and network structure are selected to obtain the best prediction results. The results
are then quantitatively analyzed.

3.1. Overall Performances Assessment

Table 1 shows the OA, mP, mR, mF1, IoU for paddy rice (RIoU), IoU for winter wheat
(WIoU), IoU for other features (OIoU), mIoU and training time. The best results for all
metrics are boldened. HRNet consists of two-layer types (HRNet32 and HRNet48), while
MobileNet consists of two different layer types (small and large). The Swin Transformer
is divided into four sizes of sub-networks (Swin_T, Swin_S, Swin_B and Swin_L). The
Segformer network then selects the best feature extraction backbone. Based on the mIoU of
the different sizes of networks, HRNet32, MobileNet_large, Swin_L and Segformer_B2 are
selected as representative networks for the paddy rice and winter wheat mapping task.

Table 1. The comparison of model performance based on selected metrics. The optimal value for
each metric is shown in bold.

OA mP mR mF1 RIoU WIoU OIoU mIoU Time

HRNet32 89.84% 87.02% 87.77% 87.40% 74.67% 72.71% 86.00% 77.79% 351,201 s
MobileNet 89.05% 86.83% 86.26% 86.55% 73.27% 71.21% 84.92% 76.47% 28,815 s
Xception 88.42% 85.57% 85.74% 85.66% 71.91% 69.25% 84.25% 75.14% 119,003 s

STSF 84.29% 80.78% 80.84% 80.81% 66.83% 58.66% 79.02% 68.17% 611,899 s
Segformer 91.06% 88.62% 89.90% 89.26% 79.13% 75.74% 87.24% 80.70% 159,933 s

RF 87.65% 65.28% 71.40% 67.83% 34.64% 41.01% 88.43% 54.69% ____

From Table 1, the Segformer achieves the best performance regarding OA and mIoU.
Segformer achieves an OA and mIoU of 91.06% and 80.70%, respectively; the mIoU is about
2.9% higher than the second-best network. HRNet32 achieves the second-best OA and
mIoU at 89.84% and 77.79%, respectively. The MobileNet and Xception achieved 89.05%
and 88.42% OA and 76.47% and 75.14% mIoU respectively. Network architectures strongly
influenced classification performance in our experiments. Increasing the network size of
the MobileNet network and Swin Transformer, significant performance improvements are
achieved. Setting the same hyperparameters for all the methods could account for the poor
performance of the Swin Transformer; maybe the specific hyperparameters for the Swin
Transformer may improve the performance. The Swin Transformer records an mIoU of
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68.17%, about 12% lower than the Segformer; the Swin Transformer only outperforms the
RF. Although the RF has the highest count of misclassifications, it obtains the highest OIoU
at 88.43%; the RF has significantly low RIoU and WIoU at 34.64% and 41.01%, respectively.

As this study is a multi-object classification, the P, R and F1 scores of the three cate-
gories of objects are averaged to represent the overall performance of the network. Seg-
former achieved the highest mP, mR and mF1 at 88.62%, 89.90% and 89.26%, respectively.
HRNet32 followed closely at 87.02%, 87.77% and 87.40%, respectively. CNNs, such as
MobileNet and Xception, have slightly lower mP, mR and mF1, which achieved 86.83%,
86.26% and 86.55%, 85.57%,85.74% and 85.66%, respectively. The least-performing DL
method remains the Swin Transformer network, with mP, mR and mF1 values of 80.78%,
80.84% and 80.81%, respectively. RF is the worst-performing with mP, mR and mF1 values
of 65.28%, 71.40% and 67.83%.

Regarding training time, HRNet32 is the slowest of all CNNs, although it achieves
quite good results. Compared to the other networks, MobileNet has a considerable advan-
tage in terms of training time consumption, requiring only 28,815 s (about 8 h) of training
data, which is about 90 h less than HRNet32, and the classification results are second only
to HRNet32. The training time for the Transformer architecture is generally higher than that
of CNNs, with Swin Transformer taking about 170 h. Owing to Segformer’s architecture,
there is a time-performance trade-off; Segformer is not the worst-performing in terms of
training time and sacrificing time for better performance is acceptable. In general, there is
no absolute link between training time and the final classification results of the network,
but it can be used as an important evaluation indicator for method selection.

We consider the model to have converged when the loss function of our model always
stays within a certain error range, and the loss value cannot be further reduced by further
training. The convergence time varies greatly from model to model due to different network
parameters and structures. Figure 7 depicts the training loss curves of the selected neural
networks. All networks converge after the first 100 epochs. The Segformer achieves the
earliest convergence and the lowest loss value within an error range; the curve remains
flat and stable after the 150th epoch, with the final loss value below 0.25. HRNet32 has
converged at the 50 epochs and has remained within a fairly small error range. MobileNet
and Xception are very similar regarding initial loss value, error range and convergence
speed. The Swin Transformer networks decrease rapidly in the first 25 epochs of training,
with subsequent Loss values remaining high.
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Although the supervised DL networks cannot immediately obtain the SS results of
paddy rice and winter wheat, they have promising classification accuracy and generaliza-
tion performance.

3.2. Paddy Rice and Winter Wheat Classification

To compare the classification performance of the methods in visual details, we selected
several representative farmland samples from different regions in the test set. Figure 8 is the
visualization results of the various methods on different farmland samples in the test set.
The first and second columns show the original images and their labels, while the third the
last column show the classification results of selected methods on the test set, respectively.
The first three and last three rows show the classification results for winter wheat and
paddy rice, respectively; the three rows in the middle show the results for the areas with
mixed paddy rice and winter wheat cultivation. Different farmlands in areas with different
crop cultivation types, including continuous farmland, fragmented farmland, and river-
side farmland, are selected, and visualized. For the larger continuous farmland and the
heavily fragmented farmland, all methods are better at removing the spectral influence
of buildings, roads, bare land, and other crops on the target objects. HRNet32 showed
under-identification in small and continuous winter wheat fields. However, it showed
better classification results in mixed cropping areas. Except for the Swin Transformer, the
other networks can identify most of the farmland contours; the edges of the farmland are
well-defined, while field footpaths and country roads are clearly distinguished. Most of
the networks missed small areas of farmland near the edge of waterbodies to a greater
or lesser extent; the Swin Transformer network had the highest omission error, such as
the complete misclassification within a broken paddy rice field; RF achieved a better
performance than several DL methods in this regard. In areas with mixed cropping, the
methods produced varying degrees of misclassification, mainly by misclassifying paddy
rice as winter wheat; this resulted in an overestimation of the wheat area. HRNet32,
MobileNet, and Segformer networks perform better in multiple-feature classification, with
a significantly lower number of misclassifications than other methods; they also capture
large amounts of high-resolution semantic information.

Overall, the Segformer network, with its multi-stage feature extraction Transformer
encoder and lightweight decoder, achieves classification results closest to ground truth
compared to the other methods. The Swin Transformer network was the worst-performing
DL method with the highest misclassifications, irregular shapes of the recognized farmland,
intermittent field footpath boundaries, less smooth boundaries at feature edges and signifi-
cant loss of semantic information. The RF is not structured to accommodate large sample
models and performs poorly on feature recognition or classification tasks with similar
characteristics, resulting in high misclassifications, pepper noise within the paddy rice and
winter wheat growing regions and the blurring of the boundary between the two crops.
However, RF is computationally less expensive and does not rely on high-performance
GPUs for advanced model training; it can obtain multi-crop classification results with some
reference value in a short period.

Figure 9 shows the comparison of the F1 Score (Figure 9a) and IoU (Figure 9b) results
for each category in the test set for all methods. It can be seen that for different categories,
the CNNs show a similar F1 Score and IoU performance hierarchy, where HRNet32 is
followed by MobileNet and Xception. The Segformer network maintained the highest
F1 Score and IoU values for the two main target objects; F1 Score values are 88.35%
and 86.20%, while IoU values are 79.13% and 75.74% for paddy rice and winter wheat,
respectively. Swin Transformer has the worst performance among the DL methods, 13%
and 17% behind Segformer for RIoU and WIoU. For the selected DL models, F1 Score
and IoU for other features show Segformer as the best, followed by HRNet32, MobileNet,
Xception and Swin Transformer. Although RF has many noise-like misidentifications in the
field’s interior compared to other DL methods, it can significantly differentiate the spectral
semantic information of other features from the main crop in the field’s exterior. Excellent
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segmentation results are shown on the borderline between the farm and the background.
Thus, RF has the highest F1 Score and IoU values for other features. However, in the vicinity
of some rivers, RF can over-identify some features belonging to other categories, such as
farmland on some riverbanks, which are not paddy rice and winter wheat, resulting in an
over-identification of paddy rice and winter wheat and thus affecting the F1 scores and IoU
values of the two main categories.
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Figure 8. Comparison of multi-crops classification results by all networks in Bengbu on the test
set. The red part represents rice while the green part represents winter wheat. The first three rows
represent winter wheat cultivation, the next three rows are paddy rice mixed with winter wheat, and
the last three rows show the results for paddy rice cultivation.
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Figure 9. Comparison of the F1 scores (a) and Intersection over Union (IoU) indicators (b) for each
class with all models on the test set.

Figure 10 shows the confusion matrix visualization for all methods on the test set. The
confusion matrix demonstrates the performance of the models for each three categories.
The vertical axis represents the actual values, the horizontal axis represents the predicted
values, and the diagonal matrix represents the number of samples correctly predicted by
the model as a percentage of the total number of test samples. In the test set, the total
number of samples labelled as paddy rice and winter wheat accounted for about 32% of the
entire Bengbu city, while the rest of the samples were labelled as other features. Therefore,
most of the correctly identified features in the test results of the different methods belonged
to other classes, and the confusion matrix blocks are shown in Figure 10.
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The Segformer, for example, had a total of 14.72% of test set samples as paddy rice,
of which 13.31% were correctly identified as paddy rice; 0.05% were incorrectly identified
as winter wheat and 1.36% were identified as other features, having a correct recognition
rate of 90.42% for paddy rice. Moreover, 17.20% of the winter wheat samples, representing
19.83% of the test set, were correctly identified; 0.03% were identified as paddy rice, and
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2.60% were identified as other features, having a correct identification rate of 86.74% for
winter wheat. The confusion matrix of each network shows that the Segformer has the high-
est number of correctly classified samples on the diagonal while it has the lowest percentage
of FP and FN values among all networks. Thus, the Segformer was less influenced by other
classes of semantic features during multiple-feature classification, achieving the best overall
performance; HRNet32, MobileNet, Xception, and Swin Transformer followed. Except
for classifying the other features, the RF generally performs worse among all methods.
Except for the classification of other features, RF performed poorly among all methods,
correctly identifying only 9.51% out of 15.04% paddy rice samples in the test set; 4.18%
were misidentified as other features and 1.35% were misidentified as winter wheat, with an
overall correct identification rate of 63.23% for paddy rice. Out of 18.59% of winter wheat
samples in the test set, RF correctly identified only 10.39%, while 6.17% and 2.03% were
incorrectly identified as other features and paddy rice samples, respectively; the overall
correct identification rate for winter wheat was 55.89%.

3.3. Planting Area Statistics

Figure 11 shows the statistical results of the cultivated area identified by each network
for paddy rice and winter wheat on the test dataset in Bengbu in 2019 and the proportion
of the area in Bengbu city. The RF identified the largest cultivated area with approximately
1200 km2 for paddy rice and 2240 km2 for winter wheat, accounting for approximately
16.92% and 31.45% of Bengbu, respectively. The high misidentification rate overestimated
the area covered by paddy rice and winter wheat. The network with the smallest cultivated
area identified for paddy rice was Swin Transformer at approximately 666 km2, accounting
for about 9.36% of the city’s area. HRNet32 identified the smallest cultivated area for
winter wheat at approximately 1421 km2, accounting for about 19.94% of the city’s area.
Of the DL methods, Segformer and MobileNet identified the most paddy rice and winter
wheat cultivated areas at approximately 930 km2 and 1520 km2, respectively, representing
approximately 13.04% and 21.32% of the Bengbu city. As evident in Figure 9, there is a
misclassification of other category as paddy rice and winter wheat in RF, which generally
gives higher area statistics for both crops than the DL method. The difference between the
DL methods’ estimation of winter wheat area was insignificant, with the area difference re-
maining at around 98.3 km2; the difference in the area for paddy rice was around 262.6 km2.
However, the proportion of urban area devoted to both crops remains in the range of 30%
to 33%, with most of the area of crops counted by the DL method falling within this range
and RF well outside.
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4. Discussion

The results show that the traditional RF approach to bi-objective crop mapping is
unsatisfactory. RF cannot take advantage of the huge benefits of large data sets, and its
various evaluation metrics are dwarfed by DL [67]. However, the simplicity of the RF
model, the speed of classification and the fact that it does not require many samples are still
great advantages. DL methods performed differently in this study, with larger amounts of
data, the benefits of DL’s powerful feature extraction and non-linear relationship modelling
capabilities come into play. Fairly good identification results are achieved at the expense of
training time. HRNet, the classic CNN model, achieves very satisfactory mapping results
but requires several days of training time. MobileNet and Xception, representatives of
lightweight CNNs, achieve results second only to HRNet32 in just a few hours. Swin
Transformer, a general-purpose backbone network for the Transformer architecture, may
not achieve maximum performance when trained with the same amount of data as the
CNN. Therefore, an appropriate SS architecture must be constructed based on its structural
properties. In summary, the neural network is still performing better in mapping paddy
rice and winter wheat in areas with complex cropping structures. However, there are still
some problems.

Firstly, it is not enough to rely on single-temporal RS images to obtain accurate
information about the actual farmland due to the complex cropping structure of real
farmland, ecological fragility, and uncertainty of abandonment. There are many paddy
rice and winter wheat varieties in China, and their phenological periods and spectral
characteristics vary from one climatic region to another. The application of DL methods for
localized classification of paddy rice and winter wheat cannot be replicated on a large scale.
In the future, the combination of RS, global navigation satellite system and geographic
information system technology and DL methods will enable ultra-high spatial resolution
and long-time series observation satellite data, unmanned aerial vehicle data and real-time
field survey data. Combined with intelligent digital image processing techniques instead
of manual visual interpretation, to implement precise timing, positioning and quantitative
control of important food crops or other cash crops represented by paddy rice and winter
wheat. Modern intelligent agricultural production technology can maximize agricultural
productivity and effectively achieve sustainable agriculture with high quality, high yield,
low consumption and environmental protection [68].

Secondly, inevitable data annotation errors due to subjective factors or the influence of
similar features may affect the final crop mapping results. While RS imagery is large and
easy to obtain, high-quality multi-category semantic annotation data is difficult. Annotating
data is often time-consuming and labour-intensive, with high labour or financial costs. In
fully supervised DL, the quality of the annotated data directly affects the final results of the
network. As an offshoot of unsupervised learning methods, semi-supervised learning (SSL)
methods have been proposed to enable neural networks to achieve new results comparable
to fully supervised networks, even when the amount of annotated data is insufficient. SSL
has been applied to water body identification from RS imagery [69], but no study has
applied it for multi-crop mapping from RS imagery.

Lastly, DL SS networks are developing very rapidly. With the unprecedented increase
in computing power required for large models with tens of millions or even billions
of parameters, there is a huge challenge in executing these models on low-end devices.
In this study, the performance of the large model could not be fully exploited due to
server hardware limitations, negatively impacting crop mapping results. Meanwhile, the
emergence of the segment anything model (SAM) [70] has had a huge impact by improving
edge detection in SS tasks [71], as well as small object identification [72], rather than
focusing on overall segmentation accuracy improvement.

5. Conclusions

Multi-crop classification and mapping tasks in specific regions with more complex
cropping structures are seldom explored and often have poor accuracy, with few studies
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focusing on paddy rice and winter wheat. This study is based on high-resolution Sentinel-2
images for simultaneous classification and bi-object mapping of two major grain crops in
a typical area of eastern China. This study comprehensively evaluates several SS models’
classification and mapping performance, including CNNs, Transformer networks and RF.
The main conclusions drawn are as follows:

(1) High-resolution RS combined with DL methods are highly feasible for identifying and
mapping a wide range of crops, significantly reducing the human and material costs
of traditional field surveys, and compensating for the lack of quality of statistical data,
which is of great importance for accurate knowledge of the crop range and food security.

(2) The extensive experimental results show that the DL approach benefits from its
powerful image-level information enhancement and multi-scale semantic feature
capture; the results are far superior to traditional ML methods. In particular, the
Segformer, based on the Transformers structural encoder and the lightweight MLP
decoder structure, achieved an OA value of 91.06%, an mF1 value of 89.26% and
a mIoU value of 80.70%, which is the best-performing network for paddy rice and
winter wheat classification.

(3) DL methods generally take longer to train than ML methods due to their complex
network structure and many model parameters. The training time for the MobileNet
model is only 8 h, which is the fastest convergence speed among the DL methods;
it also achieves quite a good classification accuracy with high practical value. The
RF method is an excellent classification method due to its short training time, low
training data requirement and strong model generalization, although the final model
performance is unsatisfactory.
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