
Citation: Yu, H.; Tang, B.; Deng, J.;

Chen, H.; Tang, W.; Chen, X.; Zhou, C.

Appraisal of the Magnetotelluric and

Magnetovariational Transfer

Functions’ Selection in a 3-D

Inversion. Remote Sens. 2023, 15, 3416.

https://doi.org/10.3390/rs15133416

Academic Editor: Amin

Beiranvand Pour

Received: 2 June 2023

Revised: 2 July 2023

Accepted: 4 July 2023

Published: 5 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Appraisal of the Magnetotelluric and Magnetovariational
Transfer Functions’ Selection in a 3-D Inversion
Hui Yu 1,2 , Bin Tang 1,2, Juzhi Deng 1,2,*, Hui Chen 1,2, Wenwu Tang 1,2, Xiao Chen 1,2 and Cong Zhou 1,2

1 State Key Laboratory of Nuclear Resources and Environment, East China University of Technology,
Nanchang 330013, China; yuhui_geo@ecut.edu.cn (H.Y.); tangbin@ecut.edu.cn (B.T.);
huich@ecut.edu.cn (H.C.); wwtang@ecut.edu.cn (W.T.); chenxiao@ecut.edu.cn (X.C.);
czhou@ecut.edu.cn (C.Z.)

2 Engineering Research Center for Seismic Disaster Prevention and Engineering Geological Disaster
Detection of Jiangxi Province, East China University of Technology, Nanchang 330013, China

* Correspondence: jzhdeng@ecut.edu.cn

Abstract: Magnetotelluric (MT) and magnetovariational (MV) sounding are two principal geophysical
methods used to determine the electrical structure of the earth using natural electromagnetic signals.
The complex relationship between the alternating electromagnetic fields can be defined by transfer
functions, and their proper selection is crucial in a 3-D inversion. A synthetic case was studied
to assess the capacity of these transfer functions to recover the electrical resistivity distribution of
the subsurface and to evaluate the advantages and disadvantages of using the tipper vector W to
complement the impedance tensor Z and the phase tensor Φ. The analysis started with two sensitivity
tests to appraise the sensitivity of each type of transfer function, which is calculated for an oblique
conductor model, showing that the resistivity perturbation of the same model will produce distinct
perturbations to different transfer functions; the transfer function sensitivity is significantly different.
A 3-D inversion utilizing the quasi-Newton method based on the L-BFGS formula was performed
to invert different transfer functions and their combinations, along with quantifying their accuracy.
The synthetic case study illustrates that a 3-D inversion of either the Z or Φ responses presents a
superior ability to recover the subsurface electrical resistivity; joint inversions of the Z or Φ responses
with the W responses possess superior imaging of the horizontal continuity of the conductive block.
The appraisal of the 3-D inversion results of different transfer functions can facilitate assessing the
advantages of different transfer functions and acquiring a more reasonable interpretation.

Keywords: magnetotelluric; magnetovariational; electrical resistivity; 3-D inversion

1. Introduction

Two principal forms of geophysical methods used to determine the electrical structure
of the earth through the natural existing electromagnetic fields have been in wide use
since the last century, which consist of the magnetotelluric (MT) sounding method and the
magnetovariational (MV) sounding method [1]. During an MT and/or MV investigation,
the presence of a common model with a plane electromagnetic wave vertically incident
on a plane horizontally inhomogeneous earth [2] allows one to simultaneously measure
time variations in the natural electromagnetic field Eh (Ex, Ey) and H (Hx, Hy, Hz) at the
earth’s surface [3]. The complex relationship between the alternating electromagnetic fields
can be defined by transfer functions based on the Maxwell equations [4,5]. In principle,
the basic transfer functions in the MT consist of the impedance tensor Z and the apparent
resistivities ρij calculated from the components Zij of the impedance tensor Z, whereas the
basic transfer function in the MV is the tipper vector W (the Wiese–Parkinson vector). For
completeness, we also review the interstation impedance tensor Q, which is defined from
the relationship between the survey electric field and the reference magnetic field [6,7],
as well as the interstation horizontal magnetic tensor M and the interstation horizontal
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electric (telluric) tensor T [8,9]. To recover the regional phase information directly from
the observed impedance tensor, researchers also focus on investigating the phase tensor
Φ [10], which is defined from the real and imaginary parts of the MT impedance tensor Z.
We offer a remark concerning notations: we employ for the tipper vector the notation W
following the original terminology [3] and use for the horizontal electric (telluric) tensor
the notation T, which is always reserved for the tipper vector [11,12]. Since the current
field data acquisition is still dominated by conventional MT and/or MV surveys, only the
traditional MT and MV transfer functions are considered in this manuscript, including the
Z, W, and Φ responses.

In the traditional scheme of the MT and MV data interpretation, estimation of the
transfer functions at multiple survey sites and frequencies, with subsequent inversion of the
estimated transfer functions in terms of the subsurface conductivity, constitutes the essence
of this scheme [13,14]. With advancing computational resources of high-performance
clusters, three-dimensional (3-D) inversion techniques have gained a lot of attention in
recent years and are now a more widely used tool for the scheme mentioned above [15–19].
Since the wavelet representation of a signal is inherently multiscale [20–22], the sparsity
constraint in the wavelet domain has also been utilized in the electromagnetic inversion to
recover the multiscale features of the subsurface [23,24]. Compared to 1-D or 2-D inversion,
the numbers of elements and degrees of freedom in a 3-D inversion are much larger and
must be constrained by data [25], so that the decision regarding the transfer functions’
data selection is one important preparation in 3-D inversion. Therefore, it is necessary to
compare the characteristics and sensitivities of each data type for the reasonable selection
of different data types to obtain more realistic 3-D inversion results.

In the current 3-D inversion of MT data, as the on-diagonal components of the MT
impedance tensor Z are nonzero in the 3-D environments and are strongly affected by
off-profile geoelectrical structures (e.g., data are acquired predominantly along the 2-D
profiles) to at least some degree [26,27], the approach of inverting the full components
of the MT impedance tensor Z are hence used instead of inverting only the off-diagonal
components (Zo, and the subscript “o” denotes the off-diagonal) in the 3-D inversion [28,29].
However, the use of on-diagonal components is sometimes worthless because of the quality
reduction in the on-diagonal components of Z caused by the presence of anthropogenic
noise [30,31]. In addition, there has been a widespread recognition that MT impedance
tensor data are often distorted by unresolvable small-scale structures [32], on which the
charges on conductivity boundaries or gradients can cause galvanic distortion and then
generate electric field effects. However, the MV transfer functions W and M are unaffected
by this galvanic distortion [33]. Hence, the approach of inverting the tipper vector W
or the interstation horizontal magnetic tensor M individually and including W and M
simultaneously when performing a 3-D inversion of impedance tensor Z have long been
recognized as the available schemes to improve the MT data interpretation and constrain the
subsurface [7,28,33–35]. Analogous to the basic MV transfer function (W), the phase tensor
Φ is also unaffected by the galvanic distortion, even though it is derived from the observed
impedance tensor Z [10,36]; moreover, it is a statically undistorted 3-D response [32]. Thus,
the approach of inverting the phase tensor Φ for galvanically distorted data sets using 3-D
inversion has been implemented in several publications [37–40].

As mentioned above, although there are many comparative studies on the inversion of
different MT and MV data, there are few systematic analyses and research studies in view
of the sensitivities of different data types. Therefore, we attempt to use multiple approaches
to demonstrate the sensitivities of different data types, including the identification of the
locations and periods responsive to the geoelectrical anomaly, the quantification of the
anomalous effects on different data responses, and the calculation of different sensitivity
functions. Based on this, we examine the advantages and disadvantages of a 3-D inversion
of the traditional MT and MV transfer functions. This paper aims to appraise the ability of
these transfer functions to recover the electrical resistivity distribution of the subsurface,
as well as evaluating the advantages and disadvantages of combining the Z, Zo, and Φ
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responses with the W responses when modeling the characterization of the subsurface in a
3-D environment.

2. Methodology
2.1. The 3-D Electromagnetic Inversion Method

Among the most widely used methods for solving the optimization problem (e.g.,
Occam’s inversion method, Siripunvaraporn et al. [27]; the nonlinear conjugate gradients
method, Newman and Alumbaugh [41]; the Gauss–Newton method, Sasaki [42]; the
limited-memory quasi-Newton method, Newman and Boggs [43]), a limited memory
quasi-Newton method based on the Broyden–Fletcher–Goldfarb–Shanno (BFGS) formula
is preferred in this study. This method constitutes an approximation of the inverse of the
Hessian matrix by defining the curvature pair, which does not need additional storage
requirements, and thus effectively accelerates the convergence of the iterative inversion
process. In the L-BGFS inversion, the product of “Ĥk” and Gk is used to solve for the
change in the model at iteration step k + 1, where “Ĥk” is the approximation of the inverse
of the Hessian matrix, which is updated at every iteration using the limited-memory BFGS
formula [44], and Gk is the gradient vector of the objective functional. The implementation
of the L-BFGS inversion is completed by using the ModEM software package [15,16] and is
discussed in detail in Yu et al. [45].

2.2. The Explicit Forms of the Matrix L in Different Cases of Transfer Functions

The matrix L was introduced by Egbert and Kelbert [15] and represents the linearized
data functional. It depends on the details of the observation functionals (e.g., the MT and
MV transfer functions), as it is applied to the discrete numerical forward solution. In this
manuscript, we attempt to give the explicit forms of the L operators in different cases of
transfer functions and follow the notation and approach of Egbert and Kelbert [15]; the
expression of the matrix L is expressed as

Lj =
∂ψj

∂e

∣∣∣∣
e0,m0

=
k

∑
j=1

∂ψj

∂ej
. (1)

As indicated in Equation (1), the expression of the matrix L is not the same for different
nonlinear data functionals ψj. Consequently, to obtain the discrete numerical forward
solution to different data functionals requires implementation of the derivation of the L
operator arising in different transfer functions.

Under the assumption that the plane electromagnetic wave source is assumed to be two
independent field sources that correspond to spatially uniform sources of a fixed frequency
polarized in the orthogonal directions (the x- and y-directions), the MT impedance tensor
Z defined from relations between the horizontal components of the electric and magnetic
fields of point observation can be expressed as(

ESX
h

ESY
h

)
=

[
Zxx Zxy
Zyx Zyy

](
HSX

h

HSY
h

)
, (2)

where the superscripts “SX” and “SY” denote the field sources polarized in the x- and
y-directions, respectively. From Equation (2), the rows of the impedance tensor Z take the
following form
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Zxx =
ESX

x HSY
y −ESY

x HSX
y

HSX
x HSY

y −HSY
x HSX

y
,

Zxy = ESY
x HSX

x −ESX
x HSY

x
HSX

x HSY
y −HSY

x HSX
y

,

Zyx =
ESX

y HSY
y −ESY

y HSX
y

HSX
x HSY

y −HSY
x HSX

y
,

Zyy =
ESY

y HSX
x −ESX

y HSY
x

HSX
x HSY

y −HSY
x HSX

y
.

(3)

Together with Equation (1), the operator LZij can be explicitly expressed as

LZxx =
Le,x(HSY

y −HSX
y )−Lb,x(ESX

x −ESY
x )

HSX
x HSY

y −HSY
x HSX

y
−Zxx

Lb,x(H
SY
y −HSX

y

)
−Lb,y(HSY

x −HSX
x )

HSX
x HSY

y −HSY
x HSX

y
,

LZxy =
Le,x(HSX

x −HSY
x )−Lb,x(ESX

x −ESY
x )

HSX
x HSY

y −HSY
x HSX

y
− Zxy

Lb,x(H
SY
y −HSX

y

)
−Lb,y(HSY

x −HSX
x )

HSX
x HSY

y −HSY
x HSX

y
,

LZyx =
Le,y(HSY

y −HSX
y )−Lb,y(ESY

x −ESX
x )

HSX
x HSY

y −HSY
x HSX

y
− Zyx

Lb,x(H
SY
y −HSX

y

)
−Lb,y(HSY

x −HSX
x )

HSX
x HSY

y −HSY
x HSX

y
,

LZyy =
Le,y(HSX

x −HSY
x )−Lb,x(ESY

y −ESX
y )

HSX
x HSY

y −HSY
x HSX

y
− Zyy

Lb,x(H
SY
y −HSX

y

)
−Lb,y(HSY

x −HSX
x )

HSX
x HSY

y −HSY
x HSX

y
,

(4)

where Le denotes the L operator of the electric field component, and Lb denotes the L
operator of the magnetic field component. The explicit form of the operator LZij given here
facilitates efficiently calculating the Jacobian matrix.

Other basic transfer functions in the MT are the apparent resistivity and impedance
phases, which are calculated from the components of the impedance tensor Z. Separating
the complex impedance tensor into their real (X) and imaginary (Y) parts, the general
expressions for the apparent resistivity and impedance phases can be written as

ρij =

∣∣Zij
∣∣2

ωµ0
=

(
Xij

)2
+

(
Yij

)2

ωµ0
, (5)

ϕij = tan−1(Yij/Xij
)
. (6)

Since the apparent resistivity and impedance phases are real, whereas the impedance
tensor is complex, we take the derivative of ρij (Equation (5)) concerning the solution vector
u using the chain rule, and we take only the real part. Then, we have

∂ρij
∂u =

∂ρij
∂Xij

∂Xij
∂u +

∂ρij
∂Yij

∂Yij
∂u

= 2
ωµ0

(Xij
∂Xij
∂u + Yij

∂Yij
∂u ) = 2

ωµ0
[XijRe(

∂Zij
∂u ) + YijIm(

∂Zij
∂u )]

= Re(
2Z∗

ij
ωµ0

∂Zij
∂u )= Re(

2Z∗
ij

ωµ0
LZij).

(7)

Hence, the matrices L of the apparent resistivity and impedance phase can be expressed as

Lρij =
2Z∗

ij

ωµ0
LZij , Lϕij =

iZ∗
ij∣∣Zij
∣∣2 LZij , (8)

where the superscript asterisk (*) denotes the complex conjugate.
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The phase tensor Φ is defined from the real and imaginary parts of the MT impedance
tensor Z, which can be written as the matrix (Booker 2014)

Φ = X−1Y =

[
Φxx Φxy
Φyx Φyy

]
=

1
det (X)

(
XyyYxx − XxyYyx XyyYxy − XxyYyy
XxxYyx − XyxYxx XxxYyy − XyxYxy

)
, (9)

where X and Y are the real and imaginary parts of the MT impedance tensor Z, respectively,
and det(X) = XxxXyy− XyxXxy is the determinant of X. Given that the phase tensor is real,
we deal with the derivative of the phase tensor Φ (Equation (9)), concerning the solution
vector u using the chain rule, and we take only the real part

∂Φ
∂u = ∂(X −1Y)

∂u = −X−1 ∂X
∂u X−1Y + X−1 ∂Y

∂u

= −X−1X−1YRe( ∂Z
∂u ) + X−1X−1XIm( ∂Z

∂u )

=
(

X−1
)2

(−YRe( ∂Z
∂u ) + XIm( ∂Z

∂u ))

= Re(− i
(

adj(X)
det(X)

)2
Z∗ ∂Z

∂u ) = Re(− i
(

adj(X)
det(X)

)2
Z∗LZ),

(10)

where adj(X) is the adjugate of X. The matrices L of the phase tensor can be expressed as

LΦij = −i
(

adj(X)
det(X)

)2

Z∗LZij . (11)

The basic transfer function in the MV is the tipper vector W; similar to the impedance
tensor, it is defined from the relations between the vertical and horizontal magnetic fields.
Then, the tipper vector W can be expressed as(

HSX
z HSY

z
)
=

[
Wzx Wzy

](
HSX

h HSY
h
)
, (12)

where the rows of the tipper vector W take the following form

Wzx =
HSX

z HSY
y − HSY

z HSX
y

HSX
x HSY

y − HSY
x HSX

y
,Wzy =

HSY
z HSX

x − HSX
z HSY

x

HSX
x HSY

y − HSY
x HSX

y
. (13)

Then, similar to the operator LZij, the operator LWij can be explicitly expressed as

LWzx =
Lb,z(HSY

y −HSX
y )−Lb,y(HSY

z −HSX
z )

HSX
x HSY

y −HSY
x HSX

y
− Wzx

Lb,x(H
SY
y −HSX

y

)
−Lb,y(HSY

x −HSX
x )

HSX
x HSY

y −HSY
x HSX

y
,

LWzy =
Lb,z(HSX

x −HSY
x )−Lb,x(HSX

z −HSY
z )

HSX
x HSY

y −HSY
x HSX

y
− Wzy

Lb,x(H
SY
y −HSX

y

)
−Lb,y(HSY

x −HSX
x )

HSX
x HSY

y −HSY
x HSX

y
.

(14)

3. Synthetic Model Study

To conduct the synthetic model study, we first calculated the forward responses from
a synthetic model with an embedded oblique conductor and then generated a sensitivity
test to evaluate the effects of the oblique conductor on the different types of transfer
functions data by using the calculated responses, which consisted of Zo, ρ, Z, W, and
Φ. The sensitivity function calculations were also performed, unraveling the sensitivities
for different responses. Finally, we performed the 3-D inversion based on the L-BFGS
algorithm of different transfer functions data individually; moreover, we implemented the
3-D joint inversion with different combinations of Zo, Z, or Φ with W, which aimed to
test how effectively they recovered the electrical resistivity distribution of the subsurface.
Along with implementing these schemes, we tried to quantify their accuracy, to provide
robust support for the conclusions extracted from the study in this paper.
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3.1. Synthetic Model

For the synthetic tests, we used some variants on an Oblique Conductor Model, which
was based on the model from Ledo [46], as illustrated in Figure 1. The model comprises a
regional 2-D resistivity structure formed by two half-layers of 1000 Ω·m (west side) and
100 Ω·m (east side) with their bottom at 15.75 km depth. The western half layer was
covered by a horizontal layer of 500 Ω·m with its bottom at 0.5 km depth, while the eastern
half layer was covered by an inclined layer of 10 Ω·m with a dip angle of approximately
3◦. In the central domain, a conductive block (3 Ω·m) of approximately 20 × 4 × 4 km3

was embedded in the regional 2-D structure with its top at 3 km deep. The major axis of
the conductive block obliquely crossed (45◦) the contact plane of the two half layers. The
bottom of the model (below the depth of 15.75 km) was set as a half space of 100 Ω·m.
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Figure 1. The main structural feature of the synthetic model used to generate the MT and MV data.
The black triangles represent the site locations.

The forward responses of the synthetic model were calculated for an 18 × 10 station
array with a 3 km station distance that covered the model subsurface structure using the
ModEM code [15,16]. The 23 periods used were evenly spaced on the logarithmic scale in
a range of 0.003 and 1000 s. The central domain of the grid comprised 50 × 30 × 51 cells
with a horizontal discretization of 1 km × 1 km, which was padded by five planes from
the edges of the central domain outward to the boundaries with the cells lateral size
increasing by a factor of two. The thickness of the top layer was 100 m, and the thicknesses
of the subsequent layers increased by a factor of 1.2 in the z direction. The large 3-D
grid then consisted of 60 × 40 × 51 cells in the east–west, north–south, and vertical
directions, respectively.

3.2. Sensitivity Analysis

The examination scheme started with a nonlinear sensitivity test, which was per-
formed to identify the spatial responsiveness of the oblique conductor and to characterize
and quantify the effects of this conductor on the MT and MV transfer functions. The non-
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linear sensitivity test involved two steps: (1) we calculated the forward responses of the
background regional 2-D resistivity structure without anomaly and that of the regional
2-D resistivity structure with the embedded oblique conductor; (2) the resulting forward
responses were used to calculate the differences and sensitivity values for each period and
station following a formula introduced by Campanyà et al. [33].

To highlight the sensitivity of the data responses to the anomaly concerning the pres-
ence of the data errors, the differences between the forward responses were divided by the
assumed error. We defined the errors for the impedance tensor data relative to the ampli-
tude of the Z elements; namely, error levels of 0.03 × |Zxy× Zyx|1/2 were adopted for all
the impedance components. For the dimensionless tipper vector W responses, we adopted
constant error bounds of 0.03. Although the phase tensor is a dimensionless quantity too,
the error levels of the phase tensor responses here were set at 0.05 × |Φxx× Φyy|1/2 for all
Φ components instead of a constant error because the relation of the amplitude of a phase
tensor element to the changes in the subsurface resistivity is highly nonlinear [37].

The contoured pseudosections of the effects of the conductive block are shown in
Figure 2. Each subdiagram contains two perpendicular contoured pseudosections, the
distance along the east–west profile (y = 0) on the abscissa, the distance along the south–
north profile (x = 0) on the ordinate, and the period (on a decadic logarithm scale) along the
vertical coordinate. The white zones denote the difference values (between −1 and 1) within
the assumed errors, showing the periods for the various components at the sites that are
insensitive to the anomaly. The blue and red zones represent the periods at highly sensitive
sites, where the responses to the anomaly were several standard deviations outside of
the assumed errors. From the calculated differences for each period and station, it can
be seen that the effect of the anomalous block at a given site and period was determined
by the transfer function types that were employed. Specifically, the ρ responses were
similar to the Z responses, the anomaly affected a long range of periods for these two
responses, and the effect continued to the longest period. For the different components of
the impedance tensor Z, the period range affected by the same anomaly for on-diagonal
components was narrower than that for the off-diagonal components Zo. In addition, the ϕ
responses (impedance phase) were similar to the Φ responses; this is because the phase
tensor Φ is a function of the impedance and can be written as a diagonal matrix with its
components equal to the tangents of the conventional impedance phases in the layered
1-D structure [10]. Meanwhile, all of these MT responses were more sensitive at the sites
above the anomaly. However, the W responses were more sensitive at the sites located at
the edge of the anomaly due to the absence of a vertical field above the laterally uniform
earth, where the greatest effects in the W were off to the anomaly edge [47]. Furthermore,
the same anomaly affected a narrower range of periods for the Φ and W responses than
that for the Z responses. The reasoning behind this is that the galvanic charges imposed on
the boundaries of the conductivity contrasts generate magnetic effects and electric effects
simultaneously; among them, the magnetic effects of the charges fall off rapidly with the
increasing period, while the local nature of the electric fields is strong distortion from the
charges on the boundaries, and the electric effects are frequency-independent and persist
for longer periods in the inductive case [48]. It is worth noting that the high difference
values reflected in the different data responses were mostly distributed on the west side,
where there were enormous electrical differences between the embedded anomaly body
and the background.
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The accomplished quantification for the effect of the anomaly on the different responses
illustrated in Figure 3, which comprises six subdiagrams of pseudosections, represented
the sensitivity of the different transfer functions’ data, respectively. The sensitivity values
of the ρ and Z responses were close, which were the highest among all the data responses,
the sensitivity values of the off-diagonal impedance Zo were slightly lower than those, and
the sensitivity values of the ϕ and W responses were approximately equal to half of the Zo
responses, while the lowest sensitivity values obtained by the W responses. The increased
sensitivity values of the Z responses relative to the Zo responses suggest that the use of the
on-diagonal components of Z introduces the complementary information that enhances
the resolution. The low sensitivity values obtained by the Φ and W responses indicate the
insufficiency of the information about the absolute values of the subsurface resistivity in
these dimensionless physical quantities. However, both of these are primarily sensitive to
the variations of resistivity structure, which can be inferred from the distribution of those
sites and periods associated with the Φ and W responses sensitive to the anomaly.
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As another illustration of the sensitivity analysis, we also considered the sensitivity
functions, namely the Jacobian. Six sites in an oblique line crossing the buried conductor
were used to implement the sensitivity function calculations of different data responses.
The used periods were set up to 1 s, 10 s, and 100 s. The results of these calculations are
illustrated in Figure 4, which give the data perturbation resulting from a model resistivity
perturbation. The gradients of the Zo and Z responses were the highest among all the data
responses, and the gradient of the ρ + ϕ responses had moderate values; the gradients of
the W and Φ responses, however, were three orders of magnitude lower than that of the
Z responses. The calculation results suggest that the same model resistivity perturbation
could result in distinct perturbations for different data responses. The low perturbations
obtained by the W and Φ responses indicate the deficiency of the sensitivity to the model
resistivity variations, while the medium–high perturbations obtained by the ρ + ϕ, Zo, and
Z responses indicate sufficient sensitivity to the model resistivity variations. Although the
sensitivity magnitude of the Zo was similar to that of the Z, the range of perturbations
for the Z responses was a little bit larger than that for the Zo responses. This effect of
the sensitivity enhancement was consistent with that of the sensitivity quantification test
mentioned above (as shown in Figure 3).

3.3. Three-Dimensional Inversion Tests

For the subsequent numerical experiment, we performed a 3-D inversion of different
transfer functions’ data utilizing a quasi-Newton method based on the L-BFGS formula,
which was achieved by a modification to the ModEM code [16]. The solution mesh was cho-
sen in common with the forward mesh described above, which comprised 60 × 40 × 51 cells
beneath the station array. Five inversions were performed to examine and evaluate the
capability of different transfer functions’ data to characterize the subsurface by them-
selves, that is, the inversions of the ρ + ϕ, Zo, Z, W, and Φ responses individually. Three
additional inversions were performed to appraise the advantages and disadvantages of
complementing the Zo, Z, and Φ responses with the W responses. Hence, the final inver-
sions were (1) ρ + ϕ, (2) Zo, (3) Z, (4) W, (5) Φ, (6) Zo + W, (7) Z + W, and (8) Φ + W. For
the subsequent inversions, all these used responses were perturbed by the same scheme
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described in the sensitivity analysis. The heavily penalized deviations from a prior model
can lead to erroneous and misleading 3-D inversion results, particularly in environments
with strong conductivity contrasts; hence, the prior model setting is important in retrieving
the subsurface [28,37]. Thus, we executed a test to choose the prior model by inverting
different transfer function data with four homogeneous half-space models of 10, 100, 300,
and 1000 Ω·m, respectively. The results of the test are displayed in Figure S1, where the
inversion results using a prior model of 100 Ω·m obtained the recovery of the electrical
resistivity values most similar to the synthetic model. Based on this test, the chosen prior
model for all the presented inversions was set as a homogeneous half space of 100 Ω·m. In
addition, a cooling method for the damping factor was adopted to improve the stability of
the inversion, and the initial damping factor value was set to 10. In addition, we inverted
the Z and W responses with different model covariance smoothing parameters of 0.1, 0.2,
0.3, 0.4, 0.5, and 0.7 to discuss the influence of the model covariance matrix on the inversion
results, as the model norm’s behavior is controlled by the model covariance matrix. The
results of this test are displayed in Figure S2, where a model covariance smoothing pa-
rameter of 0.3 yielded the most effective inversion result. Therefore, the model covariance
smoothing parameter for all the presented inversions was uniformly set to 0.3, with two
smoothing passes in each direction.
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Figure 4. The results of different sensitivity function calculations that give the data perturbation
resulting from a model resistivity perturbation. The black triangles represent the six site locations
used. Note that each subdiagram has a different color scale.

The corresponding final inversion models were obtained when the acceptable overall
normalized root mean square (nRMS) misfit was achieved. The fit of the data of each
inversion process is shown in Figure 5; that is, the summed nRMS was calculated at
each station and provided valuable information on how the data misfit was distributed
across the array. It can be seen that the misfits were distributed smoothly through the
array for different transfer functions’ type. Even though some larger nRMS associated
with the inversion results of the ρ + ϕ responses were observed, the particular transfer
functions’ type or station locations had no overfitting problem. These overall good fits
denote that all the inversion results have a lower average variance between the original
synthetic model and the final inversion model. Table 1 shows how the objective function
value changes during the iteration for each type of inversion. It can be seen that all the
inversions can converge to a similar level of the objective function value, which suggests



Remote Sens. 2023, 15, 3416 11 of 18

the inversions have worked properly. However, for the inversion of the W, Φ, and Φ + W
responses, the decreases in the objective function values were not significant. In addition,
the use of the W responses as complements to the Zo responses significantly accelerated
the convergence of the inversion (i.e., reduced the maximum number of iterations from
130 to 87). However, this situation was completely opposite in the joint inversion of the
two types of dimensionless quantity (i.e., the Φ + W responses).
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Figure 5. The R.M.S. misfits of the 3-D inversion distribution at each MT station for different
inversions with varying transfer function types.

Table 1. Objective function value (φ) obtained from the inversion for different transfer functions.

Data Types ρ + ϕ Zo Z Φ W Zo + W Z + W Φ + W

φ initial 187.07 806.22 407.49 77.95 11.42 408.82 275.37 44.69
φ final 2.16 0.77 0.89 0.43 0.55 0.83 1.61 2.08

Iterations 76 130 93 75 31 87 72 123

3.3.1. Results of Inverting the MT and MV Transfer Functions Individually

The models resulting from the inversion of the MT and MV transfer functions data in-
dividually are displayed in Figure 6, where Figure 6a1–a6 illustrates the electrical resistivity
model beneath a W–E profile (y = −1.5 km), and the following Figure 6b1–b6,c1–c6 repre-
sents the horizontal slices at 400 m deep and 4000 m deep, respectively. The corresponding
final inversion models of all the responses characterized the main structures and resistivity
contrasts of the synthetic model in approximately the correct location. The inversion results
of the Zo, Z, and Φ responses recovered the closest resistivity value to the true value of
the 3 Ω·m for the oblique conductive block and well constrained the lateral extent of the
oblique conductive block, although the absolute resistivity of the eastern conductive block
was overestimated when inverting the Zo responses. Although the inversion results of the
Zo responses depicted the boundaries of the oblique conductive block in the background of
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high resistivity (1000 Ω·m), the boundary characterization of the oblique conductive block
in the background of low resistivity (100 Ω·m) was distorted. Additionally, the inversion
results of the Φ responses better defined the upper and lower boundary of the conductive
block in the background of low resistivity (100 Ω·m, which was the same as that in the
prior model), whereas the lower boundary of the recovered conductive block appeared at a
shallower depth than in the real model when the Z responses were used in the inversion.
Note that the inversion results of the Φ responses defined a wrong upper boundary in the
background of high resistivity (1000 Ω·m); the reasoning behind this could be related to
the initial resistivity of the prior model.
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Figure 6. The results of inverting the MT and MV transfer functions individually. (a1–a6) illustrate
the electrical resistivity model beneath a W–E profile (y = −1.5 km), and the following figures
(b1–b6,c1–c6) represent the horizontal slices at 400 m deep and 4000 m deep, respectively.
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In contrast, the corresponding final inversion models of the ρ + ϕ and W responses
could only infer the lateral extent of the oblique conductive block; although the magnitude
of the resistivity contrast between the two half layers (including that between the two cov-
ers) was reproduced correctly. When only inverting the W responses, the inversion model
was unable to define the continuity of the oblique conductive block; the resulting conduc-
tive block was characterized as two halves (high resistivity in the western part and low
resistivity in the eastern part). This is because the W responses lacked information about
the absolute resistivity values but contained information about the variations in the relative
conductivity in the subsurface. There was a serious distortion in the characterization of
the vertical boundary of the conductive block when inverting the ρ + ϕ responses, which
manifested as redundant anomalies below the oblique conductive block. The reasoning
behind the poorer recovery of the resistivity values and geometry of the oblique conductive
block with the ρ + ϕ responses inversion is that the imaginary part of the Jacobi matrix was
ignored when processing the apparent resistivity and impedance phase data in this paper;
therefore, the accuracy of the inversion decreased. The outcome of our study indicated
that the recovery of the subsurface resistivity structure showed a strong dependence on the
type of transfer functions.

3.3.2. Results of Inverting the MT and MV Transfer Functions Jointly

The joint inversion results of the MT and MV transfer functions data are displayed
in Figure 7 and are compared with the results of inverting the MT transfer functions data
individually. It can be seen that all the joint inversion results reproduced a more accurate
magnitude of the resistivity contrast between the two half layers. The use of the W responses
as complements to the Zo and Z responses in the inversion slightly improved the resolution
of the oblique conductive block. In these cases, the recovery of the resistivity values and
geometry of the oblique conductive block was significantly improved. Particularly for
complementing the Zo responses with the W responses, a more homogeneous resistivity
distribution of the oblique conductive block was defined. However, the lower boundary of
the oblique conductive block seemed to appear at a shallower depth when complementing
the Φ responses with the W responses. These results indicate that the W responses were
insufficient to characterize the variations of conductivity in the vertical direction, but
the corresponding final inversion models preferably constrained the lateral variations
of the conductivity when inverting the W responses as a complement to the Zo, Z, and
Φ responses.

3.3.3. Assessment of the Model’s Accuracy

In order to quantify how well the models obtained from the inversion process repro-
duced the synthetic model, we calculated the differences between them in model space.
The results with a focus on the vertical structures below the W–E profile and the lateral
structures at a depth of 4000 m are shown in Figure 8. The differences between the synthetic
model and the inversion models were calculated using the decadic logarithm electrical
resistivity values. The colors indicate the resistivity biases between the inversion model
and the synthetic model, where the red and blue colors, respectively, indicate the results
that were more conductive and more resistive than the synthetic model, respectively, and
the white color indicates an almost-perfect fit between the final inversion model and the
original synthetic model. The average differences for each type of inversion are shown
in Table 2. It can be seen that all the inversion models better defined the geometry of the
conductive block, although the electrical resistivity values of the conductive block edges
were more resistive than in the synthetic model. The results from the inversion processes
complementing the W responses with the Zo, Z, and Φ responses significantly improved
the recovery of the electrical resistivity values of the regional 2-D resistivity background,
showing a more homogeneous resistivity distribution and correctly reproducing the mag-
nitude of the resistivity contrast between the two half layers. However, the electrical
resistivity values associated with the lower boundary of the conductive block were more
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resistive than in the synthetic model when the W responses were involved in the inversion
of the Φ responses.
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Figure 7. The joint inversion results of the MT and MV transfer functions data are compared with
the results of inverting the MT transfer functions data individually. (a1–a6) illustrate the electrical
resistivity model beneath a W–E profile (y = −1.5 km), and the following figures (b1–b6,c1–c6)
represent the horizontal slices at 400 m deep and 4000 m deep, respectively.
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Figure 8. The differences between the corresponding final inversion models and the synthetic model.

Table 2. The average differences between the final inversion models and the original synthetic model.

Data Types Zo Z Φ Zo + W Z + W Φ + W

Difference 0.127 0.139 0.124 0.119 0.132 0.172

4. Discussion

In this work, we performed sensitivity tests on the different MT and MV transfer
functions, including the ρ, ϕ, Zo, Z, W, and Φ responses. The results of our numerical
experiment suggest that the difference in the sensitivity of the Z and Zo responses to the
anomalies directly leads to the difference in their capabilities to recover the subsurface
electrical resistivity. The capacity for recovering the detail of the geoelectrical structures
(Figure 6) was remarkably improved when the on-diagonal components of Z were used.
Although the sensitivity of the ρ responses was similar to that of the Z responses, the ρ + ϕ
responses were not good types of data to define the boundaries of the subsurface geo-
electrical structure and even resulted in redundant artifacts under the oblique conductive
block (Figure 6), which may be caused by ignoring the imaginary part of the Jacobi matrix.
Inspecting the sensitivities obtained from the W responses, the sensitivity associated with
the oblique conductive block was the lowest, and the locations and periods responsive to
the anomaly body appeared as a narrow zone. This property of the W responses hence
resulted in the worst recovery ability of the subsurface geoelectrical structure. For the
Φ responses, the sensitivity in connection with the anomaly body was moderate, and
the locations and periods responsive to the anomaly body were sensitive at the edges of
the structures, making the Φ responses a good type of data to define the boundaries of
the structures. The consequences of this property in the inversion process can be seen
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in Figures 6–8, where the models obtained by inverting the Φ responses were closer to
the original synthetic model; in particular, the boundary of the oblique conductive block
was better than that by inverting other data types. Although the W responses were intrin-
sically less sensitive to the existence of the anomaly than the Zo, Z, and Φ responses, it
effectively improved the ability to recover the detail of the geoelectrical structures when it
was complemented with the Zo or Z responses. This improvement was more remarkable
for the off-diagonal components of Z, the models including the W responses obtained the
horizontal boundary of the oblique conductive block closer to the original model (Figure 7),
and the difference between the final inversion model and the original synthetic model
was smaller than that obtained by inverting the Zo responses individually (Figure 8 and
Table 2). However, the use of the W responses as an accompaniment to the commonly used
Φ responses obtained the incorrect bottom boundaries of the geoelectrical structures, which
increased the difference between the final inversion model and the original synthetic model
(Figure 8 and Table 2), even though the recovery of the background resistivity was better.

Many previous studies have emphasized that the use of diagonal elements in the
inversion of the full impedance tensor Z possesses a superior capacity to reproduce the
dimensionality of the 3-D geoelectrical structures [28,29]. These conclusions can be validated
by the results from the inversion of the Z and Zo responses in our work; it can be seen
that the use of the Z responses aided the superior determination of the conductive block
than when using the Zo responses, including the characterization of the geometry and the
absolute electrical resistivity values (Figure 6). The phase tensor Φ was more sensitive to the
vertical contrasts and was unaffected by galvanic distortion; the approach of inverting the
phase tensor Φ is highly recommended for 3-D inversion [37,39]. Although the results of
inverting only the Φ responses presented a stronger dependence on the resistivity level of
the prior model (Figure S1), complementing the Φ responses with the W responses can lead
to the superior recovery of the absolute resistivity structure [38]; this inference is supported
by the recovery of the background resistivity shown in our work (Figures 7 and 8). The
tipper vector W was more indicative of the lateral contrasts; thus, the results of inverting
the W responses as a complement to the Zo, Z, and Φ responses provided preferable lateral
contrasts of conductivity, particularly for the recovery of the background resistivity model
(Figures 7 and 8).

5. Conclusions

This study provided an appraisal of the MT and MV transfer functions’ selection in
a 3-D inversion by utilizing a quasi-Newton method based on the L-BFGS formula. The
inversion result showed that the 3-D inversion of either the Z or Φ responses presented a
superior ability to recover the electrical resistivity values of the oblique conductive block
as well as the background resistivity model. Moreover, the joint inversions of the Zo, Z,
or Φ responses with the W responses possessed a superior imaging of the geometry and
horizontal continuity of the oblique conductive block. From these results, we conclude that
the ability to recover the subsurface electrical resistivity depends on the sensitivity of the
transfer function. The greater the transfer function resistivity perturbation produced by the
model resistivity perturbation, the stronger the ability of the transfer function to recover
the underground structure. Comparing the effect of the individual and joint inversion
of different transfer functions is an important way to determine the advantages of each
transfer function and achieve a more reasonable interpretation.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/rs15133416/s1, Figure S1: Resistivity models obtained from inversion of
different transfer functions data, displayed as horizontal slices at depth of 4 km and across the array.
Horizontal slices showing the results of the inversion processes with homogeneous half-space models
of (a) 10, (b) 100, (c) 300, and (d) 1000 Ω·m; Figure S2: Resistivity models obtained from inversion
of Z and W responses with different model covariance smoothing parameters of 0.1, 0.2, 0.3, 0.4,
0.5, and 0.7, respectively. (a1–a6) illustrating the electrical resistivity model beneath a W–E profile

https://www.mdpi.com/article/10.3390/rs15133416/s1
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(y = −1.5 km), the following Figures (b1–b6) and (c1–c6) representing the horizontal slices at 400 m
depth and 4000 m depth, respectively.
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