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Abstract: The recent discovery of water ice in the lunar polar shadowed regions (PSRs) has driven
interest in robotic exploration, due to its potential utilization to generate water, oxygen, and hydrogen
that would enable sustainable human exploration in the future. However, the absence of direct
sunlight in the PSRs poses a significant challenge for the robotic operation to obtain clear images, con-
sequently impacting crucial tasks such as obstacle avoidance, pathfinding, and scientific investigation.
In this regard, this study proposes a visual simultaneous localization and mapping (SLAM)-based
robotic mapping approach that combines dense mapping and low-light image enhancement (LLIE)
methods. The proposed approach was experimentally examined and validated in an environment
that simulated the lighting conditions of the PSRs. The mapping results show that the LLIE method
leverages scattered low light to enhance the quality and clarity of terrain images, resulting in an
overall improvement of the rover’s perception and mapping capabilities in low-light environments.

Keywords: lunar exploration; permanently shadowed region; robotic mapping; SLAM; low-light
enhancement

1. Introduction

The discovery of water ice in the lunar permanently shadowed regions (PSRs) has
driven international space agencies to conduct robotic explorations [1–3]. The PSRs are
inside impact craters near the lunar south and north poles. As the Moon’s rotation axis
is nearly perpendicular to its orbital plane around the Sun, these crater interiors did not
receive direct sunlight for geologically long periods of time. Cold and dark environments
in the PSRs trapped volatile materials, especially water ice [4–6]. In the context of in-situ
resource utilization (ISRU) for producing consumable products from native resources,
water ice can be utilized to produce oxygen and water for life support or hydrogen for fuel
and propellant [7,8]. Thus, water ice is a key resource for enabling long-term sustainable
human exploration and habitation.

Planetary rovers have provided in-situ ground imagery for scientific investigation.
Future robotic missions in the lunar PSRs are planned to carry out comprehensive surveys
to characterize the presence and behavior of volatile resources and to eventually create
a resource map for future human exploration [9,10]. However, the dark environment in
the PSRs affects rovers’ vision systems for detecting hazardous obstacles and building 3D
topographic maps of unknown environments. Although Lunar Orbiter Laser Altimeter
(LOLA)-based digital elevation models (DEM) definitely help in understanding surface
elevations and topographical properties of polar regions, their low spatial resolution, which
ranges from 5 m to 240 m [11], is insufficient for a rover to determine an obstacle-free
path covering the shortest distance and consuming the least energy. Highly detailed and
accurate 3D topographic maps are essential for planning safe and efficient traverse routes,
identifying in-situ resources, and establishing infrastructure for human settlements and
activities [12,13]. Future robotic missions require rovers to autonomously navigate and map
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uncertain environments. For example, a rover might need to identify hazardous obstacles
in a timely manner. Therefore, there have been active research efforts on simultaneous
location and mapping (SLAM)-based robotic mapping systems employing a variety of
image sensors. The image sensors are generally classified into active (e.g., LiDAR, radar,
and time-of-flight camera) and passive (e.g., optical camera) [14–16]. Active sensors directly
obtain 3D topographic data regardless of dark illumination conditions. However, for a
solar-panel- and battery-powered rover, active sensors are heavy, large, and have high
energy consumption. Therefore, most rovers for Moon and Mars explorations carry optical
cameras due to their lighter weight, smaller size, and lower power consumption [17–19].
Adopting supplementary light sources such as headlights can be practical under low
illumination conditions [2,20]. However, as the rover moves, the position and orientation
of headlights continuously changes relative to the surrounding environment. Variations in
light intensity and the creation of shadows on nearby terrain features can cause inaccuracies
in the rover trajectory estimation and inconsistencies in RGB colors in 3D point clouds.

This research is motivated by recent research results indicating that the PSRs are not
completely dark. While direct sunlight does not reach the PSRs, most areas receive reflected
light from the crater rim and Earth and faint light from stars [21–23]. For a comprehensive
understanding of illumination conditions, a number of simulation models were developed
to provide insights into how light is scattered and distributed within the PSRs [23–25].
Mazarico et al. [23] reported that the LCROSS impact site in the Cabeus PSR is expected
to have an average flux of 0.025 mWm−2 and a maximum flux of 0.172 mWm−2. In
addition, the ShadowCam onboard the Korean Pathfinder Lunar Orbiter (KPLO) utilized
scattered light to acquire high-resolution and high-signal-to-noise-ratio images within the
PSRs [26,27]. In this regard, this research presents a visual SLAM-based robotic mapping
method that incorporates the low-light image enhancement (LLIE) method. The LLIE
method improves the brightness and contrast of images captured in poorly exposed regions,
enhancing the capability of the robotic mapping method to estimate the location of a rover
and to construct a topographic map of its surroundings in the PSRs. This paper is organized
as follows: Section 2 provides an overview of related research on planetary robotic mapping
and LLIE methods. The robotic mapping method is presented in Section 3. Section 4
describes the test bed and presents test results for examining and validating the proposed
method. Finally, the conclusion is presented in Section 5.

2. Related Works
2.1. Planetary Robotic Mapping Method

In robotic exploration, localization and mapping is a fundamental task for supporting
scientific and engineering operations. In the early stages of Mars exploration, the Sojourner
rover was deployed to explore a landing site within a 10 m × 10 m area. Iterative feature
matching on lander imagery and dead reckoning with wheel encoders and a turn-rate
sensor were used for localization [28]. For more robust localization over longer distances,
close-range high-resolution images were used for topographic mapping and rover local-
ization. The Opportunity, Spirit, and Curiosity rovers used visual odometry and bundle
adjustment methods to correct positional errors caused by wheel slippage and azimuthal
angle drift. Topographic products such as local DEMs and digital orthophotos were then
generated around the landing site (or along traversed areas) [29,30]. In the recent Moon
explorations, the Yutu 1 and 2 rovers were localized by applying feature matching and
bundle adjustment methods to adjacent images along traverses. Alternatively, when the
rovers were near distinctive landmarks, feature matching between orthophotos derived
from rover and orbital (or lander) images was used for localization [31].

Although significant achievements have been made in planetary exploration, future
robotic missions will require rovers to traverse longer distances at higher speeds than in
past missions [32,33]. Prospective lunar missions are expected to involve tasks such as
sample returns or the establishment of a base [1,13,34], for which SLAM is considered to be
a fundamental method for enabling autonomous operation when locating, navigating, and
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mapping in unknown environments. Extensive research has been conducted on planetary
robotic SLAM, in which the perception of terrain and mapping outcomes primarily rely on
sensor types. Monocular SLAM methods were presented to address the challenges of locating
unconstrained motion of a rover [35,36]. However, a single camera without inertial and range
sensors is limited to unevenly distributed and sparse features, causing scale ambiguity and
measurement drift. The RGB-D SLAM was proposed as an alternative sensor that takes
advantage of both depth per pixel and color images [37,38]. However, the RGB-D sensor has
a limited range and is sensitive to changes in lighting conditions, resulting in noisy depth
measurements. LiDAR SLAM, which enables high-resolution and long-range measurement,
has showed potential for enhancing the autonomous navigation capabilities of rovers. Tong
and Barfoot [15] demonstrated the effectiveness of a LiDAR mounted on a rover for building a
globally consistent map for lunar base construction. However, planetary rovers are constrained
by limited power, computational resources, and data storage [16]. Moreover, the LiDAR sensor
has not been employed in contemporary rovers.

Therefore, in this study we selected a stereo camera for developing a visual SLAM-
based robotic mapping method. In comparison to a monocular camera, a stereo camera
can directly measure bearing and range. Point clouds with color information facilitate
the identification and detection of objects of interests. Camera systems are relatively
lighter and consume less power per unit than LiDAR. In addition, stereo cameras will be
compulsory payloads on current and future rovers (e.g., the Yutu rovers in the Chang-E 3
and 4 missions, the Perseverance rover in the Mars 2020 mission, and the VIPER rover in the
Artemis mission) [39–42]. However, adapting visual SLAM to the PSRs poses substantial
technical challenges, such as recognizing homogeneous and repetitive terrain features
in low-light environments. Therefore, to increase the visual perception and mapping
capabilities of visual SLAM, an investigation of LLIE methods is described in the following
subsection.

2.2. Low-Light Enhancement Method

The LLIE method is categorized as a conventional deep-learning-based method. Con-
ventional methods generally build models that characterize intensity values in a given
image, refining illumination to enhance the image. Histogram Equalization (HE) improves
the global contrast of an image by redistributing the histogram evenly across the intensity
range. A contrast-limited adaptive histogram (CLAHE) was proposed to overcome the
limitation of HE of overamplifying noise, especially in areas with low contrast [43]. The
entire image is divided into overlapping patches, and HE, which is adapted to each patch,
is then independently applied with a predefined threshold. The divided images tend to
improve the overall quality of an image. Dehazing was developed to mitigate the haze
effect in images [44]. However, when a low-light image is inverted, the visual effect is
similar to that of a daytime image in fog. Therefore, a transmission map using a dark
channel is first used to process the inverted low-light images. The re-inverted image offer
improved brightness and enhanced visual details.

The deep-learning-based method relies on feature extraction and a deep neural net-
work as the architecture for representing learning of data. Retinex algorithms such as
SSR [45] and MSR [46], which are inspired by the human visual system, enhance the image
by separately adjusting illumination and reflectance components in the scene [47]. A global
illumination-aware and detail-preserving network (GladNet) first uses an encoder-decoder
network to estimate global illumination distribution of low-light images [48]. A convolution
network is then followed to enhance the images while preserving their details through con-
catenation of the original low-light image. A multi-branch low-light enhancement network
(MBLLEN), which consists of a feature extraction model, an enhancement module, and a
fusion module, extracts and enhances feature maps at different scales [49]. These feature
maps are then fused to generate an enhanced image. A Kindling the Darkness network
(KinD) is a convolution network based on retinex theory [50]. An illumination network
enhances low light in an image, and a reflectance network then removes degradations.
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These deep-learning-based LLIE methods require paired datasets of low- and normal-light
images for training purposes. However, the Moon’s surface includes landforms and fea-
tures that are topographically and geologically distinct from those common on the Earth.
Therefore, in this research, emulated PSR terrain is utilized to examine the proposed robotic
mapping method described in Section 3.

3. Methodology

The visual SLAM-based robotic mapping method is designed for building a highly
detailed 3D point cloud map in the lunar PSRs. Figure 1 shows the overall flow of the
proposed method consisting of three main threads: preprocessing, localization, and dense
mapping. Unlike other planetary robotic missions during daytime, a low-illumination
condition in the PSRs can degrade the quality of image pairs from the stereo camera
mounted on a rover. Low visibility, color distortion, and increased noise can lead to
erroneous rover trajectories and mapping results. Therefore, in the preprocessing thread,
the LLIE method is additionally utilized to enhance mapping capabilities (Section 3.1) and
visual perception and tracking (Section 3.2).
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3.1. Low-Light Enhanced Image for Dense Mapping

In the mapping thread, semi-global block matching (SGBM) [51], which involves an
enhanced image pair from the preprocessing thread, is used to create a disparity map
for dense 3D mapping (Figure 1). However, the enhanced images inevitably have color
alterations and information loss, which can be considered as potential error sources that
create noise in a 3D point cloud. Thus, structural dissimilarity (DSSIM), which is a distance
metric derived from the structural similarity index measure (SSIM) [52], is used as a filter
to examine a pixel-wise correspondence between stereo pairs and to increase the mapping
accuracy (1):

DSSIM =
1 − SSIM(x, y)

2
(1)

where x and y are patches extracted from the left and right images, respectively, with a
kernel size of 15. A disparity estimate below the predefined DSSIM is used to create a 3D
point cloud as follows: X3D

Y3D
Z3D

 = K−1

X2D · Z3D
Y2D · Z3D

Z3D

 (2)

Z3D =
f · b

D(x 2d, y2d)
(3)
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where K, f, and b are the intrinsic matrix, the focal length, and the baseline between two
cameras, respectively. D(x2d, y2d) is the disparity estimate at 2D coordinates (x2d, y2d). Also,
since the accuracy of a disparity estimate is lower at longer distances, only 3D points closer
than a predefined distance (e.g., 5 m) are mapped. In the mapping process, all point clouds
from every key frame are re-projected onto a coordinate system from the first frame in an
image sequence. The mapping space is divided into a set of 3D grids with a predefined
resolution. Each grid referenced in a 3D coordinate system registers a number of 3D points
and their RGB pixel color information. The 3D grid helps in filtering and managing point
clouds. For example, when the minimal number constraint of points is set as 10 in a grid
size of 5 × 5 × 5 cm3, grids with numbers of points below the predefined threshold are
considered as noisy measurements to filter out, and other grids are recorded as unoccupied.
The RGB color associated with an occupied grid is computed simply as the mean RGB. The
occupancy and color information for each 3D grid are used to maintain consistent RGB
color information for the 3D point clouds.

3.2. Low-Light Enhanced Image for Localization

The localization thread adopts stereo parallel tracking and mapping (S-PTAM) [53]
as a base framework for estimating a camera’s pose and trajectory by matching the corre-
spondences between a terrain feature and identical features on the stereo image keyframe
(Figure 1). The following keyframe, which is selected if the number of feature matches is
less than 90% of that in the previous keyframe, is used to update the camera pose by trian-
gulating between feature matches of neighboring frames. Although low-light enhanced
images from the preprocessing thread can increase the quality and quantity of feature
matches [54], the feature extraction and matching method is limited to homogeneous (tex-
tureless) terrains in the PSRs. Therefore, in addition to the nearest neighbor distance ratio
(NNDR), the disparity map based on the mapping thread is used as another constraint to
increase accurate feature matches. In a sequence of stereo image pairs, the nearest neighbor
feature matches are typically obtained by searching along the epipolar line. The disparity
between feature matches is then computed and compared with the corresponding position
on the disparity map. When the difference between two disparities is below a threshold,
the feature matches are considered to be valid. Also, the locational error is unavoidably
propagated and consequently accumulated into the camera trajectory while a rover is
traversing rugged and homogeneous terrains. The bundle adjustment, which involves a
series of keyframes from the beginning, is used to locally optimize the camera poses. Also,
when a rover returns to a previously visited place, loop closure using a Bag of Words (BoW)
model [55] is used to globally minimize the accumulated drift along the rover’s trajectory.

4. Application and Results
4.1. Test Environment

The robotic mapping approach in the previous section was applied to the emulated
lunar terrain (hereafter referred to as the testbed) at the Korea Institute of Civil Engineering
and Building Technology. The test bed, which consists of a soil bin (Figure 2a) and an
adjustable-light-level LED lamp (Figure 2b), was designed to allow the rover to simulate the
mapping process under dark environments of PSRs. The soil bin has horizontal dimensions
of 6.45 m × 3.86 m. Soil is used to shape small craters and rounded piles on the flat
ground, to which a layer of the lunar simulant (KLS-1) [56] is added, and rocks and pebbles
are irregularly placed to emulate various terrain features on the lunar surface. The LED
lamp, covered with diffuser films, is utilized for simulating sunlight. The rover is a four
wheeled mobile platform equipped with two cameras (FLIR Blackfly) at a 20 cm baseline
(Figure 2c). In the experiments, the camera parameters were automatically adjusted using
FLIR SpinView. Gain, gamma, and exposure time were fixed at 17.9 db, 0.7, and 49,991 µs,
respectively. Also, during rover movement terrain images were collected at a frame
rate of 15 frames per second (fps). CLAHE and Dehaze were selected as representative
conventional LLIE methods. Due to the absence of on-site images of the lunar PSRs, it
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would not be feasible to develop a new deep-learning-based LLIE method. Therefore,
well-known LLIE methods like GladNet, KIND, and MBLLEN were selected based on
preliminary experiments using outdoor images at sunset. The deep-learning-based LLIE
methods were trained with the Low-Light (LOL) dataset, which contains 500 low-light and
normal-light image pairs [57]. These methods were further fine-tuned with 400 image sets
from emulated illumination conditions in the testbed. In the experiment, the LLIE methods
were empirically applied to the test image set under varying illumination conditions from
0.008 mWm−2 to 0.025 mWm−2 (Figure 3), which were then compared to the images taken
in a normal light condition (Figure 2c).
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Figure 3. Test image set under varying illumination conditions: (a) 7.74 mWm−2, (b) 15.64 mWm−2,
(c) 23.54 mWm−2.

4.2. Experiments under Dark Illumination Conditions

The first experiment was designed to examine the image enhancement results from
the darkest illumination condition in the test image set. Terrain images in Figures 2c and 3a
were taken at the same pose and orientation of the rover-mounted camera but under normal
(1896 mWm−2) and low (7.74 mWm−2) lighting conditions. The enhanced images were
then quantitatively and qualitatively inspected.

Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index Map (SSIM) [58], and
Delta-E were used to quantify the enhanced image qualities, using the normal light image
as the reference image. PSNR is the ratio of the maximum value of the pixel to the noise. A
higher PSNR value implies that a better dark image has been restored to match the normal
light image. SSIM analyzes the similarity of brightness, contrast, and structural changes
within an image pair in terms of human perception. A SSIM value closer to 1 means that
the enhanced image is visually similar to the normal light image, preserving the identical
structure. Delta-E is a color difference measure between normal-light and enhanced images.
In contrast to PNSR and SSIM, a lower value indicates that it is harder for humans to
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distinguish between the colors in two images. In Table 1, the evaluation metrics of PSNR,
SSIM, Delta-E indicate that all LLIE methods significantly improve the perceptual quality
of the low-light image. The overall performance of GladNet is obviously better than the
others. However, the enhanced images are inconsistently evaluated because each metric
treats different aspects of image quality. For example, Dehaze and KIND achieve the second
and third best measures in PSNR and Delta-E, respectively, but for SSIM, KIND slightly
outperforms Dehaze.

Table 1. Performance of LLIE Methods on Low-Light Image.

LLIE PSNR (dB) SSIM Delta-E

Low-Light Image 7.48 0.16 45.68
CLAHE 14.86 0.29 17.57
Dehaze 19.12 0.36 16.61
GladNet 19.70 0.45 12.38

KIND 16.59 0.38 17.41
MBLLEN 14.96 0.38 22.14

Quantitative measures do not always correspond to subjective human perceptions of
image quality. For example, the visual inspection shown in Figure 4 confirms that hidden
terrain objects (e.g., rocks and pebbles) in the dark (Figure 4a) are visualized with improved
brightness. However, in Figure 4b, CLAHE causes severe chromatic distortion, resulting in
an abnormal appearance. In MBLLEN (Figure 4f), the terrain objects and details are made
distinct by the improved color and contrast, but an excessive vignetting effect degrades
the image quality. In Figure 4e, KIND preserves the clarity, but chromatic artifacts, mainly
blue, are randomly introduced over the entire image. Dehaze (Figure 4c) improves the
color and contrast without severely degrading the image quality, but the color of the entire
image deviates from that of the normal light image. GladNet, in Figure 4d, improves
the brightness best, maintaining clarity and color in the darkest condition illustrated in
Figure 3a.
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Although the PSRs are known to have low-light environments, the lighting condition
varies depending on the landforms and topological features. Therefore, we devised a
second experiment to investigate the consistency of restoration in various illumination con-
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ditions. Dehaze and GladNet were selected due to their stable quantitative and qualitative
performance in the first experiment. Figure 5 shows the image enhancement results for the
low-light images in Figure 3. In Figure 5a, the image brightness of Dehaze is obviously
proportional to the illumination level. However, in Figure 5b, GladNet tends to demon-
strate relatively consistent color enhancements of ground and terrain objects, maintaining
image quality. In addition, when enhanced images in 7.74 mWm−2 and 23.54 mWm−2

are compared, GladNet enhances low-light images with less noise. For this reason, we
ultimately selected GladNet for the proposed robotic mapping method to reconstruct the
emulated terrain in the test bed.
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4.3. 3D Mapping Results

In the experiment for 3D mapping, the rover moved along a clockwise path around
the soil bin and returned to its starting position. In the test bed, the LED lamp on the ceiling
is not located at the center above the soil bin. The six locations from A to F show different
illumination measures varying from 3.318 mWm−2 to 22.199 mWm−2 (Figure 6a). Under
such dark conditions, without LLIE methods the proposed method failed to reconstruct a
3D terrain due to the insufficient number of feature matches. However, when combined
with GladNet, the proposed method sequentially enhanced the stereo image pairs from the
rover-mounted camera, resulting in a significant improvement in both quantity and quality
of feature matches. Moreover, the restored color information combined with the depth
value in the disparity map produced point clouds with consistent brightness and color
(Figure 6b). The point cloud map has sparse density in the middle, and occlusions exist
at nearby craters and rocks due to the low tilting angle of the stereo camera mounted on
the rover’s mast. However, the colorized 3D points enable an enhanced understanding of
morphological characteristics such as craters and mounds. Furthermore, rocks and pebbles
with different colors are clearly identified, along with their respective sizes and shapes.
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Figure 6. Robotic mapping results in the test bed: (a) test bed with illumination conditions, (b) 3D
point cloud mapping results.

Also, for the accuracy assessment, the referenced point cloud from the 3D laser scanner
(Trimble X7) was compared to the 3D point clouds from the proposed method. The Iterative
Closest Point (ICP) method was employed to align the two sets of point clouds, and the
Root Mean Square Error (RMSE) measure was then computed as 0.034 m. Meanwhile, the
positional error distribution over the test bed (Figure 7a) was computed along with the po-
sitional error histogram (Figure 7b), using identical magnitude of a positional error ranging
from blue to yellow-green. The RMSE measure and the positional error distribution provide
a good indication of the overall performance of the proposed method, demonstrating its
ability to obtain accurate and reliable point clouds in low illumination conditions. The
positional error histogram also confirms that 85% of positional errors are less than 0.03 m.
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5. Discussion and Conclusions

The discovery of water ice in the lunar PSRs has greatly increased their scientific
importance and interest, leading to new plans for a robotic exploration mission to collect
data on the distribution and abundance of water ice and other volatile compounds in
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the lunar soil. Although the PSRs are exposed to sunlight or starlight reflected diffusely
from adjacent sunlit regions, the low illumination poses technical challenges for robotic
mapping due to the restricted visibility range and the accumulation of errors over long-term
operations. Although artificial lights could be helpful for the robotic mapping, uneven
illumination and shadows nearby terrain features may have adverse effects on rover
trajectory estimation and mapping results.

This research presents a robotic mapping method that leverages the LLIE method
to improve the brightness and color of low-light terrain images. However, the lighting
conditions in the PSRs can vary depending on the landforms and topological features.
Therefore, in the experiment, three terrain images under different illumination conditions
were obtained from an emulated PSR terrain. The performance of both conventional
(CLAHE, Dehaze) and deep-learning-based (GladNet, KinD, MBLLEN) LLIE methods
was evaluated to ensure image enhancement results in the darkest conditions as well as
consistent color restoration across terrain images at different degrees of illumination. The
experimental results demonstrated that all LLIE methods reveal hidden details and outlines
of terrain objects in low-light images. However, the predefined mathematical models in the
conventional methods have limitations in scalability for diverse low-lighting conditions.
The excessive contrast enhancement in the CLAHE leads to the amplification of image
details and intensity beyond the desired level. Although Dehaze enhances both color
and contrast without significant degradation of image quality, the brightness of enhanced
images varies depending on the illumination level. In contrast, the deep-learning-based
methods are data-driven, requiring a paired training dataset to derive a learning process to
find unknown structures or patterns in diverse illumination environments. In particular,
GladNet significantly improves image quality metrics and flexibly enhances structural
consistency, brightness, and color consistency of low-light images. In the experiment for 3D
mapping, the proposed method without LLIE methods failed to reconstruct a 3D terrain.
However, when combined with GladNet, the dense point cloud map was reconstructed
with a more accurate natural appearance and inherent colors.

The experimental results show that the proposed method has potential for the robotic
exploration of the lunar PSRs. However, since robotic exploration of the lunar PSRs has
not yet been achieved, there are no direct measurements of illumination available. It is
expected that the actual illuminance levels will vary significantly depending on factors
such as topography, nearby terrain features, and the specific location within the lunar
PSRs. Also, the illumination and terrain conditions in the testbed are limited to emulate the
large-scale and complex environment of the PSRs. Therefore, as the knowledge of the lunar
PSRs advances, the proposed method should be continually improved.
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