
Citation: Khan, S.D.; Basalamah, S.

Multi-Branch Deep Learning

Framework for Land Scene

Classification in Satellite Imagery.

Remote Sens. 2023, 15, 3408. https://

doi.org/10.3390/rs15133408

Academic Editor: Giles M. Foody

Received: 28 May 2023

Revised: 24 June 2023

Accepted: 27 June 2023

Published: 5 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Multi-Branch Deep Learning Framework for Land Scene
Classification in Satellite Imagery
Sultan Daud Khan 1,* and Saleh Basalamah 2

1 Department of Computer Science, National University of Technology, Islamabad 44000, Pakistan
2 Department of Computer Engineering, Umm Al-Qura University, Mecca 24382, Saudi Arabia;

smbasalamah@uqu.edu.sa
* Correspondence: sultandaud@nutech.edu.pk

Abstract: Land scene classification in satellite imagery has a wide range of applications in remote
surveillance, environment monitoring, remote scene analysis, Earth observations and urban planning.
Due to immense advantages of the land scene classification task, several methods have been proposed
during recent years to automatically classify land scenes in remote sensing images. Most of the work
focuses on designing and developing deep networks to identify land scenes from high-resolution
satellite images. However, these methods face challenges in identifying different land scenes. Com-
plex texture, cluttered background, extremely small size of objects and large variations in object
scale are the common challenges that restrict the models to achieve high performance. To tackle
these challenges, we propose a multi-branch deep learning framework that efficiently combines
global contextual features with multi-scale features to identify complex land scenes. Generally, the
framework consists of two branches. The first branch extracts global contextual information from
different regions of the input image, and the second branch exploits a fully convolutional network
(FCN) to extract multi-scale local features. The performance of the proposed framework is evaluated
on three benchmark datasets, UC-Merced, SIRI-WHU, and EuroSAT. From the experiments, we
demonstrate that the framework achieves superior performance compared to other similar models.

Keywords: scene classification; aerial imagery; deep learning; multi-scale model; remote sensing;
scene understanding

1. Introduction

With the advancements in remote sensing technologies, considerable amount of satel-
lite data can be easily acquired [1]. The availability of high-resolution satellite images opens
new opportunities and challenges for researchers and scientists from the remote sensing
community. During recent years, researchers and scientists have utilized remote sensing
data to explore various semantic tasks such as road segmentation [2], land cover semantic
segmentation [3] and classification [4], building extraction [5], farmland segmentation [6],
and multiple geo-spatial objects detection [7]. Among these semantic tasks, land cover clas-
sification has achieved tremendous attention from the research community due to its wide
applications in various fields. The task of land cover classification is to identify the scene,
given the remote sensing image. Such information can be utilized in urban planning [8,9],
disaster assessment [10], landslide hazards [11], monitoring of ecosystems [12], depletion
of ground water [13], crop fields [14], etc.

Several methods and techniques have been proposed in the literature to classify
land cover patterns. Generally, we categorize these methods into two major groups:
(1) unsupervised and (2) supervised methods. The unsupervised methods adopt various
clustering techniques, for example, fuzzy c-means [15], K-means [16], etc., to identify the
patterns in satellite images. We further categorize supervised techniques into two groups:
(1) handcrafted features and (2) deep hierarchical features. The handcrafted-features-based
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techniques extract discriminating features and employ statistical machine learning models,
for example, SVM [17], random forest [18], and decision trees [19], to identify different land
patterns in satellite images. Deep learning models, on the other hand, automatically learn
deep hierarchical features from the raw images [20].

Convolutional neural networks (CNNs) are recognized as the most powerful and
mainstream models for various classification [21], object detection [7] and segmentation
tasks [3]. Deep learning models automatically capture rich contextual information and
learn hierarchical features from various layers of CNN models.

Despite immense success of deep learning models in natural images (captured on
the ground level), the performance of deep learning models in land cover classification
tasks in remote sensing images still suffers from the following limitations: (1) The size
of objects in satellite images is very small, and they usually cover a small portion of the
whole image [22], as shown in Figure 1 (left). This problem will lead the network to learn
a large amount of useless features, and the network may not be able to learn important
discriminating features. (2) There is a large variation in object scales in remote sensing
images [7]. For example, as shown in Figure 1, the size of an airplane in an image on the
left is relatively small versus the size of the airplane in the image on the right. Due to this
problem, most single-scale or fixed-scale models cannot extract multi-scale features that are
crucial for the classification task in satellite imagery.

Figure 1. Sample frames with annotated bounding boxes.

In order to address the above-mentioned problems, we propose a multi-branch frame-
work for the land cover classification task in high-resolution satellite images. Generally,
the proposed framework consists of two branches. The first branch is the global contex-
tual module that ingrates a convolutional neural network (DenseNet) with the pyramid
pooling module to extract contextual information from various regions of the input image.
The second branch is the local feature extraction module that exploits a fully convolutional
neural network (FCN) and extracts multi-scale local features.

The concept of multi-branch or combining two deep learning models has gained
significant attraction from the research community and has been successfully employed
in numerous domains. By combining two deep learning models, researchers and practi-
tioners can leverage the strengths and diverse representations of each individual model.
This allows for a more comprehensive analysis of complex data and for the extraction of
meaningful insights. A multi-branch deep learning framework is proposed in [23] that
combines a convolutional neural network with a recursive neural network for blood cell
image classification. Similarly, the method in [24] combines a graph neural network and
CNN for hyperspectral image classification. A multi-column deep learning network is
proposed in [25] for digit image classification. In [26], the authors proposed a framework
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for image classification that combines both deep learning features and handcrafted fea-
tures. A two-stage deep model is proposed in [27] for painting classification. The success
of multi-branch networks in classifying natural images has led researchers to develop
dedicated multi-branch models for the purpose of scene classification in remote sensing
images. For example, the authors proposed a two-stream architecture, namely, structure
key area localization (SKAL) for image classification in high-resolution satellite images.
Similarly, a dual-branch structure model, namely, GLDBS, is proposed in [28] for scene
classification in remote sensing images. Although the proposed multi-branch framework
follows a similar pipeline to that of the SKAL and GLDBS models, it distinguishes itself in
the following ways.

Comparisons and Differences: The proposed framework is apparently similar to the
SKAL-based two-stream architecture [22] and global–local dual-branch structure (GLDBS) [28].
However, the proposed framework differs in the following ways:

• The global streams of both the SKAL and GLDBS frameworks use feature maps of
the last convolutional layer for classification. This strategy reduces the discriminating
capability of the framework by ignoring the important information hidden in various
layers of the network. Moreover, these frameworks have limitations in effectively
aggregating global contextual information, which often results in misclassification of
visually similar but distinct objects. In contrast, the proposed framework integrates
the pyramid pooling module to incorporate more contextual information from various
regions of the input feature maps.

• The local streams of both the SKAL and GLDBS frameworks utilize a convolutional
neural network (CNN) to identify the coarse locations and scales of objects in the
scene. Due to this strategy, the frameworks are unable to obtain fine-grained features
from the local regions, and they lead to background noise. In contrast, the local
branch of the proposed framework employs a two-stage model by exploiting a fully
convolutional network (FCN). The model first generates multi-scale object proposals
(corresponding to the local region of the image) and then extracts discriminating
features from important local areas (object proposals) of the input image.

Considering the limitations of previous methods, the contributions of the proposed
work are listed as follows:

1. A multi-branch deep learning framework is proposed for land scene classification in
satellite images.

2. Unlike previous methods, the first branch of the framework (global contextual module)
effectively aggregates contextual information from various regions of the images by
integrating the pyramid pooling module.

3. The local feature extraction module extracts multi-scale information and reduces back-
ground noise by learning discriminating features from the local regions of the image.

4. We gauged the performance on three publicly available challenging datasets. From the
experiments results, we demonstrate the effectiveness of the proposed framework.

We organize this paper as follows: Section 2 discusses the recent literature related to
our work. We provide details of the proposed framework in Section 3. In Section 4, we
provide the details of the datasets and present the comparison results with other reference
methods. In Section 7, we discuss the significance of the proposed work, future work,
and finally conclude the paper.

2. Related Work

In this section, we precisely review the related methods for land cover classification
tasks proposed during the last decade. Generally, we divide these methods into two main
categories: (a) unsupervised models and (b) supervised models. We further classify super-
vised methods into (1) handcrafted feature representation models and (2) deep hierarchical
feature models.
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2.1. Unsupervised Models

Unsupervised feature models automatically learn the features from unlabeled images.
These models do not rely on learning manually designed features and can directly learn dis-
criminating features from the raw images. Due to this unique property, these models have
received much attention from the research community during recent years. Acknowledging
the success of these models, the research community has tried to explore the benefits of
these models for land cover classification tasks. An unsupervised feature learning method
is proposed in [29] for scene classification in aerial images. The method learns a set of
basis functions by extracting dense low-level feature descriptors to identify various spatial
patterns in the scene. A two-layer sparse coding model is proposed in [30] that introduces
visual attention to precisely identify image scenes by focusing more on saliency information
and by relaxing the training phase. Similarly, a sparse coding method is used in [31] to
extract local ternary pattern histogram Fourier (LTP-HF) and rotation-invariant texture
features. These features are then combined, and a two-stage linear support vector machine
is trained to classify scenes in high-resolution satellite images. An unsupervised feature
learning model is proposed in [32] for satellite image retrieval based on collaborative
matrix fusion. The framework extracts four various handcrafted texture features, including
LBP, GLCM, SIFT, and MR8. The framework then fuses these features through an affinity
metric. A spectral clustering algorithm is proposed in [33] that learns local features as
well as inherent local structures of the image patches. The model adopts the manifold
analysis method to project the patches of images to low-dimensional space and learns the
dictionary by employing the K-means clustering algorithm that clusters similar features.
Similarly, an unsupervised model is proposed in [34] that exploits the relationship between
the intensity and color information. A two-layer unsupervised model is proposed in [35]
that extracts edge and corner-like features from satellite images. The K-means clustering
algorithm is adopted that jointly learns simple and complex structures in the satellite image.
A saliency-guided unsupervised model is proposed in [36] for remote scene classification.
The model extracts representative image patches from the salient regions of the image, and
then, a set of features are learned through an unsupervised learning process.

Considering the task of scene classification in remote sensing images, unsupervised
models suffer from the following limitations: (1) A large portion of unsupervised models
rely on clustering techniques that require manual interpretations of different patterns.
These manual interpretations lack the actual representation of the data due to which these
models introduce biases and inconsistencies in the classification results. (2) Since these
models are not trained on labeled data, these models have limited generalization and may
not recognize and classify the new data. (3) These models focus on capturing the statistical
features of the data and do not incorporate multi-scale contextual information that is crucial
for such classification tasks.

2.2. Supervised Models

Generally, supervised models work in two stages. In the first stage, the model extracts
features from the labeled data. In the second stage, a machine learning algorithm is
employed to learn the features (extracted during the first stage) and predicts the output.
Generally, we categorize these models into the following two categories:

2.2.1. Handcrafted Feature Representation Models

This class of models requires domain knowledge and heavily relies on the computation
of complex features. These features include, edge, color, corner, texture, shape, size,
and other complementary features required for scene classification.

In [37], the authors proposed an auto encoder–decoder model for scene classification
in remote sensing images. The model learned a mid-level visual dictionary by learning
discriminating visual features that capture high-level context of the image. The authors
proposed a model [38] that quantizes non-spatial features and uses bag of visual words
(BOVW) for land use classification problems. The model in [39] uses a color structure code
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(CSC) and support vector machine for land cover classification. A mutual information
learning scheme is adopted in [40] to encode the structure of the given image using a local
binary pattern (LBP). Rich texture information is captured via a multi-scale completed
local binary pattern (CLBP) in [41], and kernel-based learning is adopted for land use
classification tasks. The model in [42] identifies the statistical signature of the object by
exploiting saliency information and GIST features. The saliency information extracts the
local details of the object while the GIST features capture the global contextual features.
Both of these features are combined, and a SVM model is trained to detect and classify the
target in satellite images. A combination of Gabor and GIST descriptors is used in [43] for
aerial image classification. The model computes Gabor and GIST features and then trains
a support vector machine for aerial image classification. SIFT-based visual vocabulary is
learned in [43] to classify complex scenes in remote sensing images. Texture and color
information is exploited in [44], which decomposes a 2D discrete wavelet transform using
bag of visual words for land cover classification. The method extracts local features from
the grey-scale image and then decomposes the image into dense regions. The model then
computes a histogram of visual words by computing visual words from dense regions.
The model [45] extracts multi-scale, multi-resolution LBP features and local codebookless
features from images. The combined model fuses both features and learns kernel-based
extreme learning for classifying high-resolution satellite images.

Based on the discussion above, it is evident that handcrafted feature-based supervised
models have been widely employed for scene classification in remote sensing. However,
these models have several shortcomings and limitations that hinder their performance
and applicability. (1) These models require domain expertise to manually design and
extract features from remote sensing images. This process can be time-consuming and
labor-intensive, and the selected features may not capture all the relevant information
present in the data, leading to sub-optimal performance. (2) Since features are designed
based on specific assumptions, these models have poor generalization capability. (3) The
features engineered manually may fail to capture multi-scale information and contextual
relationships adequately, resulting in diminished performance. (4) Handcrafted features
are based on simplistic assumptions and may not comprehensively capture the intricate
patterns and interactions among various objects or regions in the scene. (5) Handcrafted
feature-based models may not properly utilize the spatial relationships between pixels
and therefore face difficulties in capturing the spectral characteristics specific to different
scene classes.

2.2.2. Deep Hierarchical Feature Models

In contrast to handcrafted features models, deep learning models learn deep hierar-
chical and powerful features from various layers of the network and efficiently discover
context and structural features from multidimensional training data [46]. Due to the success
of deep learning models, various networks have been designed to solve various problems in
remote sensing applications. A deep learning framework is proposed in [47] that identifies
various crop types in remote sensing images. A novel multi-scale deep learning framework
is proposed in [48]. The framework employs an atrous spatial pyramid pooling (ASPP)
module to extract multi-scale discriminating features and combines the advantages of two
deep learning models ASPP-Unet and ResASPP-Unet for identifying different land cover in
remote sensing images. A deep belief network (DBN) is proposed in [49] that combines the
advantages of both supervised and unsupervised learning strategies. The framework ex-
tracts rich contextual features from synthetic aperture radar (SAR) data. In [50], the authors
adopt a transfer learning strategy for land-scene classification in remote sensing images.
The authors proposed two strategies of feature extraction. In the first strategy, the model
extracts features from fully connected layers, and in the second strategy, the model uses
the last convolutional layer for feature extraction and then employs various feature coding
schemes. A multi-scale bag of visual words (MBVW) based on a deep learning feature
framework is proposed in [51] for scene classification. A capsule network-based framework
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is proposed in [52] that uses a pretrained model for feature extraction. Then, the feature
set is provided as input to the capsule network (CapsNet) to classify different scenes in
remote sensing images. A comprehensive analysis of different deep learning models is
proposed in [53] that utilizes different convolutional neural networks to understand the
performance of these models in scene classification tasks in remote sensing images. A
feature fusion model is proposed in [54] that employs the VGG-16 model to extract multi-
scale features, and then, a fusion layer is introduced to fuse hierarchical features in four
different branches. A similar fusion model is proposed in [55] that extracts features from
various layers and then employs the Fisher kernel coding scheme to construct a mid-level
representation of deep features. The framework fuses mid-level features and features of
the last convolutional layer by principal component analysis that finally predicts the classi-
fication score of the given scene. A bag of convolutional features (BoCF) is proposed in [56]
that generates visual words based on deep features. A graph convolutional network is
proposed in [57] that integrates the deep features for scene classification in remote sensing
images. A zero-shot learning model is proposed in [58] that classifies the unseen land cover
scenes in high-resolution satellite images. A binary segmentation model for road extraction
in high-resolution satellite images is proposed in [59] that employs statistical machine
learning models, including decision trees, KNN, and SVM to classify the image into two
classes. Similarly, an ensemble framework of SegNet and U-Net is proposed in [60] for
building segmentation. A generative adversarial network (GAN) framework is proposed
in [61] that employs SegNet with Bi-LSTM for building segmentation.

While the aforementioned methods have shown remarkable success in various se-
mantic segmentation tasks for natural images, they fall short when applied to the scene
classification task in remote sensing images. The limitations of existing models, such as
CapsNet, U-Net, and VGG-16, in identifying a complex scene in aerial images are primarily
due to their single-scale nature, which cannot adequately handle the wide range of vari-
ations in object scales and sizes. Consequently, these models fail to deliver satisfactory
performance in capturing complex farmland patterns. In contrast, the proposed model
addresses this issue by utilizing multiple branches, where branch-1 effectively integrates
the pyramid pooling module that captures global contextual information from the scene,
wile branch-2 of the framework extracts multi-scale features and captures local features.
The proposed multi-branch architecture effectively identifies complex scenes with objects
of different scales and sizes.

3. Methodology

Generally, the proposed framework is a multi-branch deep learning framework that
consists of two deep learning branches. In the first branch, a deep learning network is
responsible for extracting global contextual features from the input image, while the second
branch extracts local information by identifying important regions in the input image.
The framework then employs deep feature fusion module to fuse the classification scores of
both branches and to obtain a classification final score for the input image. The parameters
of the framework are optimized by a combined loss function. The overall architecture of the
proposed framework is shown in Figure 2. We provide details of individual deep learning
models as follows.
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Figure 2. Architecture of framework for land cover classification.

3.1. Branch-1: Global Contextual Information Module

The global contextual branch follows the pipeline of a traditional convolutional neural
network. We use DenseNet [62] as a feature extractor in our global contextual branch.
DenseNet has enjoyed tremendous success in various object classification, detection and
segmentation tasks compared to other deep learning models. In traditional deep learning
models, information passes through several convolutional and pooling layers connected via
one-to-one connections. Due to a large number of layers and direct one-to-one connections
among the layers, the information cannot reach to the last layers of the network that leads
to the gradient vanishing problem. In contrast to one-to-one connections, each layer of the
DenseNet utilizes feature maps from all previous layers and provides its own feature map
to all subsequent layers. Such dense connections among the layers improve the information
flow and avoid the gradient vanishing problem. Furthermore, parameters among the layers
are efficiently shared, which leads to a lesser number of parameters to learn and which
improves the convergence process during training.

We use DenseNet-121 in our global contextual branch that consists of 121 layers.
Generally, the network consists of four dense blocks, {D1, D2, D3, D4} and three transition
layers, {T1, T2, T3}.

The dense block D1 consists of a stack of 6 × 2 = 12 convolutional layers. The second
dense block D2 consists of 12 × 2 = 24 layers, D3 consists of 24 × 2 = 48 layers and last
dense block D4 consists of 16 × 2 = 32 convolutional layers. The three transition layers,
{T1, T2, T3} are sandwiched between three dense blocks, {D1, D2, D3}, and the size of the
feature maps of each dense block is reduced by half after passing through the transition
layers. The output feature maps of the last dense block D4 is utilized by the classification
layer in the original DenseNet architecture.

Although deep learning models achieve their best results in different classification
tasks in natural images, their performance degrades due to the following reasons:
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(1) Aerial images are captured from a long-distance camera, where different objects appear
similar and where it is hard for the deep learning model to extract discriminating features.
(2) Multiple objects in high-resolution satellite images occupy small areas and adopt differ-
ent sizes and shapes. It is challenging for a deep learning model with a fixed scale to extract
multi-scale features. (3) Most of the existing classification models use the feature maps of
the last convolutional layer for classification; for example, DenseNet-121 uses dense block
D4 for classification. Generally, the receptive field of such a deep learning network is large,
and it is challenging for such networks to extract features of small objects and to capture
rich context.

To remedy the aforementioned problems, we modify DenseNet-121 by integrating
the pyramid pooling module adopted in PSPNet [63] for the semantic segmentation task.
The pyramid pooling module accumulates rich context from various regions of the input
feature map by employing sub-region average pooling operations of different sizes. In our
framework, the feature map obtained from dense block D4 is pooled at four different
scales {1, 2, 4, 8}. The first level is coarsest, where the feature map is pooled with 1 × 1
that converges all information of the feature map into a single bin. Similarly, at the
subsequent levels, the feature map is divided into 2 × 2, 4 × 4 and 8 × 8 sub-regions, and
then, average pooling operations are performed on each sub-region to obtain a respective
pooled map. At lower levels (1–2), the network captures low-level features, while at
higher levels (6–8), the network captures more contextual information. The pooled feature
maps are concatenated with the original feature map (obtained from dense block D4).
For concatenation, the pooled feature maps are first upsampled by employing bi-linear
interpolation to make the sizes equal to the size of the original feature map. Then, original
and pooled feature maps are flattened, concatenated and fed to the fully connected layer
for classification.

3.2. Branch-2: Local Feature Extraction Module

Th global contextual branch extracts useful information, for example, texture and
contour from the whole image; however, local features are usually ignored. The receptive
field of the global contextual branch is large and cannot capture information from local
regions. Since local regions occupy a small portion in the whole image and are generally
surrounded by a large background area, it is hard for the global contextual branch to extract
local discriminating features.

To tackle this problem, we propose a two-stage model to extract discriminating features
from important local areas of the input image. Generally, the model reasons about the
location of important regions, extracts fine-grained features from the local regions, and
suppresses background noise. Precisely, the local feature extraction branch consists of
two deep learning networks: (1) the object proposal generation network and (2) the object
proposal classification network. The first deep learning network extracts important regions
(object proposals), and the second deep learning network is used to extract features from
each important region and then classifies each proposal into a specific class.

An object proposal generation network is a data-driven deep learning network that
reasons about as to what degree a particular region (in original image) contains an object
or background. Generally, an object proposal generation network is a binary classifier
that follows the pipeline of a fully convolutional network (FCN). It takes an arbitrarily
sized image and outputs a dense heat map. Each pixel in the dense heat map shows the
probability of the presence of an object in that particular region. To cover large variations
in object scales, we first generate an image pyramid of different sizes and then provide
each level of the pyramid to FCN as input. FCN generates multiple heat maps of different
scales corresponding to different levels of the pyramid. We then employ a non-maximum
suppression technique on all heat maps to suppress the low-confidence pixels and to obtain
more refined heat maps. We then perform blob analysis to obtain multi-scale important
regions/proposals.
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For training the network, instead of using the whole image, we adopt patch-wise
training. For patch-wise training, we extract several patches from the image and categorize
those patches into two categories: object and background. For generating positive patches
(corresponding to objects), we crop several patches around the object and compute the
intersection over union (IoU) for each patch. Let V = {p1, p2, . . . , pn} represent a set of
n number of patches extracted from the training set of images. We labeled patch pi as
positive sample for which IoU ≥ 0.5 or is a negative sample otherwise. Furthermore,
for generating a negative patch (corresponding to the background), we randomly crop
several patches from the background areas. We assign label 1 to the positive set of patches
and 0 to the background patches. We assume that the image level ground truth is available
for all images.

An object proposal classification model is a multi-class classification network that
takes object proposals (generated by the objected proposal generation network) as input
and classifies each proposal into a specific class. The network follows a similar pipeline
of the object proposal generation network; however, instead of predicting binary labels,
the network classifies the instances into predefined categories. For training the network,
we use the same patch-wise training strategy as adopted for training the object proposal
generation network; however, we assign class labels to each patch instead of binary labels.

3.3. Multi-Branch Class Score Fusion Module

In order to utilize global and local information from different branches of the frame-
work, we use the prediction scores obtained from two branches. We assumed that most
semantic classes are strongly associated with specific objects, for example, an airport can
be effectively recognized by airplanes. Therefore, it is important to capture both global
context and information about the local objects to precisely classify the given scene. To cap-
ture local and global characteristics of a given scene, we adopt a late fusion strategy [64]
by averaging the prediction scores of two branches. There are several class score fusion
strategies, including max fusion, average fusion, weighted fusion [65], voting fusion [66],
stacking fusion [66], and concatenation fusion [67]. However, we use the average fusion
strategy in our work due to the following reasons: (1) Average fusion helps to reduce the
impact of outliers or noisy predictions from individual classifiers by taking the average
of class scores, which smooths out individual fluctuations, resulting in a more reliable
and robust prediction. (2) In complex classification problems, individual classifiers may
generate slightly different predictions due to variations in their training or architecture,
as in the case of the proposed framework that consists of two branches. Averaging the
class scores helps to reduce the noise introduced by these slight differences, leading to a
more stable and accurate overall prediction. (3) Averaging the class scores from multiple
classifiers can be seen as an ensemble method. Ensemble methods aim to combine the
predictions of multiple models to achieve better performance than any individual model.
(4) Average fusion is a straightforward and easy-to-understand fusion strategy. It does not
require additional parameters or complex operations, making it computationally efficient.

4. Experimental Results

To perform the experiments and to assess the performance of the proposed framework,
we used a PC equipped with a Core i7 processor and 16 GB of RAM. The training process
made use of the NVIDIA TITAN V GPU. The framework was implemented using the
PyTorch library.

For training both branches, we used the pretrained models of widely use CNN net-
works, AlexNet [20], VGG16 [68], DenseNet [62], ZF [69], and GoogleNet [70] in our
framework. Stochastic gradient descent (SGD) was used for training the network, and
we used a learning rate of 0.001 that decreased by 1/10 after every 20 epochs. For both
networks, we used a cross-entropy loss function to optimize the loss function. We trained
the networks for 100 epochs with a batch size of 64. Before feeding the network with
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patch, each patch was re-sized (224 × 224) to fit the input of the network. We trained both
networks of the local feature extraction branch independently.

We trained each branch of the framework independently. We used an image level
training strategy to train branch-1 and used a patch-wise training strategy to train branch-2
of the framework. We first trained branch-1, as it extracts global information and provides a
holistic view by assigning a scene classification score. We then trained branch-2 to provide
scores based on important local regions. Finally, the two scores were fused together by
employing a fusion block.

In the following sections, we first provide the details of the dataset. We then dis-
cuss the evaluation metrics and then provide the details of comparisons with existing
related methods.

4.1. Datasets

The UC-Merced Dataset was proposed by Yang et al. [38] in 2010. The dataset consists
of 21 different classes of aerial images, collected from 21 different locations in the United
States. These locations include San Diego, Ventura, New York, Tucson, Napa, Buffalo,
Seattle, Tampa, Boston, Santa Barbara, Jacksonville, Los Angeles, Miami, Dallas, Harrisburg,
Birmingham, Houston, Columbus, Las Vegas, and Reno. Each category contain 100 images.
The pixel resolution of each image is 256 × 256, and spatial resolution of each image is
30 cm per pixel. The images contain a variety of complex patterns with homogeneous
and non-homogeneous textures and colors. Due to the complex nature of the dataset, this
dataset has been widely used for evaluating different algorithms for land-use classification.
We split the dataset into training and testing sets by following the same convention adopted
in [71]. We kept 80% of the samples for training the framework, and the remaining 20%
of samples were used for testing purposes. Sample frames from the UC-Merced dataset
representing different classes are shown in Figure 3.

Figure 3. Sample images from the UC-Merced dataset.

The SIRI-WHU dataset was first proposed by [72]. The dataset consists of 2400 satel-
lite images collected from Google Earth and is categorized into 12 different classes that cover
different urban areas in China. Each class contaisn 200 samples with a pixel resolution of
200 × 200 and spatial resolution of 2 m. The second column of Table 1 shows differ-
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ent classes of the dataset and their corresponding class labels. Sample frames from the
SIRI-WHU dataset representing different classes are shown in Figure 4.

Figure 4. Sample images from the SIRI-WHU dataset.

The EuroSAT dataset was proposed by Helber et al. [73] for land cover and land
use classification tasks. The dataset contains ten classes and consists of 27,000 images
collected in different cities from 34 European countries. The description of classes and
their corresponding labels are provided in Table 1. The images were acquired from the
Sentinel-2A satellite and cover complex land cover scenes with high intra-class variance.
Each class of the dataset contains different land covers and contains 2000 to 3000 images per
class. The pixel resolution of each image is 64 × 64, while the spatial resolution is 10 m per
pixel. To further categorize the different agriculture land covers, the class is sub-divided
into two classes, i.e., annual crop and permanent crop. Similarly, to differentiate different
types of buildings and road footprints, the classes are divided into industrial and residential
highway classes. Different configurations of the training test, for example, 10/90, 20/80,
30/70, etc., have been adopted to evaluate the performance of different models on the
EuroSAT dataset. In this work, we used 80% of the data for training and the rest for testing.
The comparison summary of the three datasets is provided in Table 2. Sample frames from
the EuroSAT dataset representing different classes are shown in Figure 5.

Figure 5. Sample images from the EuroSAT dataset.
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Table 1. Categories and their corresponding class labels for three datasets.

Label UC-Merced [38] SIRI-WHU [72] EuroSAT [73]

1 Agricultural Agricultural Annual Crop

2 Airplane Commercial Forest

3 Baseball diamond Harbor Herbaceous

4 Beach Idle land Highway

5 Buildings Industrial Industrial

6 Chaparral Meadow Pasture

7 Dense residential Overpass Permanent Crop

8 Forest Park Residential

9 Freeway Pond River

10 Golf course Residential Sea & Lake

11 Harbor River -

12 Intersection Water -

13 Medium-density
residential - -

14 Mobile home park - -

15 Overpass - -

16 Parking lot - -

17 River - -

18 Runway - -

19 Sparse residential - -

20 Storage tanks - -

21 Tennis courts - -

Table 2. Summary of three datasets.

Dataset UC Merced [38] SIRI-WHU [38] EuroSAT [73]
No. of categories 21 12 10

Images per category 100 200 2000∼3000

Image size (pixels) 256 × 256 200 × 200 64 × 64
Spatial resolution (meters) 0.3 2 10
Total images 2100 2400 27,000

Train percentage 80 70 80

Test percentage 20 30 20

4.2. Evaluation Metrics

To quantitatively evaluate the proposed framework, we used common evaluation
metrics. These metrics include overall accuracy (OA), confusion metric (CM), precision,
recall, and F1 score. The details of all evaluation metrics are provided as follows:

• Overall accuracy (OA) measures and provides general insight about the performance
of the framework and is computed as the ratio of the number of samples correctly
classified to the total number of samples in the test set.

• The confusion matrix (CM) is a 2D matrix that gauges the detailed performance of
classification models. The matrix measures the robustness of the models by computing
inter-class and intra-class classification errors. Each row of the matrix represents the
true class, while each column represents the predicted class. The value of each cell
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of the matrix gives insight into the degree of accuracy achieved by the classifier for a
particular class.

• Precision, recall and F1 score are the popular metrics used to evaluate the performance
of a classifier given the imbalanced data. Precision quantifies the ability of a model to
precisely predict the class for the given samples that actually belong to the positive

class. Precision can be measured as: ∑C
i=1 TPi

∑C
i=1(TPi+TNi)

, where C is the number of classes,

and i represents the ith class. TP represents the true positive, and TN represents the
true negative. The precision metric can be used to evaluate the performance of the
model when the goal is to minimize the false positives.

• Recall, on the other hand, provides an indication to the missed positive prediction

and can be mathematically expressed as: ∑C
i=1 TPi

∑C
i=1(TPi+FNi)

, where FN represents the false

positive. The recall metric can be used as a performance measure where the goal of the
model is to minimize the false negatives. The F1 score quantifies the performance of a
model in a single metric by taking the harmonic mean of both precision and recall.

The classification performance in terms of the confusion matrix UC-Merced dataset
using the proposed framework is reported in Figure 6. Furthermore, we report precision,
recall and F1 score values for each individual class in Table 3. We can see from the
Figure 6 that the proposed framework achieved 100% classification accuracy in 11 different
categories, while in 6 categories, the framework achieved a ≥ 90% classification accuracy.
Similarly, as demonstrated in Table 3, the proposed framework achieves 100% precision,
recall and F1 score values in five different classes, while for the remaining class, the
proposed framework achieves more than 90% precision, recall and F1 score.

Figure 6. Performance evaluation of the proposed framework using a confusion matrix on the
UC-Merced Dataset.

The classification performance of the proposed framework in terms of the confusion
matrix on the SIRI-WHU Dataset is reported in Figure 7, and precision, recall, and F1 score
values for each individual class are reported in Table 4. From Figure 7, it is obvious that
the framework achieves more than 95% accuracy in seven different categories. In addition,
the framework achieved more than 90% accuracy in three classes. Similarly, from Table 4,
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we observe that the proposed framework achieves 100% precision, recall and F1 score
values for the agriculture and overpass classes, while the framework achieves more than
90% precision, recall rate and F1 score values for seven classes, including, commercial,
harbor, idle land, industrial, pond, residential, and water.

Table 3. Class-wise performance of the proposed framework on the UC-Merced dataset.

Class Name Precision Recall F1 Score

Agricultural 100.00% 100.00% 100.00%
Airplane 100.00% 100.00% 100.00%
Baseball Diamond 100.00% 93.33% 96.55%
Beach 100.00% 100.00% 100.00%
Buildings 85.71% 100.00% 92.31%
Chaparral 100.00% 100.00% 100.00%
Dense Residential 88.46% 76.67% 82.14%
Forest 96.77% 100.00% 98.36%
Freeway 96.77% 100.00% 98.36%
Golf Course 96.67% 96.67% 96.67%
Harbor 96.77% 100.00% 98.36%
Intersection 96.77% 100.00% 98.36%
Medium Residential 92.59% 83.33% 87.72%
Mobile Home Park 96.77% 100.00% 98.36%
Overpass 96.77% 100.00% 98.36%
Parking Lot 100.00% 100.00% 100.00%
River 96.77% 100.00% 98.36%
Runway 100.00% 96.67% 98.31%
Sparse Residential 90.63% 96.67% 93.55%
Storage Tanks 100.00% 90.00% 94.74%
Tennis Court 100.00% 96.67% 98.31%

Figure 7. Performance evaluation of the proposed framework using a confusion matrix on the
SIRI-WHU dataset.
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Table 4. Class-wise performance of the proposed framework on the Siri-WHU dataset.

Class Name Precision Recall F1 Score

Agriculture 100.00% 100.00% 100.00%
Commercial 93.65% 98.33% 95.93%
Harbor 92.31% 100.00% 96.00%
Idle Land 93.10% 90.00% 91.53%
Industrial 98.33% 98.33% 98.33%
Meadow 91.23% 86.67% 88.89%
Overpass 100.00% 100.00% 100.00%
Park 88.71% 91.67% 90.16%
Pond 90.32% 93.33% 91.80%
Residential 92.06% 96.67% 94.31%
River 90.57% 80.00% 84.96%
Water 100.00% 95.00% 97.44%

Figure 8 illustrates the confusion matrix, and Table 5 illustrates the performance of the
framework using precision, recall and F1 score on the EuroSAT dataset. Figure 8 shows
that the proposed framework achieved more than 93% accuracy in six classes, while the
framework achieved 86% accuracy in three classes. Similarly, the framework achieved
more than 90% precision, recall and F1 score values for the our classes, including, forest,
industrial, pasture, and sea lake.

We also visualized the performance of the proposed framework through random
sampling frames from all three datasets, with each sample displaying both the ground truth
label and the predicted label as illustrated in Figure 9. From the Figure 9, it is also obvious
that the proposed framework precisely predicted all the labels of different classes; however,
the model was confused regarding herbaceous vegetation and permanent crop classes.

Figure 8. Performance evaluation of the proposed framework using a confusion matrix on the
EuroSAT dataset.
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In Table 6, we compare the performance of different methods on three datasets and
their overall accuracy (OA) evaluation measure. For fair comparisons, we used the same
training and testing ratios for all the methods. From Table 5, it is observed that the proposed
framework achieves better results compared to other referenced methods.

Table 5. Class-wise performance of the proposed framework on the Eurosat dataset.

Class Name Precision Recall F1-Score

Annual Crop 98.11% 86.67% 92.04%
Forest 92.31% 100.00% 96.00%
Herbaceous
Vegetation 95.92% 78.33% 86.24%

Highway 92.86% 86.67% 89.66%
Industrial 90.32% 93.33% 91.80%
Pasture 100.00% 98.33% 99.16%
Permanent Crop 75.68% 93.33% 83.58%
Residential 86.96% 98.36% 92.31%
River 91.23% 86.67% 88.89%
Sea Lake 100.00% 95.00% 97.44%

From Table 6, it is obvious that the models, including NSGA-II, MOEA, AR-MOEA,
and SMS-EMOA, achieve lower performance compared to other competing methods.
In [74], the authors use the pretrained model of ResNet-50 and adopt different pruning
strategies, including NSGA-II, MOEA, AR-MOEA, and SMS-EMOA, to compress and
accelerate the network. The basic intuition behind compressing the high-capacity networks
is to minimize the weights without compromising the accuracy and to make these networks
suitable for the platform with limited memory and computational power. In the EMOA
method, the pretrained model of ResNet-50 is pruned by evolutionary multiobjective al-
gorithms, and it employs a guided mechanism and uses an indicator to find an optimum
solution. Similarly, SMS-EMOA models prune the fine-tuned model of ResNet-50 by using
a selection optimization algorithm. In AR-MOEA, the pretrained network of ResNet-50
is optimized with a reference point adoption strategy. NSGA-II adopts a sorting genetic
algorithm to optimize the parameters of a pretrained ResNet-50. Although these models
largely reduce the capacity of the network, they do so at the cost of accuracy. This is
due to fact that after the pruning process, the network loses contextual and multi-scale
information regarding small objects, which is crucial for scene classification in satellite
images. Although EfficientNet demonstrated an effective performance compared to Mo-
bileNet [75] and ResNet [76] in natural images, from our experiments, we observe that
EfficientNet achieves low performance in satellite images. This may be attributed to the
complex texture, cluttered background, small size of objects, and high inter-class similari-
ties among different patterns of satellite images, which do not fit the EfficientNet and do
not achieve a comparable performance. From Table 6, we observe that SKAL [22] achieves
a comparable performance on the UC-Merced dataset. This may be attributed to the fact
that SKAL employs multi-branch deep learning models that have the ability to exploit the
complementary nature of different models, which effectively captures the local and global
information from the images.

From Table 6, we further observe that the baseline architectures of ResNet-50 and
ResNet-101 also achieve comparable performance on all three datasets. Although the inclu-
sion of residual connections on ResNet gives a boost to the learning ability of the network
and overcomes the gradient vanishing problem, the network achieves comparatively low
performance on satellite images. This may be attributed to the fact that the receptive field of
ResNet is higher than the size of the input image and therefore cannot capture information
about the local regions that usually lead to the misclassification of pixels. In contrast to
these competing methods, the proposed framework achieves superior results in all three
datasets. This is due to the reason that the global contextual module of the framework
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extracts information in a global context, while the local feature extraction module extracts
the features of local regions.

Figure 9. Visualization of the performance of the proposed method on random sample frames from
all three datasets. Each sample contains a ground truth label and a predicted label.

Table 6. Comparisons of different methods on the three datasets.

Method
Overall Accuracy

UC Merced Siri-WHU Eurosat

EfficientNet [77] 88.00% 83.88% 85.23%
Wang et al. [78] 94.81 % - -
MobileNet [75] 93.00% 92.63% 87.52%
NSGA-II [79] 79.17% 72.14% -
ResNet-50 [76] 95.00% 93.75% 90.34%
MOEA [80] 79.23% 71.98% -
ResNet-101 [76] 95.00% 93.14% 90.51%
Yang et al. [81] 93.67% - -
AR-MOEA [82] 79.11% 72.34% -
ShuffleNet [83] 91.00% 92.08% 88.68%
Basha et al. [84] 88% - -
SMS-EMOA [85] 78.45% 73.02% -
Shao et al. [86] 92.38% - -
GoogleNet [70] 94.00% 91.11% 88.51%
SKAL [22] 97.95% - -
Proposed (Branch-1: DenseNet, Branch-2: VGG-16) 96.00% 94.16% 91.68%
Proposed (Branch-1: DenseNet, Branch-2: DenseNet) 99.52% 96.37% 94.75%

5. Ablation Study

We performed an ablation study to understand the effects of different components
of the proposed framework on the overall accuracy. Conducting this ablation study was
crucial for understanding and improving the performance of the framework. This study
enabled us to make informed decisions to enhance the model’s accuracy and efficiency.
In this ablation study, we employed the UC-Merced dataset and applied consistent training
and validation strategies.
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5.1. Ablation Study for Branch-1

To understand the effect of the pyramid pooling module with different pooling sizes,
we performed an ablation study, as reported in Figure 7. We used seven different methods
with different settings, and the performance of these methods are reported in Table 7. Each
method is described as follows:

1. Method M1: This method employs DenseNet in the Branch-1 network without a
pyramid pooling module and VGG-16 in the Branch-2 network.

2. Method M2: This method utilizes DenseNet in the Branch-1 network with a pyra-
mid module comprising a single max-pooling layer of size 1 × 1, while VGG-16 is
employed in Branch-2 network.

3. Method M3: This method is similar to Method M2; however, instead of the max-pooling
operation, the method employs an average pooling operation of size 1 × 1.

4. Method M4: This method employs DenseNet in the Branch-1 network and employs
the pyramid pooling module with four different pooling sizes. The model employs 1
× 1, 2 × 2, 4 × 4, 8 × 8 pooling with max-pooling and uses VGG-16 as the backbone
of the Branch-2 network.

5. Method M5 (proposed): This method is similar to Method M4; however, instead of
using the max-pooling operation, it uses average pooling operations of sizes 1 × 1,
2 × 2, 4 × 4, 8 × 8.

6. Method M6 (proposed): This method is similar to Method M4; however, it uses
DenseNet as the backbone in Branch-2.

7. Method M7 (proposed): This method is similar to Method M6; however, it employs
average pooling operations instead of max-pooling.

By systematically analyzing and comparing different methods listed in Table 7, we can
identify the impact of various components and design choices on the model’s performance.
From Table 7, it is obvious that the methods M4, M5, M6, and M7 perform better than M1,
M2, and M3. This is because methods M4, M5, M6, and M7 employ a pyramid pooling
module by incorporating pooling layers of different sizes (1 × 1, 2 × 2, 4 × 4, 8 × 8).
The pyramid pooling module captures multi-scale contextual information, enabling the
model to extract features at various levels of granularity. By incorporating information from
different receptive fields, the model gains a better understanding of global and local image
features, resulting in improved performance compared to methods without the pyramid
pooling module.

Table 7. Performance investigation of the effect of pyramid pooling module (in the global contextual
information module (Branch-1)) with different backbone networks and different pooling scale settings
on the UC-Merced dataset.

Method Branch-1 Network Branch-2 Network Pooling Size Pooling Type OA

M1

DenseNet [62]
VGG-16 [68]

- - 89.95%

M2 1 × 1 Max pooling 91.64%

M3 1 × 1 Avg pooling 92.74%

M4 [1× 1, 2 × 2, 4 × 4, 8 × 8] Max pooling 95.28%

M5 (proposed) [1 × 1, 2 × 2, 4 × 4, 8 × 8] Avg pooling 96.00%

M6 (proposed) DenseNet [62] [1 × 1, 2 × 2, 4 × 4, 8 × 8] Max pooling 97.89%

M7 (proposed) [1 × 1, 2 × 2, 4 × 4, 8 × 8] Avg pooling 99.52%

From Table 7, we further observed that methods M3, M5, and M7 utilize average
pooling, producing better results than methods M2, M4, and M6, which utilize the max-
pooling operation. The average pooling operation calculates the average value within a
pooling window, which helps in preserving spatial information and reducing the impact
of outliers. In contrast, the max-pooling operation selects the maximum value, which
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focuses on capturing the most dominant features. In this scenario, the average pooling
operation performs better because it can retain more information and provide a smoother
representation of features, leading to enhanced performance in the given deep model.

From Table 7, we observe that DenseNet is consistently employed in the Branch-1
network across multiple methods, while VGG-16 is used in methods M1, M2, M3, and M4.
Methods M6 and M7 in Table 7 incorporate DenseNet in both the Branch-1 and Branch-2
networks, which achieve the highest overall accuracies (OA) of 97.89% and 99.52%, respec-
tively, compared to M5, which employs VGG-16 in Branch-2. The lower performance of
methods M1, M2, M3, and M4 is because VGG-16 relies on a deeper stack of convolutional
layers without direct connections between them, which may limit information propaga-
tion and result in reduced performance compared to DenseNet. In contrast to VGG-16,
DenseNet in both branches allows for the exploitation of dense connectivity and feature
reuse across the entire network. This enables effective information flow and collaborative
learning between the two branches. DenseNet’s dense connections facilitate the exchange
of information, gradients, and feature maps between layers, enhancing the model’s capacity
to capture discriminating patterns and to extract rich representations from the data.

5.2. Ablation Study for Branch-2

An efficient object proposal generation strategy helps to narrow down the search space
for the objects in images and focuses on relevant areas, thereby significantly reducing the
computational burden. The choice of the object proposal generation strategy can greatly
influence the overall performance of a system. A well-designed strategy should be able to
accurately localize objects, handle object scale variations, handle occlusions and cluttered
backgrounds, and be computationally efficient.

Branch-2 of the proposed framework utilizes an object proposal generation strategy by
employing a multi-scale fully convolutional network. In order to evaluate the impact of var-
ious object proposal generation strategies and different network configurations, an ablation
study was conducted. This study, represented in Figure 8, aimed to systematically analyze
and understand the effects of different approaches. By conducting this study, we can gain
insights into the effectiveness and contributions of different strategies and networks.

Table 8 presents the performance of the local feature extraction module (Branch-2) us-
ing different region proposal strategies with different backbone networks on the UC-Merced
dataset. We used different networks as the backbone of Branch-2, including VGG-16 [68],
ZF [69], and AlexNet [87]. From Table 8, it is obvious that the proposed multi-scale strategy
achieved the best results compared to other region proposal strategies. This is because the
proposed region proposal strategy enhances the adaptability of the object-detection system
to objects of various scales and aspect ratios, resulting in improved accuracy. Furthermore,
the combination of the proposed multiscale strategy and the DenseNet network leverages
the strengths of both approaches, leading to superior performance in terms of overall
accuracy on the UC-Merced dataset. Regarding the effect of different networks in Branch-2,
we observed that VGG16 consistently achieves higher overall accuracy compared to ZF and
AlexNet. This can be attributed to the architectural differences between these networks.
VGG16 has a deeper architecture with more convolutional layers, allowing it to capture
more complex and abstract features from the input images. The deeper representation
of VGG16 enables better discrimination of object classes, resulting in higher accuracy in
object detection. Selective search consistently achieves lower overall accuracy compared
to other region proposal strategies across all backbone networks. Selective search is an
algorithm that generates object proposals based on low-level image cues such as color,
texture, and size. While it provides a diverse set of proposals, it may not capture high-level
semantic information effectively. This limitation leads to the generation of more false
positives or missed relevant object proposals, resulting in reduced accuracy compared to
other strategies.
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Table 8. Performance investigation of local feature extraction module (Branch-2) using different
region proposal strategies with different backbone networks on the UC-Merced dataset.

Region Proposal Strategy Branch-2 Network Overall Accuracy

RPN [88]
VGG16 93.45%
ZF 92.98%
AlexNet 87.63%

Selective Search [89]
VGG16 86.85%
ZF 83.92%
AlexNet 79.24%

Multibox [90]
VGG16 92.71%
ZF 87.22%
AlexNet 84.26%

Multiscale (Proposed)

VGG16 96.00%
DenseNet (Avg pooling) 99.52%
ZF 94.75%
AlexNet 88.95%

6. Discussion

In this section, we discuss the findings of the experimental results reported in Tables 3–6.
From the experimental results reported in Tables 3–5, we observe that the network achieved
good performance in all three datasets; however, the network achieved the best results in the
UC-Merced dataset. The best performance may be attributed to high inter-class differences
and high intra-class similarities among these classes. This enabled the framework to
correctly recognize these categories with ease. We further observed that the proposed
framework is rotation- and scale-invariant and can recognize categories with different
scales and orientations. From the experiments, we observed that the proposed framework
outperforms other reference methods. From Table 6, it is observed that for the UC-Merced
dataset, the framework achieved an overall accuracy of 96%. From the experimental results,
we observed that ResNet-50 and ResNet-101 produced comparable results on all three
datasets. However, there is no obvious difference between the performance of ResNet-50
and ResNet-101. From this study, we can superficially conclude that increasing the depth
of the network by including more layers may not necessarily boost the performance by a
significant margin regarding aerial images. We further observed that deeper layers may
lead the network to learn discriminating features in natural images; however, these deep
models do not perform well in aerial scenes [91].

We further observed that the reference methods achieved lower precision, recall and F1
score values for the EuroSAT dataset than on the UC-Merced and SIRI-WHU datasets. This
finding is evident from Table 5. The lower performance on the EuroSAT dataset is attributed
to the fact that it contains more diverse scenes and inter-class similarities among the annual
crop, permanent crop and herbaceous classes. Due to these problems, the models are not
able to learn discriminating features.

Despite demonstrating good performance on challenging datasets, the framework
also suffers from limitations. From the experimental results, we observed that the network
faces difficulties in differentiating between two similar images with two different classes.
This inter-class similarity among different classes causes the network to learn similar
features that leads the framework to misclassification. In the UC-Merced dataset, despite
good performance, the framework achieved low performance (76%) accuracy in the dense
residential class as illustrated in Figure 6 and Table 3. This is due to the fact that the
framework confuses dense residential class with the buildings class by up to 10%, as well as
3.3% with harbor, 6.7% with medium residential and 3.3% with mobile home park classes.
This may be because the dense residential class shares common textural and appearance
features with the medium residential and building classes. Similarly, in the SIRI-WHU
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dataset, the framework, confuses the water class with pond, idle land, and harbor classes.
We observed that a large number of river class images consist of idle land; therefore,
the framework misclassifies most images of the river class in the test set. Similarly, the
river class shares common features with the pond and harbor classes, and the framework
faces difficulty in correctly classifying images from the river class. In the EuroSAT dataset,
the framework achieved low performance while identifying the herbaceous vegetation
class. The network largely confuses the herbaceous vegetation class with the permanent
crop class, since both classes share similar appearance and morphological features.

Time Complexity

In this section, we provide detail of the time complexity of the proposed framework
and compare its performance with other reference methods. Analyzing the time complexity
of a deep learning model is crucial in understanding its efficiency and performance. Time
complexity refers to the measure of the computational resources, specifically the time
required for training the network and making predictions during inference.

In order to assess the computational complexity, we ensured consistency by using the
same training parameters across all reference models. These models are then trained for
100 epochs, allowing us to compare and evaluate their computational demands accurately.
Typically, the training phase of a network requires a longer duration, often measured in
hours, compared to the much shorter testing time during the inference or prediction phase,
which is typically measured in seconds. In this analysis, we utilized the UC-Merced dataset
and present the findings in Table 9.

Table 9. Time complexity of different models. Training time is given in hours, while testing time is
provided in seconds.

Methods Training Time (Hours) Testing Time (Seconds)
DenseNet-baseline 10.20 3.35

ResNet-101 8.40 3.22

MobileNet 4.35 0.33

EfficientNet 12.50 3.15

GoogleNet 5.30 1.33

Proposed (Branch-1: DenseNet, Branch-2: VGG-16) 14.37 4.15

Proposed (Branch-1: DenseNet, Branch-2: DenseNet) 19.40 5.32

From Table 9, it is obvious that the methods MobileNet and GoogleNet have relatively
shorter training times of 4.35 and 5.30 h, respectively. This is because these models are
designed to be computationally efficient with lighter architectures, enabling faster training.
On the other hand, we can observe that the method “Proposed (Branch-1: DenseNet,
Branch-2: DenseNet)” has the highest training time of 19.40 h. This is because the proposed
method involves using two DenseNet models in parallel (one for each branch). DenseNet
models have a larger number of layers and parameters compared to other models such as
ResNet-101, MobileNet, and GoogleNet. Despite the fact that the proposed framework takes
longer for both training and inference compared to other methods, it outperforms them
in terms of performance on all datasets. Therefore, the trade-off between longer training
and inference times and improved performance justifies the adoption of the proposed
framework in image classification in remote sensing images, where high accuracy is of
utmost importance.

7. Conclusions

In this paper, a multi-branch deep learning framework was designed to identify
different land scenes in complex remote sensing images. The framework consisted of
two branches: (1) a global contextual module and (2) a local feature extraction module.
The global module efficiently integrated the pyramid pooling module with DenseNet to
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capture rich contextual features from different regions of the image. The second module
exploited FCN and CNN to extract multi-scale local features. The module first generated
region proposals with FCN and then employed a CNN network to extract multi-scale
features from each proposal. Later on, a fusion module was used to combine both local
and global features to identify different land scenes. We demonstrated through comprehen-
sive quantitative and qualitative evaluations that the proposed method achieves the best
performance and outperforms other state-of-the-art methods. Despite good performance,
the proposed framework still suffers from shortcomings. We observed that the framework
faces difficulties in identifying two similar regions belonging to different classes. In future
work, we will focus on rectifying the shortcomings of the proposed framework. Intuitively,
we will extract feature embeddings and try to learn the distance between feature embed-
dings of different classes using a metric learning strategy. We believe that this may enhance
the discriminating capability of the proposed framework.

Author Contributions: Methodology, S.D.K.; Software, S.D.K.; Validation, S.D.K.; Resources, S.B.;
Data curation, S.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors have no conflict of interest.

References
1. Dong, Z.; Wang, M.; Wang, Y.; Zhu, Y.; Zhang, Z. Object detection in high resolution remote sensing imagery based on

convolutional neural networks with suitable object scale features. IEEE Trans. Geosci. Remote Sens. 2019, 58, 2104–2114. [CrossRef]
2. Bastani, F.; He, S.; Abbar, S.; Alizadeh, M.; Balakrishnan, H.; Chawla, S.; Madden, S.; DeWitt, D. Roadtracer: Automatic extraction

of road networks from aerial images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt
Lake City, UT, USA, 18–22 June 2018; pp. 4720–4728.

3. Khan, S.D.; Alarabi, L.; Basalamah, S. Deep Hybrid Network for Land Cover Semantic Segmentation in High-Spatial Resolution
Satellite Images. Information 2021, 12, 230. [CrossRef]

4. Talukdar, S.; Singha, P.; Mahato, S.; Pal, S.; Liou, Y.A.; Rahman, A. Land-use land-cover classification by machine learning
classifiers for satellite observations—A review. Remote Sens. 2020, 12, 1135. [CrossRef]

5. Khan, S.D.; Alarabi, L.; Basalamah, S. An Encoder–Decoder Deep Learning Framework for Building Footprints Extraction from
Aerial Imagery. Arab. J. Sci. Eng. 2022, 48, 1273–1284. [CrossRef]

6. Chiu, M.T.; Xu, X.; Wei, Y.; Huang, Z.; Schwing, A.G.; Brunner, R.; Khachatrian, H.; Karapetyan, H.; Dozier, I.; Rose, G.; et al.
Agriculture-vision: A large aerial image database for agricultural pattern analysis. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 2828–2838.

7. Khan, S.D.; Alarabi, L.; Basalamah, S. A unified deep learning framework of multi-scale detectors for geo-spatial object detection
in high-resolution satellite images. Arab. J. Sci. Eng. 2021, 47, 9489–9504. [CrossRef]

8. Lin, L.; Di, L.; Zhang, C.; Guo, L.; Di, Y. Remote Sensing of Urban Poverty and Gentrification. Remote Sens. 2021, 13, 4022.
[CrossRef]

9. Kazemzadeh-Zow, A.; Darvishi Boloorani, A.; Samany, N.N.; Toomanian, A.; Pourahmad, A. Spatiotemporal modelling of urban
quality of life (UQoL) using satellite images and GIS. Int. J. Remote Sens. 2018, 39, 6095–6116. [CrossRef]

10. Hoque, M.A.A.; Phinn, S.; Roelfsema, C.; Childs, I. Tropical cyclone disaster management using remote sensing and spatial
analysis: A review. Int. J. Disaster Risk Reduct. 2017, 22, 345–354. [CrossRef]

11. Zhao, B.; Dai, Q.; Zhuo, L.; Zhu, S.; Shen, Q.; Han, D. Assessing the potential of different satellite soil moisture products in
landslide hazard assessment. Remote Sens. Environ. 2021, 264, 112583. [CrossRef]

12. Murray, N.J.; Keith, D.A.; Bland, L.M.; Ferrari, R.; Lyons, M.B.; Lucas, R.; Pettorelli, N.; Nicholson, E. The role of satellite remote
sensing in structured ecosystem risk assessments. Sci. Total. Environ. 2018, 619, 249–257. [CrossRef]

13. Mahato, S.; Pal, S. Groundwater potential mapping in a rural river basin by union (OR) and intersection (AND) of four
multi-criteria decision-making models. Nat. Resour. Res. 2019, 28, 523–545. [CrossRef]

14. Raeva, P.L.; Šedina, J.; Dlesk, A. Monitoring of crop fields using multispectral and thermal imagery from UAV. Eur. J. Remote Sens.
2019, 52, 192–201. [CrossRef]

15. Yu, J.; Guo, P.; Chen, P.; Zhang, Z.; Ruan, W. Remote sensing image classification based on improved fuzzy c-means. Geo-Spat. Inf.
Sci. 2008, 11, 90–94. [CrossRef]

16. Wu, H.; Liu, B.; Su, W.; Zhang, W.; Sun, J. Hierarchical coding vectors for scene level land-use classification. Remote Sens. 2016,
8, 436. [CrossRef]

http://doi.org/10.1109/TGRS.2019.2953119
http://dx.doi.org/10.3390/info12060230
http://dx.doi.org/10.3390/rs12071135
http://dx.doi.org/10.1007/s13369-022-06768-8
http://dx.doi.org/10.1007/s13369-021-06288-x
http://dx.doi.org/10.3390/rs13204022
http://dx.doi.org/10.1080/01431161.2018.1447160
http://dx.doi.org/10.1016/j.ijdrr.2017.02.008
http://dx.doi.org/10.1016/j.rse.2021.112583
http://dx.doi.org/10.1016/j.scitotenv.2017.11.034
http://dx.doi.org/10.1007/s11053-018-9404-5
http://dx.doi.org/10.1080/22797254.2018.1527661
http://dx.doi.org/10.1007/s11806-008-0017-8
http://dx.doi.org/10.3390/rs8050436


Remote Sens. 2023, 15, 3408 23 of 25

17. Tuia, D.; Volpi, M.; Dalla Mura, M.; Rakotomamonjy, A.; Flamary, R. Automatic feature learning for spatio-spectral image
classification with sparse SVM. IEEE Trans. Geosci. Remote Sens. 2014, 52, 6062–6074. [CrossRef]

18. Stumpf, A.; Kerle, N. Object-oriented mapping of landslides using Random Forests. Remote Sens. Environ. 2011, 115, 2564–2577.
[CrossRef]

19. Moustakidis, S.; Mallinis, G.; Koutsias, N.; Theocharis, J.B.; Petridis, V. SVM-based fuzzy decision trees for classification of high
spatial resolution remote sensing images. IEEE Trans. Geosci. Remote Sens. 2011, 50, 149–169. [CrossRef]

20. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of
the Advances in Neural Information Processing Systems 25 (NIPS 2012), Lake Tahoe, NV, USA, 3–6 December 2012; p. 25.

21. Anwar, A.; Anwar, H.; Anwar, S. Towards Low-Cost Classification for Novel Fine-Grained Datasets. Electronics 2022, 11, 2701.
[CrossRef]

22. Wang, Q.; Huang, W.; Xiong, Z.; Li, X. Looking closer at the scene: Multiscale representation learning for remote sensing image
scene classification. IEEE Trans. Neural Netw. Learn. Syst. 2020, 33, 1414–1428. [CrossRef]

23. Liang, G.; Hong, H.; Xie, W.; Zheng, L. Combining convolutional neural network with recursive neural network for blood cell
image classification. IEEE Access 2018, 6, 36188–36197. [CrossRef]

24. Ding, Y.; Zhang, Z.; Zhao, X.; Hong, D.; Cai, W.; Yu, C.; Yang, N.; Cai, W. Multi-feature fusion: Graph neural network and CNN
combining for hyperspectral image classification. Neurocomputing 2022, 501, 246–257. [CrossRef]

25. Ciregan, D.; Meier, U.; Schmidhuber, J. Multi-column deep neural networks for image classification. In Proceedings of the 2012
IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 3642–3649.

26. Nanni, L.; De Luca, E.; Facin, M.L.; Maguolo, G. Deep learning and handcrafted features for virus image classification. J. Imaging
2020, 6, 143. [CrossRef] [PubMed]

27. Sandoval, C.; Pirogova, E.; Lech, M. Two-stage deep learning approach to the classification of fine-art paintings. IEEE Access
2019, 7, 41770–41781. [CrossRef]

28. Xu, K.; Huang, H.; Deng, P. Remote sensing image scene classification based on global–local dual-branch structure model. IEEE
Geosci. Remote Sens. Lett. 2021, 19, 1–5. [CrossRef]

29. Cheriyadat, A.M. Unsupervised feature learning for aerial scene classification. IEEE Trans. Geosci. Remote Sens. 2013, 52, 439–451.
[CrossRef]

30. Dai, D.; Yang, W. Satellite image classification via two-layer sparse coding with biased image representation. IEEE Geosci. Remote
Sens. Lett. 2010, 8, 173–176. [CrossRef]

31. Sheng, G.; Yang, W.; Xu, T.; Sun, H. High-resolution satellite scene classification using a sparse coding based multiple feature
combination. Int. J. Remote Sens. 2012, 33, 2395–2412. [CrossRef]

32. Li, Y.; Zhang, Y.; Tao, C.; Zhu, H. Content-based high-resolution remote sensing image retrieval via unsupervised feature learning
and collaborative affinity metric fusion. Remote Sens. 2016, 8, 709. [CrossRef]

33. Hu, F.; Xia, G.S.; Wang, Z.; Huang, X.; Zhang, L.; Sun, H. Unsupervised feature learning via spectral clustering of multidimensional
patches for remotely sensed scene classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2015–2030. [CrossRef]
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