
Citation: Chen, H.; Wang, T.; Chen,

T.; Deng, W. Hyperspectral Image

Classification Based on Fusing

S3-PCA, 2D-SSA and Random Patch

Network. Remote Sens. 2023, 15, 3402.

https://doi.org/10.3390/rs15133402

Academic Editors: Mohammed A.

A. Al-qaness, Mohamed Abd Elaziz,

Ahmed A. Ewees, Laith Abualigah

and Xiongwu Xiao

Received: 2 June 2023

Revised: 29 June 2023

Accepted: 3 July 2023

Published: 4 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Hyperspectral Image Classification Based on Fusing S3-PCA,
2D-SSA and Random Patch Network
Huayue Chen 1, Tingting Wang 1, Tao Chen 1,* and Wu Deng 2,3

1 School of Computer, China West Normal University, Nanchong 637002, China;
sunnyxiaoyue20@cwnu.edu.cn (H.C.)

2 School of Electronic Information and Automation, Civil Aviation University of China, Tianjin 300300, China
3 The State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, China
* Correspondence: chentao@cwnu.edu.cn

Abstract: Recently, the rapid development of deep learning has greatly improved the performance of
image classification. However, a central problem in hyperspectral image (HSI) classification is spectral
uncertainty, where spectral features alone cannot accurately and robustly identify a pixel point in a
hyperspectral image. This paper presents a novel HSI classification network called MS-RPNet, i.e.,
multiscale superpixelwise RPNet, which combines superpixel-based S3-PCA with two-dimensional
singular spectrum analysis (2D-SSA) based on the Random Patches Network (RPNet). The proposed
frame can not only take advantage of the data-driven method, but can also apply S3-PCA to efficiently
consider more global and local spectral knowledge at the super-pixel level. Meanwhile, 2D-SSA
is used for noise removal and spatial feature extraction. Then, the final features are obtained by
random patch convolution and other steps according to the cascade structure of RPNet. The layered
extraction superimposes the different sparial information into multi-scale spatial features, which
complements the features of various land covers. Finally, the final fusion features are classified
by SVM to obtain the final classification results. The experimental results in several HSI datasets
demonstrate the effectiveness and efficiency of MS-RPNet, which outperforms several current state-
of-the-art methods.

Keywords: hyperspectral image; principal component analysis; random patches network;
two-dimensional singular spectrum analysis; image classification

1. Introduction

Hyperspectral image (HSI) includes tens to hundreds of wavelength bands with rich
spectral and spatial information, which can reflect the material properties of features
from different perspectives [1]; therefore, HSI has been increasingly used in major fields,
such as environmental monitoring [2], mineral exploration and analysis [3], and land
classification [4]. However, Hughes phenomena appear due to the high dimension of
the HSI data and the limited number of labeled samples [5]. Apart from spectrum and
space information, there is redundancy and noise in HSI data caused by environmental
noise, sensor constraints and atmosphere. Therefore, how to effectively extract features and
utilize the rich spectral information to achieve accurate classification results is a key issue
in hyperspectral image classification.

Because of the highly redundant characteristics of HSI spectrum bands, spectral feature
extraction and dimension reduction are important prerequisites to attain a high-precision
classification. In general, the dimensions of HSI data can be reduced in two ways: feature
selection [6–9] and feature extraction [10,11]. Some classical statistical feature-extraction
techniques have been developed in recent decades, such as principal component anal-
ysis (PCA) [12], linear discriminant analysis (LDA) [13], and maximum noise fraction
(MNF) [14]. Although PCA has been widely applied in the field of unsupervised downscal-
ing, it is often not possible to extract useful local spectral information. There have been some
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improvements in PCA, such as structured covariance-PCA (SC-PCA) [15], segmented-PCA
(SPCA) [16] and fold-PCA (FPCA) [17], which not only reduce the computation burden and
memory, but also incorporate local spectral features. Meanwhile, only the basic spectral
information of HSI is considered in many traditional classification methods, ignoring the
spatial domain information between pixels, which easily leads to unsmooth hyperspectral
classification results [18]. Recently, hyperpixel segmentation has been gradually applied
to the classification of hyperspectral images. The superpixel segmentation method can
be regarded as the process in which a spatial image is divided into several homogeneous
regions, which provides an effective method for the structural distribution of the spatial
distribution of HSI and can obtain better results. Jiang et al. [19] proposed the superpixel
principal component analysis (SuperPCA) approach based on principal component analysis
to extract the HSI based on the homogeneous regions obtained from superpixel segmenta-
tion. Zhang et al. [20] proposed the S3-PCA method based on SuperPCA with superpixels,
which used the local reconstruction of superpixels to filter HSI and combined global PCA
and local PCA to obtain global–local features.

As the spatial resolution [21] increases, it often leads to a decrease in spectral vari-
ability. Specifically, the rich information contained in high-resolution images may increase
intra-class variability and decrease inter-class variability [22], which affects the classifica-
tion accuracy. The spatial distribution in HSI is regular and contains abundant textural
information, which can be combined with the spectral information extracted by the above
methods to enhance the classification performance [23]. For the extraction of different types
of spatial features, scholars have proposed morphological attribute profiles (MAPs) [24],
extended MPs (EMPs) [25] and extended MAPs (EMAPs) [26], and many other morpho-
logical profile (MP) extension methods. After that, a technique named singular spectrum
analysis (SSA) [27] facilitates the feature extraction of HSI and is successfully applied to the
one-dimensional spectral domain (one-dimensional singular spectrum analysis (1D-SSA)),
1D-SSA-based singular value decomposition (SVD) outperforms other techniques in terms
of classification [27]. Compared with PCA, SSA can preserve more spectrum information,
so it can be separated more effectively. SSA can also be used in combination with other
methods of HSI classification, such as Curvelet [28]. Although 1D-SSA can be applied to
HSI analysis, it can increase the precision of classification [27], but only considers spectral
correlation and does not consider the relationship between pixels. As spatial properties can
also improve the classification accuracy, Zabalza et al. [29] extended SSA in two dimensions
to obtain 2D-SSA, which can easily eliminate noise and improve the classification accuracy.
However, PCA itself is less efficient without being combined with spatial information, so
Yan et al. [30] proposed a framework for fusing PCA and 2D-SSA to extract features, which
effectively fuses spectral and spatial features and achieves good classification results, even
with small samples.

Recently, a number of deep learning approaches have been applied in the field of
hyperspectral image classification, and typical deep neural network models include convo-
lutional neural networks (CNNs) [31], stacked self-encoders (SAEs) [32], and deep belief
networks (DBNs) [33]. Although these methods improve clssification by pretraining net-
works, fine-tuning and adapting parameter remain the key challenges. Some new attention
models are proposed for HSI restoration and denoising tasks. For instance, in [34], a
variational network for HSI-MSI fusion was proposed, which contains degradation model
and data prior. The authors of [35] proposed a well-designed end-to-end deep learning
framework for joint denoising and classification. In addition to attention models, as 3D
tensors can represent an HSI, tensor-based models are also applied to extract features and
classify HSI. For instance, in [36], a novel multilayer sparsity-based tensor decomposition
(MLSTD) was applied for low-rank tensor completion (LRTC), which aims to reveal the
complexity of hierarchical knowledge with implicit sparsity attributes. Based on low-rank
tensor completion, Zeng et al. [37] developed a new multimodal core tensor factorization
(MCTF) method, which is expected to restore the data based on few samples. Recently, an
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unsupervised deep tensor network (UDTN) [38] for HSI-MSI fusion was proposed, which
integrates deep learning and tensor theory.

Additionally, a number of new approaches employ hierarchical feature extraction.
For example, Chan et al. [39] proposed a hybrid PCA that extracts features based on
hierarchical learning and logistic regression for scene classification. Specifically, PCA is
employed to learn convolutional kernels from a set of patches, which are used to extract
convolutional features from different layers. Moreover, Xu, et al. [40] proposed Random
Patches Network (RPNet), where random patches obtained from images are directly used
as convolutional kernels without any training. It is not only multi-scale, but can effectively
address the information loss problem when extracting hierarchical features. Other backbone
networks, i.e., GANs, CapsNet and GCNs, undeniably perform well in learning spectral
representation [41], but the insufficient utilization of spectral information is still a key issue.
Transformers are a current state-of-the-art structure that adopt a self-attention mechanism.
However, they perform poorly in capturing locally contextual relationships. Thus, Hong
et al. [41] developed a novel transformers-based network architecture called Spectral
Former, which designed two modules, enabling high-performance HSI classification. In
addition, some other methods have also been proposed in recent years [42–57].

Since RPNet is primarily concerned with the extraction of deep spatial features, an
improved framework is presented in this paper. Firstly, the PCA in the original network is
replaced with superpixel-based S3-PCA because PCA itself is less efficient without combin-
ing spatial information, while the data-preprocessing stage of the S3-PCA algorithm [20]
uses nearest-neighbor pixels in the same superpixel block to reconstruct the data for each
pixel, and then performs principal component analysis for each region and the whole region
to obtain local and global information. Secondly, the noise and the absence of spatial infor-
mation in the acquisition of the HSI process affect the model accuracy to a certain extent,
and by combining the application with 2D-SSA, the noise can be eliminated and combine
the spectral and spatial features effectively, thus improving classification accuracy. Finally,
a mature SVM classifier is used to verify the robustness and anti-overfitting ability of the
classification model under small sample conditions. Therefore, a fusion based on S3-PCA,
2D-SSA and RPNet is proposed, fully combining the advantages of the three algorithms.

2. Methods

2.1. Spectral–Spatial and SuperPCA (S3-PCA)

The conventional dimensionality reduction methods in feature extraction usually
perform global principal component analysis on the whole HSI, ignoring local features.
However, hyperspectral images contain many homogeneous regions, and pixels of the
same category are often within homogeneous regions, so conventional dimensionality-
reduction methods tend to ignore the differences between non-homogeneous regions.
Inspired by this, Jiang et al. proposed a “divide and conquer” dimensionality reduction
method, SuperPCA [19]. However, SuperPCA and its variants only focus on the local spatial
information but ignore the overall structure, which results in less accurate feature extraction.
Therefore, Zhang et al. proposed the S3-PCA approach based on SuperPCA: firstly, ERS
superpixel segmentation is performed on the hyperspectral image X ∈ RM × N × B to obtain
homogeneous regions Xk (1 ≤ k ≤ y, y is the segmented superpixel number), and local
spatial reconstruction is performed for each pixel in each superpixel block Xk. Then, the
global PCA-based features, Hg, and SuperPCA-based features, H1, are concatenated to
obtain new features, H. Finally, the newly enlarged features are subjected to principal
component analysis again to reduce their feature dimensionality.
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2.2. Two-Dimensional Singular Spectrum Analysis (2D-SSA)

(1) Embedded 2D signal: an image M2D of size Nm × Nn; the matrix is [29]:

M2D =


p1,1 p1,2 · · · p1,Nn

p2,1 p2,2 · · · p2,Nn
... ...

. . .
...

pNm ,1 pNm ,2 · · · pNm ,Nn

 (1)

where a two-dimensional window of size is defined, where Lm ∈ (1, Nm), Ln ∈ (1, Nn),
and the constructed trajectory matrix [29]:

Wi,j =


pi,j

pi+1,j
...

pi+Lm−1,n

pi,j+1
pi+1,j+1

...
pi+Lm−1,j+1

· · ·
· · ·
. . .
· · ·

pi,j+Ln−1
pi+1,j+Ln−1

...
pi+Lm−1,j+Ln−1

 (2)

The reference point range is i ∈ [1, Nm − Lm + 1], j ∈ [1, Nn − Ln + 1]. There is
a given pixel coordinate (i, j) whose two-dimensional, window is a renewed column
vcoli,j = (pi,j pi,j+1 · · · pi,j+Ln−1 pi+1,j · · · pi+Lm−1,j+Ln−1 )

T ∈ RLm ,Ln+1.
There are (Nm − Lm + 1)× (Nn − Ln + 1) possible window positions, which means

the trajectory matrix of the image M can be deduced X2D ∈ RLm ,Ln×(Nm−Lm+1)(Nn−Ln+1),
more specifically, X2D= (vcol 1,1, vcol1,2 . . . vcol1,Nn−Ln+1, vcol2,1 . . . vcolNm−Lm+1,Nn−Ln+1),
where the trajectory matrix X2D is called Hankel by Hankel (HbH), and expressed as
follows [29].

X2D =


H1 H2 · · · HNm−Lm+1
H2 H3 · · · HNm−Lm+2
... ...

. . .
...

HLm HLm+1 · · · HLm


Lm−(Nm−Lm+2)

(3)

Ht =


pt,1 pt,2 · · · pt,Nn−Ln+1
pt,1 p2,2 · · · p2,Nn−Ln+2

... ...
. . .

...

pt,Ln pt,Ln+1 · · · pt,Nn


Ln×(Nn−Ln+1)

(4)

The HbH matrix (X2D) is the Hankel matrix of blocks, and each block (Ht) is itself a
Hankel matrix.

(2) SVD and grouping: use the same steps as in SSA. Additionally, the respective
dimensionality of varied matrices becomes two-dimensional. Specifically, K2D = (Nm −
Lm + 1)(Nn − Ln + 1) and L2D = Lm × Ln.

(3) Diagonal averaging: the matrices X2D
m obtained in 2D-SSA may not be HbH. As a

consequence, there is need to transform this into the HbH matrix by means of the two-step
diagonal averaging method shown in (5), i.e., firstly applied within each block applied and
then between blocks [29].

yuv =



1
v

n
∑

j=1
aj,v−j+1 1 ≤ v ≤ L

1
L

n
∑

j=1
aj,v−j+1 L ≤ v < K

1
L

L
∑

j=1
aj,v−j+1 K ≤ v ≤ N

(5)
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Let the two-dimensional signal Z2D
ω ∈ RNm×Nn be transformed by the group matrix

X2D
ω , which can be expressed as [29]:

Z2D
ω =


zω1,1 zω1,2 · · · zω1,Nn

zω2,1 zω2,2 · · · zω2,Nn
... ...

. . .
...

zωNm ,1 zωNm ,2 · · · zωNm ,Nn

 (6)

Then, the original 2D image is reconstructed M2D = Z2D
1 + Z2D

2 + . . . + Z2D
W =

W
∑

ω=1
Z2D

ω .

In 2D-SSA, primary spatial trend information is included in the first decomposed
component, and is therefore used for classification instead of the original image [11,19]. Like
SSA, the original image is represented by a fixed number of components (EVG = 1), and the
only parameter that influences performance is the window size Lm × Ln when embedding.

2.3. Random Patches Network (RPNet)

RPNet [40] is a HSI classification model rooted in deep learning, which uses random
patches as convolution kernels with a cascade structure. Firstly, the hyperspectral data
X ∈ Rrc×n is processed by principal component analysis, then downscaled to obtain
Xp ∈ Rrc×p, and then a whitening operation towards Xp is performed to make the variance
in different bands similar and reduce the correlation between different bands [58]. k pixels
are randomly selected from XWhiten ∈ Rrc×p to obtain k random patches of size w× w× h,
which are convolved with XWhiten to obtain K feature maps. This method combines shallow
and deep features, which effectively solves the loss of information in the hierarchical
feature-extraction process.

2.4. Proposed MS-RPNet Model

A central problem in hyperspectral image classification is spectral uncertainty, where
spectral features alone cannot accurately and robustly identify a pixel point in a hyper-
spectral image. This motivates the need for recent spectral spatial classification methods
to additionally consider spatial information and reduce the effect of spectral uncertainty,
and then consider the noise-induced intra-class variation and higher inter-class similarity.
This paper introduces a novel model called MS-RPNet (Figure 1) which uses 2D-SSA for
noise removal and spatial feature extraction. Then, global and local features are separately
extracted using superpixel-based S3-PCA, and the final features are obtained by random
patch convolution and other steps according to the cascade structure of RPNet. The layered
extraction superimposes the spatial difference information into multi-scale spatial features,
which complements the features of various land covers. Finally, the final fusion features
were classified by SVM to obtain the final classification results.
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Figure 1. The flow chart of the proposed MS-RPNet model.

2.4.1. S3-PCA Domain Feature Extraction and Fusion with 2D-SSA

Let a hyperspectral cube be D ∈ RDx×Dy×Dλ , xn = [xn1, xn2, . . . , xnDλ
]T ; n ∈ [1, n], is

the each pixel’s spectral vector, where the total number of pixels is N = DxDy. To avoid
spectral distortion, the effective features of the homogeneous region are extracted by the
superpixel segmentation technique. To reduce the computational effort of superpixel seg-
mentation, the first principal component of HSI to be classified is denoted as PC1 = RDx×Dy .
This is first extracted by PCA, and then the entropy rate superpixel segmentation (ERS) [31]
algorithm is used for superpixel segmentation of the first principal component to generate

a homogeneous region block PC1 =
s
∪

k=1
Bk, where (Bk ∩ Bg = ∅ 6= g), S is the superpixel

number and Bk is the kth pixel. 2D-SSA is applied for noise removal and spatial feature
extraction: first, an embedding window L ∈ RLx×Ly is cfreated; then, the trajectory ma-
trix T ∈ Rm×n is created, where m = Lx × Ly, n = (Dx − Lx + 1)(Dy − Dy + 1). For
simplicity, we usually make Lx = Ly, and then SVD, grouping and diagonal averaging
are used to obtain the reconstructed image Z. Based on the homogeneous regions formed
by segmentation, the reconstructed image Z is subjected to the superpixel-based S3-PCA
method to reduce the data dimensionality and obtain global–local spatial–spectral features
H = [Hg, Hl ] ∈ RDxDy×p (where p is the principal component fraction), and the combined
application of 2D-SSA and S3-PCA is a useful method to suppress the noise and strengthen
the recognition of spectral space. Compared with the original HSI, the processed image has
richer spectral diversity features and lower feature dimensionality.

2.4.2. Convolution with Random Patches

A whitening operation is performed on the reduced dimensional data H, which
makes the variance in different bands similar and reduces the different correlation of
the bands [39]. Then, k pixels are randomly selected from the data after the Whitening
operation, and a block of size w × w × p is taken around each pixel, i.e., k random blocks
are obtained. For the pixels distributed at the edges, the neighboring vacant pixels are filled
by mirroring. Then, these k random blocks P1, P2, . . . , Pk are used as convolution kernels,
and the convolution operation between HWhitening and random patches is performed to

obtain k feature maps: Ii : Ii =
p
∑

j=1
HWhitening

(j) ∗ Pi
(j), i = 1, 2, . . . , k, where ∗ denotes the

2D convolution operation. The activation function is arranged to improve the sparsity of the
features: f (I) = max(0, I−M), M = [m2 . . . m2], where m2 ∈ RDx Dy×1 and M, respectively,
denote the average vector and matrix in a two-dimensional space for k times replications.
Eventually, the features in the first layer are expressed as Z(1) = f (I) ∈ RDx Dy×k. Z(l−1) ∈
RDx Dy×k is assumed to be the features of layer (l − 1), which is input again to extract
features and obtain the lth-layer features Zl , from which the features of the different layers
can be obtained. Finally, all the features are passed through an SVM (with RFB kernel)
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classifier to predict the category labels and obtain the classification result map. This was
obtained using the algorithm flow in Algorithm 1.

Algorithm 1. The proposed hyperspectral image classification algorithm.

Input: HSI image D, principal component number (PC_num), superpixel number (Pixel_num),
layer number (Layernum).
The first layer:

(1) Apply 2D-SSA to D for spatial feature extraction and noise removal, and the reconstructed
image Z is obtained.

(2) A first principal component analysis of Z to obtain PC1.
(3) Apply super-pixel segmentation algorithm ERS to PC1 for division into multiple

homogeneous regions.
(4) Apply S3-PCA to obtain the global–local spectral–spatial feature H.
(5) Extract k random patches for convolution operation to obtain convolution features.
(6) The other layers L (L ≤ Layernum):
(7) Update the matrix while repeating steps 2–5 to obtain different features CL.
(8) Combine C1 ∼ CL with the raw spectral data to form the final features and normalize them.
(9) The final classification result is obtained by SVM for classification.

Output: Classification accuracy and classification results

3. Experiments

To test the feasibility and validity of this approach, we chose three data sets as the
test case, and PCA, SuperPCA, S3-PCA, PCA-2D-SSA, SuperPCA-2D-SSA, RPNet-5 [40],
S3-PCA-RPNet, DMLSR [59], LeNet [40] and SSFTT [60] were used as the control groups.
OA is the percent of pixels that are properly sorted, AA is the percent of correctly sorted
elements in each class, and Kappa coefficient is obtained using the confusion matrix, which
combines OA and AA. The experimental environment was Windows 10 with processor
Intel (R) Core (TM) i5-8250U CPU @ 1.60GHz, 8GB of RAM, and NVIDIA GeForce MX 150
graphics card.

3.1. Introduction of Datasets

All experiments were conducted on the Indian Pines dataset, the KSC dataset and the
Pavia University dataset. The real feature distribution and the first principal component
of each original HSI are shown in Figures 2–4. The Indian Pines datasets uses 200 bands
after removing the bands covering the water-absorption region, which contain 16 types of
feature elements. As for the KSC datasat, the discrimination of land cover according to its
environment is difficult due to the similarity of spectral signatures for certain vegetation
types. That is the reason that Figure 4b shows the fuzzy features of legend region in the
ground-truth map to be different from those in Figures 2 and 3b. More specific information
can be found in Table 1; the training and test sets are shown in Tables 2–4.
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Table 1. Information about the three data sets.

Related Information
Data Sets

Indian Pines Pavia University KSC

Sensor AVIRIS ROSIS AVIRIS
Size (pixels) 145 × 145 610 × 340 512 × 614

Bands 200 103 176
Class 16 9 13

Spatial resolution (m) 20 1.3 18
Spectral wavelength (µm) 0.4–2.45 0.43–0.86 0.4–2.5
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Table 2. Number of training and test samples used in Indian Pines dataset.

Class Number Class Name Training Test

1 Alfalfa 30 16
2 Corn–notill 150 1278
3 Corn–mintill 150 680
4 Corn 100 137
5 Grass–pasture 150 333
6 Grass–trees 150 580
7 Grass–pasture–mowed 20 8
8 Hay–windrowed 150 328
9 Oats 15 5
10 Soybean–notill 150 822
11 Soybean–mintill 150 2305
12 Soybean–clean 150 443
13 Wheat 150 55
14 Woods 150 1115
15 Buildings–Grass–Trees–Drivers 50 336
16 Stone–Steel–Towers 50 43

Total 1765 8484

Table 3. Number of training and test samples used in Pavia University dataset.

Class Number Class Name Training Test

1 Asphalt 548 6083
2 Meadows 540 18,109
3 Gravel 392 1707
4 Trees 542 2522
5 Metal sheets 256 1089
6 Bare soil 532 4497
7 Bitumen 375 955
8 Bricks 514 3168
9 Shadows 231 716

Total 3930 38,846

Table 4. Number of training and test samples used in KSC dataset.

Class Number Class Name Training Test

1 Scrub 33 728
2 Willow swamp 23 220
3 CP hammock 24 232
4 CP/Oak 24 228
5 Slash pine 15 146
6 Oak/Broadleaf 22 207
7 Hardwood swamp 9 96
8 Graminoid marsh 38 393
9 Spartina marsh 51 469
10 Catiail marsh 39 365
11 Salt marsh 41 378
12 Mud flats 49 454
13 Water 91 836

Total 459 4752

3.2. Parameter Analysis

In this experiment, there were several parameters that the influence classification
results to different degrees. For instance, the random block size w and number k of model
RPNet in the experiments were selected according to the literature [38], i.e., w = 21 and
k = 20, Lx × Ly fixed at 10 × 10, and the rest of the parameter settings were shown in
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the following section. The data were repeated 10 times, and the mean was taken as the
end result.

(1) Analyze the effect of the parameter PC_num (number of principal components) on the
experiment. The values of PC_num were divided into 9 cases (PC_num = 1, 2, 3, 4, 5,
6, 7, 8, 9), the effect of parameter PC_num on classification accuracy was observed in
9 cases, and the specific classification accuracy is plotted in Figure 5. From the figure,
it can be seen that for the Indian Pines dataset, the variation in PCA does not affect the
overall precision of classification, and the principal component dimension is taken as
7; for the Pavia University dataset, the change in the principal component dimension
has a smaller impact on the overall accuracy, and the low-dimensional matrix is
considered to be more beneficial to the subsequent calculation of the model, and
PC_num = 5. For the KSC dataset, the change in the principal component dimension
causes the overall accuracy to fluctuate, and the curves show a tendency to increase
and then level, and PC_num = 8.
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(2) Analyze the effect of the parameter Pixel_num (superpixel number) on the experi-
ment. The PC_nums are fixed according to the optimal number in (1). The specific
superpixel segmentation graphs obtained by dividing the Pixel_num values into six
cases (Pixel_num = 25, 50, 75, 100, 125, 150 are shown in Figures 6–8. The number
of superpixels determines the granularity of the segmentation result and various
classification results. A larger number of superpixels produces finer-grained seg-
mentation results that can better preserve the detailed image information, but may
retain redundant information, while a smaller number of superpixels produces coarser
segmentation results, but may lose some details. Thus, we need to choose this ac-
cording to the specific application requirements and image characteristics. From
Figure 5, it is obvious that different superpixel numbers make a greater difference to
the classification accuracy for the first two datasets, which further indicates that the
introduction of superpixel segmentation helps to improve classification accuracy. For
the Pavia University dataset, the effect of the change in the number of superpixels on
the overall accuracy is also not significant. An increase in the number of superpixels
leads to an increase in the computational complexity of the algorithm. Considering
the computational complexity, the parameter Pixel_num is set to Pixel_num = 75, and
a high overall accuracy is achieved on the validation set of each dataset.

(3) Analyze the effect of the parameter Layernum on the experiment. The PC_nums
and pixel_nums are fixed according to the optimal number in (1). The classification
results are shown in Figures 9–11. The overall accuracy gradually increases and then
stabilizes when the layer depth increases, which indicates that the random blocks
extracted from the HSI contain useful information. However, an architecture that is
too deep not only does not improve the accuracy, but also increases the computational
complexity. According to Figure 5., the number of layers is taken as 3, 3, 5 respectively.
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4. Discussion

This section compares the improvements proposed in this paper with PCA, SuperPCA,
S3-PCA, PCA-2D-SSA, SuperPCA-2D-SSA, RPNet-5 [40], S3-PCA-RPNet, DMLSR [59],
LeNet [40] and SSFTT [60] to assess the classification accuracy using support vector ma-
chines on the three data sets. The diagrams about classification accuracy are straightfor-
wardly drawn in Figure 12, respectively, the classification results are shown in Figures 13–15.
From the control results in Tables 5–7. PCA-2D-SSA and SuperPCA-2D-SSA consistently
provide better classification results than PCA and SuperPCA only, while S3-PCA achieves a
higher classification accuracy than PCA and SuperPCA based on superpixel local recon-
struction. Thus, we are expected to add S3-PCA to the RPNet model to achieve higher
classification accuracy. In contrast, the lack of spatial information leads PCA and SuperPCA
to achieve lower classification accuracy in the benchmark test method. From the classifica-
tion result plots presented in Figures 13–15, misclassification and noise are shown to occur
when only spectral features are used for classification, and these results indicate that the
combination of spatial and spectral features is of great importance to HSI classification.
Therefore, the S3-PCA-2D-SSA strategy used in this paper can fuse the advantages of both,
and always obtains higher accuracy by utilizing local–global spectral spatial features while
suppressing data noise. Compared with the original RPNet, the addition of S3-PCA-2D-
SSA can achieve the best OA on the three datasets. For the Indian Pine dataset, the OA is
improved by 1.66%, for the Pavia University dataset and the OA is improved by 99.76%,
and for the KSC dataset, the OA is improved by 1.68% due to the combination of the
introduction of superpixels, while 2D-SSA allows for the network to use not only shallow
and deep feature extraction, but to effectively utilize spectral–spatial features, reducing
information redundancy and loss. In the experiment, the LeNet [40] and SSFIT [60] are a
highly accurate competitive approach to the Indian Pines and Pavia University dataset.
However, their shortcomings lie in the over-smoothing phenomenon, especially in the KSC
dataset, since it is difficult to distinguish land-cover environments with the similar spectral
characteristics of some vegetation types. Therefore, the proposed model outperforms others
in terms of validity. Finally, speaking of the complexity of the model, it is undeniable that
its time complexity is higher than other control group algorithms, but its classification
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performance is better. However, it is worth nothing that superpixel-based analysis and
global and local feature extraction take up part of the execution time. Thus, we will research
how to adaptively obtain the downscaling and superpixel number parameters, and also
attempt to establish a lightweight network to reduce the network complexity while keeping
its performers.
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Figure 13. The classification maps with different methods for the Indian Pine dataset: (a) truth;
(b) PCA; (c) SuperPCA; (d) S3-PCA; (e) PCA-2D-SSA; (f) SuperPCA-2D-SSA; (g) S3-PCA-RPNet (h)
RPNet-5; (i) DMLSR; (j) LeNet; (k) SSFTT; (l) Proposed.
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information. The layered extraction superimposes the spatial difference information into 

multi-scale spatial features, which complements the features of various land covers. It is 

experimentally verified that the improved method has a higher overall classification ac-

curacy than the related comparison methods on the three open-source datasets. However, 

it should be noted that the parameters of S3-PCA downscaling and superpixel number are 

adjusted through a large number of experiments, which increases the computational cost. 

Thus, how to adaptively obtain the parameters and establish a lightweight network will 

be explored to improve computational costs. 
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SuperPCA; (d) S3-PCA; (e) PCA-2D-SSA; (f) SuperPCA-2D-SSA; (g) S3-PCA-RPNet (h) RPNet-5; (i)
DMLSR; (j) LeNet; (k) SSFTT; (l) Proposed.

Table 5. Classification result of the Indian Pines dataset.

Class PCA SuperPCA S3-PCA PCA
-2D-SSA

SuperPCA
-2D-SSA RPNet-5 S3-PCA

-RPNet DMLSR LeNet SSFTT Proposed

1 87.50 87.50 100 93.75 100 100 100 82.14 100 95.12 87.50
2 75.04 89.36 92.49 87.87 94.91 96.48 97.97 85.98 92.78 97.57 97.10
3 79.85 93.24 96.18 93.53 88.09 98.38 97.94 82.93 97.98 96.94 98.53
4 78.10 92.70 97.81 94.89 97.08 97.82 100 77.62 99.48 97.10 100
5 94.59 98.80 99.70 99.40 97.30 99.40 98.80 93.77 98.31 99.04 99.10
6 97.07 99.66 100 98.97 100 99.66 99.83 99.32 98.87 99.20 99.83
7 100 100 87.50 87.50 87.50 100 87.50 93.75 100 95.65 100
8 99.09 100 100 100 99.70 100 100 99.66 99.74 99.51 100
9 100 100 100 100 80.00 100 100 83.33 100 92.86 100
10 80.41 94.89 90.63 93.55 93.43 93.43 98.66 87.84 94.35 97.56 99.51
11 70.07 91.02 91.71 84.21 86.20 95.70 97.74 88.53 93.45 96.88 98.05
12 86.23 95.49 96.39 94.36 95.26 99.32 99.10 91.83 98.26 98.97 99.32
13 98.18 100 100 100 100 100 100 99.19 100 100 100
14 91.93 99.55 98.83 95.87 97.76 99.91 99.91 94.33 99.05 99.91 99.91
15 58.63 94.35 94.64 90.77 86.31 96.13 91.67 72.41 98.13 98.78 97.32
16 97.69 97.67 97.67 100 90.70 100 95.35 94.55 99.00 87.50 97.67

OA (%) 80.33 93.58 94.78 91.34 92.57 97.21 98.30 89.49 96.67 97.94 98.87
Kappa

(%) 77.37 92.57 93.94 89.99 91.41 96.87 98.02 88.02 95.84 97.65 98.05
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Table 6. Classification result of the Pavia University dataset.

Class PCA SuperPCA S3-PCA PCA
-2D-SSA

SuperPCA
-2D-SSA RPNet-5 S3-PCA

-RPNet DMLSR LeNet SSFTT Proposed

1 90.79 93.69 97.32 93.84 98.75 98.29 98.83 86.51 98.32 99.78 99.64
2 92.94 97.58 97.97 96.36 98.35 99.37 99.32 88.31 97.05 99.99 99.83
3 84.07 94.49 95.84 94.32 99.82 99.36 99.18 78.53 98.00 99.90 99.82
4 98.06 98.02 97.22 98.89 99.33 99.41 98.69 96.76 99.00 98.77 99.37
5 99.54 99.82 99.45 99.45 99.54 100 99.82 100 99.73 100 99.63
6 94.62 97.80 97.98 96.22 99.69 99.91 99.29 85.65 97.51 99.87 99.91
7 93.30 95.92 98.53 96.54 99.90 99.79 99.16 92.61 99.31 99.84 99.79
8 87.31 95.04 96.62 93.75 99.34 99.34 99.34 80.54 98.05 98.02 99.21
9 100 99.86 99.86 100 100 100 99.86 100 99.88 98.43 99.86

OA (%) 92.60 96.74 97.71 95.97 98.88 99.27 99.21 87.54 98.34 99.64 99.76
Kappa

(%) 90.02 95.66 96.87 94.52 98.77 99.18 98.93 80.15 97.52 99.52 99.68

Table 7. Classification result of the KSC dataset.

Class PCA SuperPCA S3-PCA PCA
-2D-SSA

SuperPCA
-2D-SSA RPNet-5 S3-PCA

-RPNet DMLSR LeNet SSFTT Proposed

1 90.80 91.07 90.38 94.92 92.72 97.12 96.84 89.35 91.74 53.04 99.73
2 82.27 90.45 98.18 97.73 98.64 98.64 94.55 92.89 90.09 60.66 100
3 88.79 95.26 93.10 94.40 97.41 99.14 95.26 93.75 86.34 33.33 97.84
4 67.98 78.07 85.53 90.35 92.54 90.79 95.61 75.98 76.80 39.33 92.98
5 63.70 58.90 80.82 84.25 90.41 98.63 93.15 79.39 92.40 93.94 97.26
6 69.57 57.00 87.44 61.35 90.82 99.03 87.44 77.30 90.34 0 99.52
7 92.71 100 96.88 80.21 100 100 92.71 78.16 90.94 50.00 96.88
8 90.59 96.95 99.24 98.47 92.11 98.22 97.96 93.24 94.35 57.54 98.73
9 97.87 97.01 97.44 98.72 98.29 100 100 99.28 97.85 85.92 100
10 89.32 86.03 96.16 98.08 97.81 98.63 96.71 98.77 99.48 66.75 98.90
11 97.35 93.92 97.35 98.41 94.18 98.94 99.74 99.11 99.89 94.34 99.47
12 98.46 95.37 94.05 99.78 96.92 100 99.56 90.86 98.55 79.34 100
13 99.28 99.88 99.88 99.88 99.88 99.28 100 99.60 100 93.72 99.76

OA (%) 90.72 91.98 94.80 95.24 95.88 98.46 97.43 92.73 95.29 70.51 99.11
Kappa

(%) 89.78 91.07 94.22 94.70 95.41 98.29 96.25 91.90 94.97 53.91 99.02

5. Conclusions

In this paper, a fusion algorithm based on S3-PCA, 2D-SSA and RPNet is presented,
in which global and local spectral features are sufficiently and separately extracted using
superpixel-based S3-PCA, while noise removal and spatial feature extraction are carried
out by 2D-SSA. Then, the spectral–spatial features are integrated into the cascade structure
of RPNet to achieve shallow and deep convolution and remove the redundant fusion
information. The layered extraction superimposes the spatial difference information into
multi-scale spatial features, which complements the features of various land covers. It
is experimentally verified that the improved method has a higher overall classification
accuracy than the related comparison methods on the three open-source datasets. However,
it should be noted that the parameters of S3-PCA downscaling and superpixel number are
adjusted through a large number of experiments, which increases the computational cost.
Thus, how to adaptively obtain the parameters and establish a lightweight network will be
explored to improve computational costs.
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