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Abstract: The Mobile Mapping System (MMS) plays a crucial role in generating accurate 3D maps for
a wide range of applications. However, traditional MMS that utilizes tilted LiDAR (light detection
and ranging) faces limitations in capturing comprehensive environmental data. We propose the
“PVL-Cartographer” SLAM (Simultaneous Localization And Mapping) approach for MMS to address
these limitations. This proposed system incorporates multiple sensors to yield dependable and
precise mapping and localization. It consists of two subsystems: early fusion and intermediate
fusion. In early fusion, range maps are created from LiDAR points within a panoramic image space,
simplifying the integration of visual features. The SLAM system accommodates both visual features
with and without augmented ranges. In intermediate fusion, camera and LiDAR nodes are merged
using a pose graph, with constraints between nodes derived from IMU (Inertial Measurement Unit)
data. Comprehensive testing in challenging outdoor settings demonstrates that the proposed SLAM
system can generate trustworthy outcomes even in feature-scarce environments. Ultimately, our
suggested PVL-Cartographer system effectively and accurately addresses the MMS localization and
mapping challenge.

Keywords: SLAM; localization; mapping; mobile mapping system; spherical camera; panoramic
image; LiDAR; IMU; sensor fusion; pose graph

1. Introduction

Owing to its ability to generate intricate and accurate 3D maps, visual SLAM has
garnered significant interest in recent times. With a diverse array of applications spanning
mobile robots, navigation, and semantic mapping, the focus has shifted towards developing
dependable localization solutions using an assortment of sensors such as cameras, LiDAR,
and IMU. Generally, a dense 3D mapping system is composed of three main elements:
(1) sensor pose estimation derived from spatial alignments of consecutive frames; (2) 3D
scene reconstruction employing the estimated camera pose and combined points; and
(3) loop closure identification and pose graph optimization [1].

Advancements in the field of robotics have greatly benefited from SLAM techniques,
which are crucial for enabling robots to autonomously navigate and perform tasks. Among
these techniques, visual SLAM, which leverages camera images for motion estimation and
mapping, has been widely adopted. Originally used for obstacle detection, LiDAR sensors
have also been employed for localization via scan registration algorithms that align point
clouds. Feature-based localization in SLAM systems can deliver exceptional accuracy when
environments have evenly distributed 2D and 3D features obtained from optical or LiDAR
sensors. However, this method may be prone to failure in environments with limited visual
features and depth variations. On the other hand, inertial sensors such as IMUs do not face
these localization limitations and can consistently estimate motion with high frequency and
low latency. Nonetheless, consumer-grade IMUs may exhibit significant drift over time.
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By combining various sensors, such as optical or LiDAR odometry estimates, this issue
can be addressed, resulting in an accurate and dependable SLAM system. Consequently,
incorporating multiple sensor modalities is highly desirable for the development of next-
generation SLAM systems.

MMSs have emerged as an essential tool for a variety of applications, including urban
planning, infrastructure inspection, and autonomous driving. The success of an MMS
hinges on its capacity to precisely self-locate and generate a real-time map of its surround-
ings. SLAM is a prevalent method that empowers MMS to accomplish this objective.
By merging data from disparate sensors, such as LiDAR and cameras, SLAM can accu-
rately determine the motion of the MMS and create a map of the nearby environment.
In this regard, we present a Maverick MMS outfitted with a tilted multi-beam LiDAR and a
panoramic camera, allowing the system to capture a 360-degree view of the environment.
Although the tilted LiDAR offers enhanced point density, coverage, and mapping accu-
racy [2], it presents challenges for SLAM due to its restricted horizontal coverage. However,
by combining the data from both sensors, our system can surmount this limitation and
achieve precise and reliable SLAM performance.

In our Maverick MMS, the LiDAR is angled towards the ground to enhance mapping
performance, while the panoramic camera provides a broad field of view (FoV) for robust
SLAM. Conventional camera configurations with limited FoV often result in feature track-
ing failures in SLAM, while panoramic vision facilitates long-term feature tracking. Prior
research [3–6] has showcased the efficacy of panoramic vision for visual odometry and
visual SLAM across diverse scenarios.

Panoramic vision, while a promising sensor for SLAM, currently only yields results
up to scale, which are inadequate for numerous practical applications. Prior attempts to
generate metric results using GPS [5] or ground control points [6] have faced challenges due
to their availability and dependability. In this study, we propose an early fusion technique
that combines the panoramic camera and LiDAR sensor for SLAM, facilitating metric
scale results without requiring external data [5,6]. Our method leverages LiDAR points to
produce absolute scale results by assigning a range value acquired from LiDAR points to
visual features. We implement our approach on the flexible visual SLAM framework, Open-
VSLAM [7], utilizing panoramic vision. Drawing inspiration from earlier work [8,9] on
the early fusion of LiDAR points and visual features, our method demonstrates promising
results in accurate SLAM with the Maverick MMS.

Following the early fusion of LiDAR points and visual features, we establish a com-
bined Visual-LiDAR-IMU SLAM system by implementing our intermediate fusion through
a so-called pose graph formulation [10]. In these pose graphs, nodes symbolize poses,
while edges between them represent spatial information, usually constraints obtained from
odometry and loop closures in SLAM systems.

Our research makes a substantial contribution to the field of SLAM by presenting a
unique Visual-LiDAR-IMU SLAM system designed to fuse multiple sensors. The system
is composed of two subsystems: early fusion and middle fusion. In early fusion, range
maps are generated from LiDAR points within a panoramic image space, facilitating
the direct augmentation of ranges to visual features. This allows the SLAM system to
function with both visual features with and without augmented ranges. In middle fusion,
a pose graph [10] is employed to merge camera and LiDAR nodes, while IMU data supply
constraints between each node, encompassing camera-camera, LiDAR-LiDAR, and camera-
LiDAR constraints. Our research presents four main contributions:

• The proposed SLAM system integrates various sensors, such as panoramic cameras,
LiDAR sensors, and IMUs, to attain high-precision and sturdy performance.

• The novel early fusion of LiDAR range maps and visual features allows our SLAM
system to generate outcomes with absolute scale without the need for external data
sources such as GPS or ground control points.

• The middle fusion technique is another key novelty of our research. Employing a pose
graph formulation facilitates the smooth combination of data from various sensors,
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and it empowers our SLAM system to deliver precise and reliable localization and
mapping outcomes.

• We carried out comprehensive tests in demanding outdoor environments to showcase
the efficacy and resilience of our proposed system, even in situations with limited
features. In summary, our research contributes to advancing more precise and robust
SLAM systems for various real-world applications.

In summary, our research significantly contributes to the advancement of SLAM sys-
tems by integrating multiple sensors, enabling absolute scale estimation, utilizing pose
graph formulation for fusion, and demonstrating robust performance in challenging envi-
ronments. These contributions address key challenges in SLAM and open new possibilities
for more precise and reliable mapping and localization in various application domains.

This paper presents a comprehensive review of existing SLAM systems in Section 2,
emphasizing their limitations and drawbacks. Next, in Section 3, we unveil our innovative
panoramic vision-aided Cartographer SLAM system. Additionally, we assess the perfor-
mance of our proposed system using a custom dataset in demanding outdoor environments
and share our experimental findings in Section 4. Lastly, in Section 5, we recap our con-
tributions and underscore the possible impacts of our research on future investigations in
this domain.

2. Related Work

Section 1 describes our PVL-Cartographer SLAM system as an extended Cartographer
that integrates a panoramic camera, tilted LiDAR, and IMU sensors. In this section, we
will review some of the state-of-the-art odometry and SLAM methods that are related to
our work.

2.1. Visual SLAM

Feature-based visual SLAM approaches have been devised to identify and track corner-
like visual features, including SIFT (Invariant Feature Transform) [11], SURF (Speeded
Up Robust Features) [12], and ORB (Oriented FAST and Rotated BRIEF) [13]. ORB-
SLAM2 [14] and ORB-SLAM3 [15] have extended these methods for use with monocular,
stereo, and RGB-D cameras, as well as visual-inertial modules, incorporating map reuse,
loop closing, and relocalization features. However, feature-based techniques encounter
difficulties in finding correspondences in environments with simple or repetitive patterns
or featureless scenes, resulting in motion estimation or tracking failures. LSD (Large-Scale
Direct monocular SLAM) [16] and DSO (Direct Sparse Odometry) [17] are cutting-edge
direct visual odometry methods that tackle this issue with precise pose estimation and
3D reconstruction.

Nonetheless, both monocular feature-based SLAM and direct visual SLAM experience
scale ambiguity, which can be addressed using depth data. RGB-D SLAM and ToF (Time-
of-Flight) SLAM have been developed to supply depth information alongside images.
Previous techniques [18,19] utilized RGB images and depth data for estimating incremental
motion, treating it as a 3D feature matching problem. Ref. [20] proposes a method that
extracts visual features and estimates initial incremental motion with RANSAC-based
alignment, then employs the initial motion to initialize the ICP (Iterative Closest Point)
estimation. KinectFusion [21] is a groundbreaking RGB-D SLAM system utilized for
real-time tracking and mapping, but it may fail in cases of rapid motion or featureless
environments. Visual-inertial fusion [1,22] has been effectively employed to overcome such
tracking failures.

2.2. Panoramic Visual SLAM

The majority of visual SLAM systems rely on the conventional pinhole camera model,
which has a limited field of view and can easily encounter tracking failures due to insuffi-
cient features. This can be particularly troublesome in situations involving rapid motion,



Remote Sens. 2023, 15, 3383 4 of 20

changing lighting conditions, or texture-less environments. One promising approach to
address this issue is to expand the field of view using fisheye or panoramic cameras.

The OpenVSLAM framework [7] is a versatile visual SLAM solution capable of ac-
commodating various camera models, such as pinhole, fisheye, and panoramic cameras. It
comprises three primary modules for tracking, mapping, and global optimization, which
are inspired by ORB-SLAM. By utilizing the equirectangular camera model for panoramic
vision, OpenVSLAM is able to execute SLAM using panoramic cameras.

RPV-SLAM [23] is a range-augmented panoramic visual SLAM solution that builds
on the OpenVSLAM framework by generating ranges for visual features using LiDAR
points. This enables the system to enhance the accuracy and robustness of feature tracking
in challenging environments. These advancements in the OpenVSLAM and RPV-SLAM
frameworks represent significant contributions to the field of visual SLAM and have the
potential to enable new applications in robotics, augmented reality, and beyond.

2.3. LiDAR SLAM

LiDAR-based SLAM systems have gained increasing attention in recent years due
to their ability to provide high-resolution 3D data of the environment. One such system
is LOAM (Lidar Odometry and Mapping in real-time) [24], which has shown promising
results without the need for precise range data. Proposed in 2014, it remains one of the
best-performing methods according to the KITTI odometry benchmark dataset [25]. V-
LOAM [26], the vision-aided version of LOAM, is its main competitor. LOAM achieves real-
time performance by breaking down the odometry problem into high and low-frequency
algorithms that work together. The high-frequency algorithm estimates velocity, while the
low-frequency algorithm handles point cloud registration and mapping for finer results.
This approach allows LOAM to be fast and computationally efficient, ensuring low drift and
precise mapping. LOAM uses point-to-plane ICP registration for point cloud registration
and extracts features based on roughness, categorizing them as point and edge features.
LOAM-livox [27] is an extended version of LOAM designed for LiDARs with small FoV
and irregular samplings. Another recent development is SA-LOAM [28], a novel semantic-
aided LiDAR SLAM based on LOAM that incorporates semantics in odometry and loop
closure detection.

Ref. [29] presents a system that uses transformations computed from ICP to feed a
pose graph structure, which is then used on loop closings to build an optimization problem
that provides updates for keyframes selected along the trajectory. These updates correct
the map of the environment being built and reduce accumulated errors from ICP odometry.
However, this system remains susceptible to local minima in which ICP can converge.

SuMa [30] expands on prior research in laser-driven SLAM by incorporating semantic
maps for enhancement. SuMa++ [31] builds upon SuMa, facilitating semantic segmentation
of point clouds using laser-based technology. By employing this semantic data, pose estima-
tion accuracy can be heightened in complex and uncertain circumstances. More specifically,
SuMa++ utilizes semantic coherence between scans and the map to eliminate dynamic
objects and offer higher-level constraints during the ICP procedure. This enables the sys-
tem to integrate both semantic and geometric information solely from three-dimensional
laser range scans, resulting in significantly improved pose estimation accuracy. Moreover,
in contrast to other SLAM techniques, SuMa++ does not rely on any data derived from
visual images.

2.4. Sensor-Fusion-Based SLAM

V-LOAM [26] is an innovative extension to LOAM that integrates vision-based compo-
nents to enhance its performance. Proposed by the same research group, it has been shown
to outperform LOAM in certain scenarios according to the KITTI benchmark. V-LOAM
is particularly effective in detecting sudden and sharp motions, which can be challenging
for traditional Lidar-based odometry systems. The high-frequency module of V-LOAM
leverages visual features to estimate the velocity of the vehicle while the Lidar ensures pre-
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cision in smaller movements. Additionally, the point set registration and motion estimation
refinement are performed in parallel at a lower rate to achieve accurate and efficient results.

Ref. [32] introduced LeGO-LOAM, a lightweight and ground-optimized LiDAR
odometry and mapping method based on LOAM. Building upon their previous work,
the authors extended LeGO-LOAM to include IMU sensors and visual cameras, resulting
in tightly-coupled LiDAR-inertial odometry [33] and LiDAR-visual-inertial odometry [34]
via smoothing and mapping. This approach leverages the complementary information
provided by different sensors to improve the accuracy and robustness of the system while
reducing drift and enhancing mapping capability.

Google’s Cartographer [35] is widely acknowledged as a real-time solution for indoor
mapping. This 2D SLAM system amalgamates scan-to-submap matching with loop closure
detection and graph optimization to create globally consistent maps. A local grid-based
SLAM technique is used to generate individual submap trajectories. Concurrently, all scans
are matched to nearby submaps using pixel-precise scan matching to establish loop closure
constraints. Periodic optimization of the constraint graph containing submap and scan
poses yields a globally consistent map. The final map is produced as a GPU-accelerated
fusion of completed submaps and the current submap, offering a real-time view for the
operator. To expand Cartographer for 3D SLAM, an IMU is needed to gauge gravity and
determine the z-direction. Roll and pitch, ascertained from the IMU, are utilized in the scan
matcher to minimize the search window in three dimensions. Multiple studies [36,37] have
built upon Google Cartographer to enhance its processing speed and precision.

The PVL-Cartographer is an extension of Google’s Cartographer SLAM system, incor-
porating panoramic visual odometry capabilities by integrating panoramic cameras, tilted
LiDAR, and IMU sensors to improve overall performance. The proposed sensor-fusion-
based SLAM offers several advantages. The integration of data from different sensors helps
to compensate for the limitations and uncertainties of individual sensors, leading to more
precise, reliable, and robust localization and mapping results. Furthermore, by combining
these data sources, the SLAM system can create high-resolution 3D maps with rich geo-
metric and semantic information. Finally, the proposed SLAM can reduce or eliminate the
need for external data sources, such as GPS or ground control points. By integrating data
from multiple sensors, the system can estimate its position and build a map independently,
making it more self-contained and suitable for scenarios where access to external data may
be limited or unreliable.

3. Methodology

In this section, we introduce the PVL-Cartographer, which leverages a sensor fusion ap-
proach to enhance the accuracy and robustness of the SLAM system. The PVL-Cartographer
system integrates data from panoramic cameras, tilted LiDAR, and IMU sensors to create a
comprehensive and reliable representation of the environment. This multi-sensor approach
allows the system to overcome the limitations of individual sensors and provide better
performance in challenging scenarios.

3.1. Mobile Mapping System

MMS has become increasingly popular in recent years due to its ability to provide
geospatial data while the platform is in motion. MMSs typically consist of high-resolution
cameras and LiDAR as primary sensors for data acquisition, along with other sensor
suites such as the global navigation satellite system (GNSS) and IMU for positioning and
geo-referencing. Although MMSs are primarily used for mapping purposes, they are
not typically used for odometry, and post-processing is often required to obtain accurate
geo-referencing information.

Recent advancements in MMS technology, such as machine learning, artificial in-
telligence, object extraction, and autonomous vehicles, have driven the development of
increasingly sophisticated MMS systems. However, such systems are often limited to
outdoor environments due to the inability to collect accurate GNSS data indoors. To ad-
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dress this issue, the proposed PVL-Cartographer SLAM system for MMS allows for both
localization and mapping in GPS-denied environments. Ref. [38] provides a comprehensive
overview of recent MMS technologies, including the types of sensors and platforms utilized
in MMS and their capabilities and limitations.

There are numerous industrial MMS products available in the market. Each product
offers its own features, specifications, and applications, catering to diverse needs in fields
such as geospatial mapping, transportation planning, and asset management. Here are
some examples of industrial MMS products:

• Trimble MX series: such as Trimble MX7 and Trimble MX9.
• Leica Pegasus: including models such as Leica Pegasus Two, Leica Pegasus: Backpack,

and the latest addition, Leica Pegasus TRK.
• RIEGL VMX series: includes models such as the RIEGL VMX-1HA and VMX-RAIL.
• MobileMapper series by Spectra Precision: including models such as the MobileMap-

per 300 and MobileMapper 50.
• Velodyne Alpha Prime.

3.2. Maverick MMS and Notation

Our study presents a Cartographer-based Panoramic-Visual-LiDAR-IMU SLAM sys-
tem, utilizing the Maverick MMS as depicted in Figure 1. The MMS is outfitted with a
Ladybug5 panoramic camera, a Velodyne HDL-32E LiDAR, and high-precision GPS/IMU.
Notably, in our experiments, the GPS data are utilized solely as a ground truth to evaluate
the performance of the proposed PVL-Cartographer system. The camera’s optical axis
is aligned parallel to the ground when mounted on a car, while the LiDAR’s spinning
axis is tilted at an angle of 45◦ relative to the ground. During data collection, images are
captured at an average rate of 7.5 frames per second, while the LiDAR scans are acquired
at a spinning rate of 15 revolutions per second.

In this study, the GPS/IMU coordinate system is designated as the body frame b, while
l and c represent the lidar and camera coordinate systems. To ensure accurate sensor fusion,
all sensors in the Maverick MMS are calibrated using external parameters, with the X-Y-Z
axis pointing forward, right, and downward, as illustrated in Figure 2. We have to perform
calibration for all sensors fixed in Maverick MMS before using it.

• IMU calibration: Initially, the IMU was calibrated. The Maverick MMS incorporates the
NovAtel SPAN on OEM6, which combines GNSS technology with advanced inertial
sensors for positioning and navigation. In the GNSS-IMU system, calibration begins
by utilizing initial values from “SETIMUTOANTOFFSET” (or NVM). Subsequently,
the “LEVERARMCALIBRATE” command is employed to control the IMU-to-antenna
lever arm calibration. The calibration process continues for 600 s or until the standard
deviation is below 0.05m, at which point the estimated lever arm converges to an
acceptable level.

• LiDAR calibration: To accurately determine the position of the LiDAR relative to the
body frame, a selection of control points on the wall and ground was made. Using
the mission data collected by Maverick, a self-calibration method was employed,
which involved time corrections, LiDAR channel corrections, boresight corrections,
and position corrections. The self-calibration process was repeated until the boresight
values were corrected to be below 0.008 degrees.

• Panoramic camera calibration: The six cameras are calibrated using Zhang’s method [39],
which involves capturing checkerboard patterns from different orientations using all
cameras. The calibration procedure includes a closed-form solution, followed by a non-
linear refinement based on the maximum likelihood criterion. Afterward, LynxView is
used to boresight the camera with respect to the body frame. The method involves
selecting LiDAR Surveyed Lines and Camera Lines, and formulating the constraint as
a non-linear optimization problem to determine the optimum rigid transformation.
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Figure 1. The Maverick MMS with a tilted LiDAR and a panoramic camera.

Maverick Mobile Mapping System
5

Driving 
Direction

Panoramic 
Camera

IMU

LiDAR

Figure 2. The coordinate system for Maverick MMS with a tilted LiDAR, a panoramic camera,
and IMU.
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A 3 × 4 matrix p = [R,t] represents the sensor’s pose, where R is a 3 × 3 rotation
matrix, and t is a translation vector. The variable k denotes a specific time point, where
pk represents the transformation of the local coordinate system at time k relative to its
origin. The motion mk denotes the relative pose between time k − 1 and k. A 6-DOF
pose representation Tab denotes the pose of frame b with respect to frame a, so Tab can be
used to represent the relative transformation between frame a and frame b. The extrinsic
parameters of all sensors are listed in Table 1, where the body frame is the IMU frame,
Tbl denotes the relative transformation between body frame and LiDAR frame and Tbc
represents the relative transformation between body frame and camera frame.

Table 1. Calibration parameters of Maverick MMS.

Rotation Angles [Degrees] Position [Meters]

Tbl [179.579305611, −44.646008315, 0.600971839] [0.111393, 0.010340, −0.181328]

Tbc [0, 0, −179.9] [−0.031239, 0, −0.1115382]

3.3. Google Cartographer

This research presents an enhanced version of the Cartographer SLAM technique,
a real-time mapping and loop closure system designed for backpack or vehicle mapping
platforms with a 5 cm resolution. The Cartographer method employs a grid-based map
representation that permits variable resolution and sensor options. It comprises four
modules, as shown in Figure 3. The first module entails data input, which necessitates
LiDAR points and IMU data, with odometry pose data and fixed frame pose data as
optional extras. The second module contains fundamental processing, which incorporates
a voxel filter for LiDAR scan processing. The third module, LiDAR odometry and mapping,
employs a Ceres scan matcher for matching features and a submap to estimate the vehicle’s
pose and orientation. The final global adjustment module optimizes the pose by applying a
larger scan matcher to a global map produced by combining all submaps. Cartographer
is advantageous because it is a LiDAR-centric SLAM system that can incorporate sensor
fusion such as IMU and odometry data.

3.3.1. Local Map Construction

Cartographer generates a map consisting of local submaps and a global map com-
prised of accumulated submaps. Whenever a loop closure is identified, the global map will
be rectified or corrected. Scans from the LiDAR sensor are aligned to a submap coordi-
nate frame iteratively during the construction of a submap. In the submap, the 2D pose
transformation of the scan frame ε is represented as Tε, as defined by Equation (1):

Tε p =

(
cosεθ −sinεθ

sinεθ cosεθ

)
︸ ︷︷ ︸

rotation

p +

(
εx
εy

)
︸ ︷︷ ︸

translation

(1)

Submaps are generated using probability grids. Defined is the pixel that will comprise
of all points that are closest to the grid point. A probability hit or miss is ascribed to a set of
grid points based on their inclusion in one of these sets. The closest grid point is then added
to the hit set for each strike. In the meantime, each miss is added to the grid associated
with the pixel, with the exception of grid points that are already included in the hit set.
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Figure 3. The workflow of the Google Cartographer SLAM. The system comprises four modules.
The data input module is capable of accepting data from LiDAR, IMU, and odometry (optional),
as well as GPS (optional). The second module conducts basic processing of the input data. The third
module serves as the frontend of the system, encompassing LiDAR feature extraction, matching,
motion estimation, and local map construction. The fourth module functions as the backend of the
system, facilitating global map construction based on pose graph optimization.

3.3.2. Ceres Scan Matching

In SLAM, the scan matcher is always used to analyze sensor data and estimate position.
This approximated pose with translation and rotation is computed by filtering the residual
difference between consecutive scans and comparing the current scan states to the submap.
The Ceres scan matcher utilized by Cartographer is responsible for determining optimal
probability values at the submap’s scan points. This is a non-linear least squares problem,
as Equation (2) denotes.

argminε

k

∑
k=1

(1−Msmooth(Tεhk))
2 (2)

where Tε transforms the scan points hk from the scan frame to the submap frame based on
the scan pose. The function Msmooth is a bicubic interpolation smooth filter for the submap’s
probability values.

This mathematical optimization typically yields greater precision than the grid’s
resolution. Using the initial estimates from the early fusion, the matching process is made
more robust and accurate scan pose estimates are obtained. An IMU is used to approximate
the rotational component θ of the pose between scan matches in the naive Cartographer
system. This rotational component is derived in our PVL-Cartographer system from both
the IMU and the initial estimates of early fusion.

3.4. RPV-SLAM with Early Fusion

In this section, we will present the basis for the range-augmented panoramic visual
SLAM (RPV-SLAM) system [23]. The system is composed of four modules: the feature and
range module, the tracking module, the mapping module, and the loop closing module.
In the feature and range module, visual features are extracted from a panoramic image and
their ranges are determined from LiDAR points. The tracking, mapping, and loop-closing
modules then assign visual features with and without augmented ranges. At the end
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of the pipeline, metrically-scaled results are produced. It is important to note that only
results without loop closing are used in the next PVL-Cartographer middle fusion since
our PVL-Cartographer SLAM already has its own loop closing module.

3.4.1. Feature and Range Module

To begin, we extract ORB features from a panoramic image, which we will call I. We
then create a range-map, R, that is the same size as I. Next, we use known calibration
parameters to project LiDAR points from the LiDAR frame onto R in the camera frame.
These projected points, which we will call Pl = pi, correspond to a point i with a range of
ri at image coordinates (ui, vi) in R. Next, we need to calculate ranges for the range-map
R across the panoramic image area using range interpolation. The LiDAR has a tilted
configuration, so the projected points Pl are limited to a rainbow-shaped region (as shown
in Figure 1). To obtain a dense range-map R with dense ranges across the panoramic image
area, we use Delaunay-triangulation-based interpolation with Pl . The interpolated range
may become inaccurate if a location (u, v) is far from Pl . To address this issue, a binary
mask called M is created with the same size as the range-map R. The mask keeps the
interpolated ranges inside it and discards those outside. The augmentation of ranges to
ORB visual features can be performed easily by locating the range in the final generated
range-map R f with respect to the same location as a visual feature. Two types of visual
features are extracted as a consequence of the augmentation: (i) visual features augmented
with ranges and (ii) visual features without augmented ranges.

3.4.2. Tracking Module

The tracking module for localization estimates the camera pose for each frame by find-
ing feature matches to the local map. It uses visual features with and without augmented
ranges to achieve this. A motion-only bundle adjustment is performed simultaneously to
minimize the reprojection error. The visual features with augmented ranges can be used to
create scaled map points directly. However, the scaled map points of visual features without
augmented ranges are created using triangulation between two frames under an estimated
scaled motion. Once appropriate scaled map points are generated, metrically-scaled SLAM
results will be produced.

3.5. PVL-Cartographer SLAM with Pose-Graph-Based Middle Fusion

The PVL-Cartographer SLAM has two parts: frontend and backend. Figure 4 shows
the workflow of the proposed system. The frontend includes feature extraction, matching,
pose estimation, and data association for the local map. Compared to the original Google
Cartographer (Figure 3), we added early fusion, combining LiDAR points and panoramic
images into the visual feature tracking module. The motion estimation is then used as the
initial value in the Google Cartographer LiDAR odometry module. Finally, the camera and
LiDAR nodes are inserted into the global map and optimized together in the backend.

First, the pose is generated by the early fusion of the visual feature and range module.
The generated pose is then used as the initial value for the modified Cartographer system.
Note that any visual odometry algorithm, including RPV-SLAM-based visual odometry,
can be applied to the proposed PVL-Cartographer. In this endeavour, we utilized RPV as an
early fusion method, which is interchangeable with other visual odometry. This initial value
is accepted by the Ceres scan matcher, which then processes the LiDAR points to generate
more robust and accurate pose estimates. Next, nodes are added to the global map based on
the estimated camera frame poses from early fusion and the estimated LiDAR scan poses
from the Ceres scan matcher. Figure 5 depicts the global map structure of the proposed
PVL-Cartographer SLAM. The global map has two categories of nodes: camera nodes and
LiDAR nodes. All nodes are listed according to the frame or scan’s timestamp. Given
certain constraints, the nodes in the world coordinate system are optimized. Since the IMU
has the highest frequency, it provides measurements of angular velocity and acceleration
that can be used to link nodes together. IMU measurements are used to calculate the



Remote Sens. 2023, 15, 3383 11 of 20

constraints between camera frames, LiDAR scans, and consecutive camera-LiDAR nodes.
The global map will then be optimized, as detailed in the subsequent section.

Figure 4. The workflow of the PVL-Cartographer SLAM with middle fusion. Compared to the
original Google Cartographer, we have added a visual odometry module with early fusion (RPV).
The LiDAR odometry based on Google Cartographer incorporates the odometry result from RPV as
an initial value. In the backend, we have included camera nodes and LiDAR nodes in the global map.
All nodes are optimized with specified constraints. The global map structure is depicted separately
in Figure 5.

Figure 5. The global map structure of the proposed PVL-Cartographer SLAM. The system receives
input from a spherical camera, 3D LiDAR, and IMU.

3.6. Global Map Optimization and Loop Closure for PVL-Cartographer

In the process of approximating the position in local SLAM, errors are introduced
due to the presence of grid map resolution, sensor noises, and the fusion of various map
features. Although the error between frames or scans is small, it accumulates and results
in a larger drift error after traveling a great distance. Using the sparse pose adjustment
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(SPA) optimization procedure, Google’s original Cartographer attempts to reduce this
error. In this method of optimization, a similar scan matcher in local SLAM is used for
pose correction but in a larger global map range. In the interim, loop closure detection is
incorporated into the process of optimization. The optimization problem is specified as a
non-linear squares problem. Every few seconds, the Ceres is used to compute the solution
to (3).

argminΞmΞn
1
2 ∑

ij
ρ(E2(εm

i , εn
j , ∑

ij
, εij)) (3)

where the submap poses Ξm = {εm
i }i=1,...,m and the camera or scan poses Ξn = {εn

j }j=1,...,n
in the world are optimized with given constraints. These constraints take the form of
relative poses εij and associated covariance matrices ∑ij.

The transformation between two nodes pi and pj can be computed by Equation (4).

T(pi, pj) =

(
R−1

εm
i
(tεm

i
− tεn

j
)

εm
i;θ − εn

j;θ

)
(4)

Then the residual E for such a constraint is computed by Equations (5) and (6).

E2(εm
i , εn

j ; ∑
ij

, εij) = e(εm
i , εn

j ; ∑
ij

, εij)
2 ∑

ij
e(εm

i , εn
j ; ∑

ij
, εij)

2 (5)

e(εm
i , εn

j ; ∑
ij

, εij) = εij −
(

R−1
εm

i
(tεm

i
− tεn

j
)

εm
i;θ − εn

j;θ

)
(6)

The residuals of camera-camera, LiDAR-LiDAR, and camera-LiDAR are computed
separately and then combined as Equation (7).

argminΞmΞn
1
2 ∑

ij
ρ(E2

c−c + E2
l−l + E2

c−l) (7)

The approximated positions from early fusion can also be viewed as landmarks on the
globe map. However, the camera frame and LiDAR scan are captured at separate times.
This asynchronization issue is solvable through interpolation.

The complete weighted landmark cost function can then be represented by Equation (8).

f (pl
0, pc

i , pc
j ) = f (pl

0, pc
0) =

(
wt wr

)
(Tm

cl − T(pl
0, pc

0)) (8)

The translation and rotation weights wt, wr are included in the landmark observation
data, and Tm

cl is the transformation between the camera and LiDAR, which has a fixed value
for the Maverick MMS.

4. Experiments

In this section, we evaluate the proposed SLAM system using an MMS in real-world
outdoor environments.

4.1. Dataset

We conducted experiments utilizing the Maverick sensor, which was attached to a ve-
hicle and tested in various outdoor settings, such as parking lots, roads, campuses, and res-
idential areas. In order to accurately evaluate the effectiveness of our PVL-Cartographer
SLAM system, we selected four specific sets of data. The information for these sets can
be found in Table 2, which displays the number of camera and LiDAR frames, image size,
distance traveled, running time, scene descriptions, and evaluation methods. To ensure pre-
cise ground-truth trajectories, we obtained cm-level accurate GPS data that were processed
through bundle adjustment with ground control points in the LMS software from Teledyne
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Optech. We successfully synchronized data from multiple sensors using high-precision
GPS/IMU data, and LiDAR points through offline interpolation of the timestamps and
bundle adjustment method. Then we processed the GNSS data to estimate the trajectory
of the system. Base stations were used to improve the accuracy of the GNSS measure-
ments by applying real-time kinematic (RTK) error correction techniques. Furthermore,
Figure 6 overlays the ground-truth trajectories on satellite images, giving a clear visual
representation of the data and the accuracy of our results.

Table 2. Details of our four datasets captured by Maverick MMS to evaluate different methods.

Sequence A Sequence B Sequence C Sequence D

Sensors Maverick MMS: Ladybug-5 + Velodyne HDL-32 + IMU

Region Parking lot Campus area Residential area Residential area

Camera frames 717 8382 10,778 4500

Image size 4096 × 2048 8000 × 4000 8000 × 4000 8000 × 4000

LiDAR frames 1432 17,395 22,992 9615

Distance travelled 324 m 7035 m 7965 m 3634 m

Running time 94 s 19 min 22 min 10 min

Ground truth GNSS/IMU GNSS/IMU GNSS/IMU GNSS/IMU

Loop One small loop One large loop + a few
small loops

Many medium-size
loops A few loops

Dynamic objects Parking, barrier and
person Car, bus and person Car, bus and person Car, bus and person

Compared methods

ORB-SLAM2 (camera-only)
VINS-Mono-SLAM (camera + IMU)

LOAM (LiDAR)
Google-Cartographer-SLAM (LiDAR + IMU)

RPV-SLAM (Panoramic camera + LiDAR)
Our PVL-Cartographer SLAM (Panoramic camera + LiDAR + IMU)

Figure 6. Cont.
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Figure 6. Ground–truth trajectories (marked by green dots) overlaid on satellite images for the
sequence A, B, C, D.

4.2. Results

We evaluated the performance of the proposed PVL-Cartographer SLAM system by
comparing it with several state-of-the-art SLAM systems in Table 2. This includes ORB-
SLAM2 [14], VINS-Mono [40], LOAM [24], and Google Cartographer [35]. It is worth
noting that we tested ORB-SLAM2 with monocular images to highlight the benefits of
using panoramic images in visual SLAM. We also tested VINS-Mono, a visual-inertial
SLAM system, using the monocular images and IMU data from our Maverick MMS. Addi-
tionally, we evaluated LOAM, a well-known LiDAR-based odometry system, and Google
Cartographer, a LiDAR-inertial SLAM system that uses IMU data to define the z-direction.

The results indicate that both the RPV-SLAM and proposed PVL-Cartographer systems
are capable of producing accurate and robust results on a large scale. Figure 7 displays the
trajectories and global maps generated by sensor-fusion-based SLAM systems. Respectively,
Figure 8 shows the position errors in the x, y, and z directions for three methods and four
sequences. Notably, the initial values of the PVL middle fusion module are derived from
the RPV early fusion module, thereby enhancing the PVL-Cartographer system’s precision.
Incorporating the camera nodes and LiDAR nodes into the pose graph and optimizing them
jointly, the proposed PVL-Cartographer system obtains superior performance compared to
existing methods.

To evaluate the performance of the proposed PVL-Cartographer SLAM system and
the compared SLAM methods, we used the RPG trajectory evaluation toolbox [41] and
measured the absolute trajectory error (ATE), relative translation error (RTE), and relative
rotation error (RRE) for each method. The ATE is presented in Table 3 as the measured root
mean square error (RMSE) using the aligned estimation and the ground truth. The RTE
is the average transnational RMSE in percentage over trajectory segments with lengths
of 10%, 20%, 30%, 40%, and 50% of the total length. In contrast, the RRE is the average
rotation RMSE (◦/m) over the same trajectory segments. The RTE and RRE outcomes are
depicted in Table 4 and Figure 9, respectively.
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Figure 7. Trajectory comparison in each sequence. Note that only a partial trajectory of the Cartogra-
pher is shown in (b), as the operation of Cartographer was suspended in the middle of the sequence.
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Figure 8. Comparison of position errors in x-y-z directions, respectively, for Figure 7.
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Table 3. Comparison of translation accuracy w.r.t. ATE [m]. The best results are highlighted in bold.

ORB SLAM2 VINS-Mono LOAM Cartographer RPV-SLAM PVL-SLAM

Sequence A 5.894 3.9974 Fail 4.023 1.618 0.766

Sequence B 100.870 86.897 Fail 152.230 12.910 2.599

Sequence C 155.908 160.765 Fail 183.619 30.661 3.739

Sequence D 10.665 12.875 Fail 58.576 5.673 2.204

Overall 68.3343 66.1336 Fail 99.612 12.7155 2.327

Table 4. Comparison of translation and rotation accuracy w.r.t. relative error, [%] [deg/m] . The best
results are highlighted in bold.

ORB SLAM2 VINS-Mono LOAM Cartographer RPV-SLAM PVL-SLAM

Sequence A 7.769 4.685 Fail 6.789 3.934 3.027
0.0677 0.0410 0.0507 0.0040 0.0236

Sequence B 13.770 10.779 Fail 15.047 3.096 1.273
0.0099 0.0109 0.0090 0.0009 0.0019

Sequence C 4.879 3.987 Fail 5.764 3.752 0.853
0.0289 0.0301 0.0133 0.0057 0.0018

Sequence D 2.878 3.085 Fail 4.650 1.347 2.555
0.0148 0.0178 0.0137 0.0017 0.0035

Overall 7.324 5.634 Fail 9.843 2.393 1.069
0.030 0.025 0.059 0.002 0.003
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Figure 9. Cont.
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Figure 9. Relative translation and rotation errors for different sub-trajectory lengths shown as a series
of boxplots.

4.3. Discussion

The proposed PVL-Cartographer SLAM system surpassed Google Cartographer in all
four tested sequences, enhancing ATE by 80.96%, 98.29%, 97.96%, and 96.24%, respectively.
Moreover, our system outperformed Google Cartographer in terms of RTE by 55.41%,
91.54%, 85.20%, and 45.05%, and in terms of RRE by 53.45%, 78.89%, 86.47%, and 74.45%
for sequences A through D. For RRE, it is noteworthy that RPV-SLAM surpassed our PVL-
Cartographer. Our findings suggest that camera-centric SLAM systems, such as RPV-SLAM,
excel in orientation estimation, while LiDAR-centric systems perform better in translation
estimation. Sequence C, with its long distance and intricate loop structures, posed the most
significant challenges among the collected data for various scenarios. Nevertheless, our
PVL-Cartographer system achieved the best performance in ATE, RTE, and RRE, thanks
to the highly effective loop closure module, which dramatically reduced errors through
map optimization when multiple loops were detected. Despite the challenges posed by this
scenario, our PVL-Cartographer system displayed robustness and superior performance.

The RPV and PVL-Cartographer SLAM systems proved to be more accurate and robust
than existing methods, demonstrating the efficacy of sensor-fusion-based SLAM. Figure 9
showed that translation and rotation errors diminished as distance increased, indicating
the strong performance of the loop-closure model over extended distances. Additionally,
Figure 10 illustrated that the proposed SLAM system could successfully generate precise
trajectories even in demanding scenarios with complex loops and long distances. In contrast,
ORB-SLAM2, VINS-Mono, and Cartographer could only produce partial trajectories due to
insufficient features for matching, while LOAM generated incorrect trajectories, particularly
regarding orientation angles, when a tilted LiDAR only scanned points, and no IMU was
employed to indicate the z-direction.

Our results revealed that the proposed sensor-fusion-based SLAM systems were more
robust than camera-only and LiDAR-only approaches, especially for challenging data
collected by an MMS equipped with a panoramic camera and a tilted LiDAR. The out-
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comes also demonstrated that the PVL-Cartographer system, integrating panoramic visual
odometry, tilted LiDAR, and IMU sensors, delivered accurate and robust results on a
large scale.

Figure 10. For Sequence A, the left image shows the misalignment without loop closure, and the
right image shows the loop closing result. The area enclosed by the white rectangle is where loop
closure detection should occur.

5. Conclusions

The PVL-Cartographer-SLAM is a sensor-fusion-based SLAM system designed for a
Maverick MMS equipped with a panoramic camera and tilted LiDAR. Our approach se-
curely integrates multiple sensors, such as a panoramic camera, LiDAR, and IMU, within a
pose graph to enable robust and accurate SLAM. The system includes an early fusion range
augmented panoramic visual odometry system, RPV, which produces metrically-scaled
trajectories by combining visual features with ranges obtained from LiDAR points. Exper-
iments demonstrate that our proposed system surpasses existing state-of-the-art SLAM
systems, including camera-centric, camera-inertial, LiDAR-centric, and LiDAR-inertial
SLAM systems, even when only a limited number of visual features are augmented with
ranges due to minimal overlap between an image and points from a tilted LiDAR. Our
results suggest that our proposed sensor fusion-based SLAM system is a promising solution
for challenging outdoor localization and mapping scenarios.

There are several potential avenues for future research related to the PVL-Cartographer
SLAM system presented in this study:

• First, by using advanced depth estimation or completion methods, more comprehen-
sive range maps can be created, allowing for the overlay of ranges on additional visual
features;

• Second, integrating range measurements into both local and global bundle adjustments
could enhance the system’s accuracy;

• Third, efforts are underway to upgrade the existing PVL-Cartographer SLAM to a
visual-LiDAR-IMU-GPS SLAM system featuring a more tightly integrated pose graph
or factor graph;

• Fourth, the system could be expanded by developing a SLAM pipeline that incorpo-
rates both visual and LiDAR features;

• Fifth, applying deep neural network techniques for feature classification and pose
correction may improve the system’s overall performance.

• Finally, exploring the use of the panoramic-vision-LiDAR fusion method in other areas
of applications, such as object detection based on RGB imagery acquired by unmanned
aerial vehicles (UAVs) [42]. The combination of panoramic images with a broad FOV
and the LiDAR data should improve the performance of the transfer-learning-based
methods for small-sized object detection.
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