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Abstract: Satellite precipitation products (SPPs) have been widely evaluated at regional scales.
However, there have been few quantitative comprehensive evaluations of SPPs using multiple indices.
Ten high-resolution SPPs were quantitatively and comprehensively evaluated from precipitation
occurrence and series indices using an improved rank score (RS) method in the data-scarce Qinghai–
Tibetan Plateau (QTP). The new observation network, along with a number of national basic stations,
was applied for SPP evaluation to obtain more reliable results. The results showed that the GPM
and MSWEP showed the strongest overall performance, with an RS value of 0.75. CHIRPS and
GPM had the strongest performance at measuring precipitation occurrence (RS = 0.92) and series
(RS = 0.75), respectively. The optimal SPPs varied in evaluation indices, but also concentrated in
the MSWEP, GPM, and CHIRPS. The bias of SPPs was markedly in the QTP, with relative error
generally between −80% and 80%. In general, most SPPs showed the ability to detect precipitation
occurrence. However, the SPPs showed relatively weak performance at measuring precipitation
series. The mean Kling–Gupta efficiency of all stations was <0.50 for each SPP. The SPPs showed
better performance in monsoon-affected regions, which mainly include the Yangtze, Yellow, Nu–
Salween, Lancang–Mekong, Yarlung Zangbo–Bramaputra, and Ganges river basins. Performance
was relatively poor in the westerly circulation areas, which mainly include the Tarim, Indus, and
QTP inland river basins. The performance of SPPs showed a seasonal pattern during the year for
most occurrence indices. The performance of SPPs in different periods was opposite in different
indices. Therefore, multiple indices representing different characteristics are recommended for the
evaluation of SPPs to obtain a comprehensive evaluation result. Overall, SPP measurement over
the QTP needs further improvement, especially with regard to measuring precipitation series. The
proposed improved RS method can also potentially be applied for comprehensive evaluation of other
products and models.

Keywords: comprehensive evaluation; satellite precipitation; precipitation event; multiple indices;
rank score; Tibetan Plateau

1. Introduction

Precipitation is an important process in hydrology, meteorology, ecology, and agricul-
ture. Accurately estimating precipitation is crucial for weather forecasting, hydrological
modeling and water resource management [1,2]. Gauge observation is considered to be
the most accurate method for precipitation measurement [3]. However, most precipitation
gauge stations in China are concentrated in the eastern part of the country. Western China,
a substantially large area, has very few or even none of these, particularly in the Qinghai–
Tibetan Plateau (QTP). The sparse distribution of precipitation gauges and discontinuity
in recording sequences often results in poor analysis of the spatial and temporal features
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of precipitation [4]. For example, the daily precipitation was 23.5 mm and 229.6 mm at
two stations located within 20 km of each other and was varied five times within a 10 km
range [5]. Gauge precipitation is also underestimated by approximately 40% at the 6–7 km
distance range [6].

Satellite precipitation estimates effectively solve the problems associated with insuffi-
cient spatial representation of precipitation, even in complex terrains, because they monitor
area precipitation. In other words, satellite measurements directly represent spatial area
precipitation. Recently, the satellite-based precipitation products (SPPs) are becoming
more accurate and reliable, because they combine gauge observations and multi-satellite
data. The increased availability and consistency and high spatiotemporal-resolution of
satellite-based precipitation data make it widely applicable. Satellite sensors detect precipi-
tation by measuring precipitation-related variables and developing inversion algorithms [7].
These sensors mainly include radars, LiDARs, and passive microwave radiometers [8].
LiDAR observations can even detect light rain events [9]. However, SPPs have inherent
drawbacks associated with the indirect nature of the relationship between observations
and precipitation, inadequate sampling, and deficient retrieval algorithms [10]. These
uncertainties and inaccuracies are more in complex terrains due to low gauge densities [11].
Therefore, performing an evaluation of global SPPs before their application at regional
scale is crucial [12].

Evaluation of SPPs showed that the integrated multi-satellite retrieval (IMERGs)
products from the global precipitation measurements (GPMs) exhibited the strongest per-
formance compared to other products at global and region scales [13]. These included Aus-
tralia [14,15], Bangladesh [16], Central Asia [17], the Eastern Himalayas [10], Nigeria [18],
Thailand [19], and Vietnam [20]. These also showed that IMERGs were the strongest SPPs
in China [3,13,21–23]. However, their performance was poor in western China, especially
in the complex mountainous and arid regions [22–24].

QTP is the highest and largest plateau on Earth, with an average altitude of >4100 m
above sea level [25,26]. Measuring accurate precipitation is challenging at the QTP, due
to complex terrain, insufficient gauge sites, and high spatial heterogeneity in precipita-
tion [27]. The evaluation of SPPs here showed that their performance was worse when
compared to that of other regions in China [22–24]. The climate prediction center morphing
method (CMORPH) performed better than precipitation estimation from remotely sensed
information using artificial neural networks (PERSIANN) and tropical rainfall measuring
mission (TRMM) products in the QTP [28,29]. When the GPM IMERG products were
available, the GPM showed strongest performance. The evaluation of six SPPs showed
the GPM outperformed other datasets in QTP [30]. It overestimated precipitation amounts
and showed better performance for high elevations. The GPM performed better than
the climate hazards group infrared precipitation with station data (CHIRPS), PERSIANN,
and TRMM products in eastern Himalaya, located in southern QTP [10]. However, the
ensemble multi-satellite precipitation dataset using the dynamic Bayesian model aver-
aging scheme and global satellite mapping of precipitation (GSMaP) performed better
than GPM in the QTP [27]. However, previous studies have only used national stations
of the China meteorological administration (CMA), sparsely distributed in the QTP. The
national Tibetan plateau data center (NTPDC) developed a new precipitation observation
network comparable to the number of CMA stations. This provides a new and wider
ground observation network for evaluating SPPs in the QTP. At present, SPP evaluations
based on the new observation network are lacking. In addition, although multiple indices
have been used, previous studies were qualitative comprehensive evaluations, and there
were few quantitative comprehensive evaluations using multiple indices in the QTP.

In this study, an improved rank score (RS) method was developed for the quantitative
comprehensive evaluation of SPPs. Both the new observation network and national basic
stations were used to obtain reliable comprehensive evaluation results for the data scarce
QTP. The ability of ten high-resolution SPPs for detecting precipitation occurrence and
measuring precipitation series was evaluated at each station. The performance of SPPs in
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detecting precipitation occurrence was analyzed at different levels of precipitation. The
spatial and temporal performances of SPPs were also evaluated. Finally, the SPPs were
quantitatively and comprehensively evaluated using the improved RS method in the QTP.

2. Materials and Methods
2.1. Data
2.1.1. Gauge Precipitation Data

Gauge precipitation data from 161 stations were used for this study, including the CMA
and NTPDC stations. There are eleven large river basins located in the QTP. Observation
stations are distributed through nine large river basins (Figure 1), including the Tarim,
Gansu Corridor inland, QTP inland, Indus, Yarlung Zangbo–Bramaputra, Ganges, Nu–
Salween, Lancang–Mekong, Yangtze, and Yellow river basins. The southern and eastern
basins are affected by monsoon, whereas the western and northern basins are affected by
westerly circulation. The gauge precipitation data from national stations were provided
by the CMA, including data series from 1951–2018. The raw dataset consisted of 12 h
(8 p.m.–8 a.m. and 8 a.m.–8 p.m.) and 24 h (8 p.m.–8 p.m.) precipitation observations in
Beijing time. Raw data based on local time were converted to data based on Coordinated
Universal Time (UTC) to make it comparable with the SPPs. The UTC is equal to Beijing
time minus 8 h. There are 89 national stations in the QTP. The new observation network
of precipitation dataset was provided by the NTPDC. It included 72 stations set up by
researchers [31–78] (Table S1). These stations provided daily and hourly precipitation series.
Hourly series data were converted to UTC to make them comparable with SPPs.
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2.1.2. SPPs

Ten SPPs were used in this study (Table 1). CHIRPS is a quasi-global satellite precipi-
tation dataset (https://chc.ucsb.edu/data/chirps (accessed on 28 January 2023)) [79]. The
CMORPH is a bias-corrected product (https://www.ncei.noaa.gov/products/climate-data-
records/precipitation-cmorph (accessed on 28 January 2023)) [80]. The GSMaP products
were developed by the Japan aerospace exploration agency to achieve higher temporal
and spatial resolutions using passive microwave sensors and infrared radiometers (https:
//developers.google.cn/earth-engine/datasets/catalog (accessed on 28 January 2023)) [81].
The GPM IMERG Final is a level 3 product (https://disc.gsfc.nasa.gov/datasets/ (ac-
cessed on 28 January 2023)) [82]. This product uses multiple passive microwave satellite
sensors. It combines gauge data, microwave-calibrated infrared satellite estimates, and
other precipitation estimators at a fine spatial resolution. The multi-source weighted-
ensemble precipitation (MSWEP) product merges satellite, reanalysis, and gauge data
(http://www.gloh2o.org/mswep/ (accessed on 28 January 2023)) [83]. The PERSIANN
product is a high-resolution (up to 0.04◦) product developed by the University of California,
Irvine (http://chrsdata.eng.uci.edu/ (accessed on 28 January 2023)) [84]. There were four
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PERSIANN products used in this study, including the initial satellite measurements, the
dynamic infrared rain at near real time (PDIR-Now), the cloud classification system (CCS),
and the climate data record (CDR) [84–86]. Hourly SPPs at UTC were converted to Beijing
time make them comparable with gauge observations at daily NTPDC stations.

Table 1. SPPs datasets used in this study.

Product Version Spatial
Resolution

Temporal
Resolution Period Abbreviation

CHIRPS V2 0.05◦ × 0.05◦ Daily 1981.01–present CHI
CMORPH 8 km × 8 km 3-hourly 1998.01–present CMO

GSMaP
MVK V7 0.1◦ × 0.1◦ hourly 2014.03–present GaM
NRT V7 0.1◦ × 0.1◦ hourly 2000.03–present GaN

GPM IMERG-Final 0.1◦ × 0.1◦ 3-hourly 2000.06–present GPM
MSWEP 0.1◦ × 0.1◦ 3-hourly 1979.01–present MS

PERSIANN

CCS 0.04◦ × 0.04◦ 3-hourly 2003.01–present PCS
PDIR-Now 0.04◦ × 0.04◦ 3-hourly 2000.03–present PDI

CDR 0.25◦ × 0.25◦ Daily 2000.01–2020.12 PDR
Initial version 0.25◦ × 0.25◦ 3-hourly 2000.03–present PER

2.2. Methods
2.2.1. Evaluation Criteria on Detecting Precipitation Occurrence

The joint distribution is usually used to evaluate a satellite’s ability to detect pre-
cipitation occurrence [87]. The marginal distribution of gauge observation and satellite
estimates could be defined as true positive (TP, observed precipitation correctly detected
by the satellite), true negative (TN, no precipitation observed nor detected by the satellite),
false positive (FP, observed precipitation not detected by the satellite), and false negative
(FN, precipitation detected by the satellite but not observed). The performance statistics
applied in this study include the accuracy (A′), critical success index (CSI, also called threat
score), false alarm ratio (FAR), false positive rate (FPR, also called false alarm rate), and
probability of detection (POD, also called true positive rate or hit rate) [87–89]. The statistics
are particularly useful when the precipitation event occurs substantially less frequently
rather than not occur at all [87], which is consistent with the actual precipitation occurrence
at the QTP. Calculations for these are as follows:

A′ = TP + TN
TP + FP + FN + TN

(1)

CSI =
TP

TP + FP + FN
(2)

FAR =
FN

TP + FN
(3)

FPR =
FN

FN + TN
(4)

POD =
TP

TP + FP
(5)

CSI is the fraction of observed and detected precipitation that was correctly detected;
FAR gives the fraction of precipitation detections that were actually false alarms; POD is
the fraction of precipitation occurrences that were correctly detected. The precipitation
event is defined as daily precipitation >0.1 mm.
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2.2.2. Evaluation Criteria for Simulating Precipitation Series

Evaluation criteria for simulating monthly precipitation series included Pearson’s
correlation coefficient (CC), index of agreement (IOA), Kling–Gupta efficiency (KGE), Nash-
Sutcliffe efficiency (NSE), and relative error (RE) [90–93]. The IOA and NSE evaluate the
goodness-of-fit of the simulated and observed data series. The RE represents bias deviation
from the observed values. The KGE is an evaluation index that integrates the CC, RE and
standard deviation. The evaluation criteria were calculated as follows:

RE =
1
n∑n

i=1
Xmi − Xoi

Xoi
, (6)

CC =
∑n

i=1

(
Xoi − Xo

)(
Xmi − Xm

)
√

∑n
i=1

(
Xoi − Xo

)2
∑n

i=1

(
Xmi − Xm

)2
(7)

IOA = 1− ∑n
i=1(Xmi − Xoi)

2

∑n
i=1

(∣∣∣Xmi − Xo

∣∣∣+ ∣∣∣Xoi − Xo

∣∣∣)2 (8)

KGE = 1−

√
(1− CC)2 + RE2 +

(
1− SDm

SDo

)2
(9)

SD =

√
1

n− 1∑n
i=1

(
Xi − X

)2
(10)

NSE = 1− ∑n
i=1(Xmi − Xoi)

2

∑n
i=1

(
Xoi − Xo

)2 (11)

where Xmi and Xoi are the ith values of the satellite and observed precipitation time series,
respectively; n is the time series length; Xm and Xo are the mean of the satellite and observed
values, respectively; SDm and SDo are the standard deviations of the satellite and observed
precipitation, respectively.

2.2.3. Comprehensive Evaluation Method

The above is the evaluation of SPPs based on each index. The RS-based method
comprehensively evaluates the performance of the model using multiple indices [94,95]. It
is similar to the comprehensive Technique for Order Preference by Similarity to an Ideal
Solution evaluation method applied in other research fields [96], and subjectively merges
RS values into integers ranging from 0–9. An improved RS method was developed in this
study. It objectively evaluated the comprehensive performance of a model by using the
deviation degree between each model and the optimal model value in each index. The
improved RS method was calculated as follows:

RSi =

{ xi−xmin
xmax−xmin

, positive indexes
1− xi−xmin

xmax−xmin
, negative indexes

(12)

where xi is the index value of a satellite product; xmin and xmax are the minimum and
maximum values of the index value in all SPPs; positive indices are the A′, CC, CSI, IOA,
KGE, NSE, and POD; negative indices are the absolute value of RE, FAR, and FPR.

The RS was first calculated from the mean value of each index for each SPP. The total RS
for a SPP was obtained by averaging the RS for each index used. The performance of SPPs
in detecting precipitation occurrence and measuring precipitation series was evaluated
using the occurrence (POD, FAR, FPR, CSI, and A′) and series indices (RE, CC, IOA, KGE,
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and NSE), respectively. The SPP measurements were comprehensively evaluated using the
RS of all 10 indices.

Ten SPPs were evaluated using the gauge-observed precipitation data from QTP and
the raw spatial resolution of each SPP was used for the evaluation. The pixels closest to
each ground station were selected for each SPP. The evaluation was based on a daily time
series, and evaluation period was the time of intersection of each station and SPP.

3. Results
3.1. Performance of SPPs in Detecting Precipitation Occurrence

Figure 2 shows the performance of the 10 SPPs in detecting precipitation occurrence
in the QTP. The mean POD of all SPPs across all stations was 0.66. MSWEP showed the
strongest performance at detecting a fraction of precipitation occurrence, with the POD
of most stations (151/161) exceeding 0.90. The mean and median POD values of MSWEP
across all stations were 0.96 and 0.97, respectively. This might be due to higher precipitation
frequency in MSWEP than that in other products. The PDIR-Now and PERSIANN-CDR
also showed higher ability, with the POD being >0.60 at 94% (151/161) and 96% (155/161)
of stations, respectively. The mean POD values of the two products were approximately
0.80. CHIRPS showed the weakest performance, with mean and median POD < 0.40.
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stations (the abbreviation of each product is shown in Table 1).

Although SPPs demonstrated the ability to capture precipitation occurrence, many
false alarms of precipitation were present. FPR value was generally lower than FAR at
the QTP. The mean FAR and FPR of all products across all stations were 0.41 and 0.31,
respectively. GPM had the strongest performance in FAR, with <0.30 at 73% (118/161) of
stations. The PERSIANN, PERSIANN-CCS, and PERSIANN-CDR showed greater FAR,
with mean >0.45 for each product. GPM showed the strongest performance in FPR, with
the mean value being 0.12. The FPR was <0.20 at 86% (139/161) of stations. CHIRPS also
showed relatively better performance on FPR, with <0.20 at 91% (146/161) of stations.

The mean CSI of all SPPs was 0.43. The performance of each SPP varied substantially,
with the median CSI of all stations ranging from 0.28–0.61. MSWEP had the strongest
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performance, with the mean CSI being approximately 0.60. CSI was >0.50 at 71% (115/161)
of stations. CHIRPS showed the weakest performance, with CSI < 0.30 at 60% (96/161)
of stations.

The mean A′ of all SPPs was 0.69. The variation in performance of A′ was relatively
small among the SPPs when compared with the other four occurrence indices. The GPM,
MSWEP, GSMaP-NRT, and GSMaP-MVK showed better performance than other SPPs, with
mean and median A′ of approximately 0.75. GPM had the strongest performance, with an
A′ of 0.70 at 81% (130/161) of stations. The PERSIANN and PERSIANN-CCS showed the
weakest performance, with a mean A′ of 0.63.

Figure 3 shows the performance of SPPs at different levels of precipitation. Taking
10 mm as the dividing line, the ability of SPPs to capture different levels of precipitation
varied substantially. SPPs showed a strong ability to capture precipitation over 10 mm,
with the mean POD > 0.60 in most products. The performance was relatively poor for
the detection of precipitation <10 mm, with mean POD < 0.50 in most products. MSWEP
showed the strongest performance at all levels, with mean POD > 0.90 at each level. The
PDIR-Now and PERSIANN-CDR also showed a strong ability to capture precipitation
<10 mm, with mean POD > 0.60. In addition to MSWEP, GSMaP-NRT and GSMaP-MVK
also showed strong ability to capture rainstorm (daily precipitation > 50 mm), with a mean
POD of approximately 0.80.
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Figure 3. Performance of SPPs at different levels of precipitation amount.

In the A′-based evaluation, there was no substantial variation in the performance of
satellite products at different levels of precipitation. Standard deviation estimated from the
mean A′ of each SPP was within 0.05. The SPPs had the weakest performance at capturing
precipitation occurrence at the level of 0.1–2 mm, with the median and mean A′ of all
products being >0.70 and >0.60, respectively. All SPPs showed a strong ability to capture
precipitation occurrence when precipitation was >10 mm, especially for heavy rain and
rainstorm, with the mean A′ of each product ranging from 0.98 to 1.00. The evaluation
results of the FPR were consistent with those of the A′ index.

In the CSI evaluation, SPPs had a stronger ability to capture precipitation occurrence
at 10–50 mm than at other levels. All products had a weak ability to capture 0.1–2 mm
precipitation, with the mean CSI of all stations being ≤0.40 for each product. MSWEP
showed the strongest performance for precipitation ≤50 mm. In addition, the GPM and
CMORPH showed better performance at the level of 10–50 mm, with the mean CSI being
approximately 0.55. Other products had weak ability to capture precipitation <50 mm, with
the mean CSI being generally <0.35. GPM showed the strongest performance at capturing
rainstorm, with the mean CSI at 0.67. MSWEP also had better performance, with a mean
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CSI of 0.62. However, other products showed poor ability to capture rainstorm, with the
mean CSI of all stations being <0.30 for each product.

Overall, SPPs showed the ability to detect a fraction of precipitation occurrences,
albeit with many false alarms, in the QTP. The MSWEP and GPM generally showed the
strongest performance when evaluated on the basis of precipitation occurrence indices. In
general, the performance of SPPs showed a positive correlation with precipitation levels in
evaluation using the POD, FPR and A′ indices. With increasing precipitation amount in the
annual cycle, the performance of SPPs first increased and then decreased when evaluated
using the CSI and FAR indices. Satellite products had the strongest performance when
capturing precipitation between 10 and 25 mm.

3.2. Spatial and Temporal Performance of SPPs

Figure 4 shows the spatial performance of SPPs at detecting precipitation occur-
rence. The ability of SPPs to capture precipitation occurrence varied substantially among
stations with respect to the average performance of all products. SPPs had relatively
strong ability to capture precipitation in the eastern (chiefly including the Yellow, Yangtze,
Lancang–Mekong, and Nu–Salween river basins) and southern (the Ganges and Yarlung
Zangbo–Bramaputra river basins) regions of the QTP, with the POD generally being >0.60.
Performance was relatively poor at the source region of the Tarim and QTP inland river
basins (also known as the Qiangtang Plateau), with the POD generally being <0.60.
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The evaluation of the CSI showed a similar spatial distribution. The performance of
the SPPs in the east and south were substantially better than those in the west (chiefly
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including the source regions of Tarim and Indus river basins) and north (chiefly including
the QTP inland river basins). CSI values were generally >0.40 at the eastern and southern
stations, and generally <0.40 at the northern and western stations.

The performance of satellite products evaluated by FAR exhibited an increasing trend
from the southeast to northwest. FAR was generally <0.30 at the southern edge and in
the southeast (Hengduan Mountains), and that of some stations was even <0.20. FAR was
generally >0.50 in the western, northern, and southern regions. Except for the Hengduan
Mountains in the southeast, the spatial performance of FPR evaluation was consistent with
that of FAR, that is, FPR was generally lower (<0.30) in the east and south, and higher in
the west and north (>0.50). Contrary to the performance of the FAR, the FPR of SPPs was
generally >0.50 in the Hengduan Mountains.

When performing the evaluation using the A′ index, the satellite products had a strong
performance at detecting precipitation occurrence. The A′ of most stations (151/161) was
>0.60, with values >0.70 at 65% (105/161) of the stations. The stations with A′ < 0.60 were
chiefly located in the northwestern, northeastern, and southern edges of the QTP.

The spatial performance of GPM was consistent with the average performance of
all SPPs in the evaluation of A′ and CSI. GPM performed better than average across all
products, with A′ > 0.70 at 80% of the stations (128/161). GPM showed strong capture
ability, with POD > 0.60 only at the southern stations. POD was generally <0.50 at the
western and north-central stations, indicating that the GPM showed poor performance at
correctly detecting precipitation occurrence in these regions. However, GPM performed
substantially better than average in the FAR and FPR.

MSWEP showed a strong ability to capture the occurrence of precipitation. The POD
at most stations (155/161) was >0.80. The number of stations (91/161) with CSI values
>0.60 was also much higher than for the other products, especially in the eastern QTP.
However, MSWEP also showed a high false alarm rate/ratio. The spatial distribution of
MSWEP in the evaluation of A′ was consistent with that of GPM.

The performance of SPPs was also analyzed in different periods: in the warm (June–
September) and cold (December–March) seasons, and on an annual scale (Figure 5). The
ability of SPPs to capture precipitation occurrence varied substantially in different periods,
with the mean POD varying between 0.38 and 0.96. Overall, the capture ability of SPPs in
the warm season was substantially higher than that in the cold season. The mean POD
of all stations for each product was mainly concentrated between 0.58 and 0.80 (25–75%
frequency range) in the warm season. With the exception of CHIRPS and PERSIANN-CCS,
all other products showed strong ability, with mean POD > 0.60. The mean POD was
concentrated between 0.29 and 0.68 in the cold season. With the exception of MSWEP,
PERSIANN, PERSIANN-CCS, and PERSIANN-CDR, all other SPPs showed poor capture
ability in the cold season, with the mean POD being <0.50 for most products. The capture
ability of SPPs generally showed a unimodal distribution throughout the year. The ability
was weakest in December, and strongest in July and August.

The performance evaluation of FAR also varied substantially in different periods.
Overall, FAR in the cold season was lower than in the warm season. The mean FAR of each
product was between 0.13 and 0.72 in the warm season. CHIRPS showed the strongest
performance, with the lowest FAR. The mean FAR of each product in the cold season
ranged from 0.03 to 0.44. GPM showed the strongest performance, with the lowest FAR.
FAR had the strongest performance in December, with the mean values of FAR being
between 0.02 and 0.30. GPM showed the strongest performance. CHIRPS, GSMaP-MVK,
and GSMaP-NRT also showed better performance than the other SPPs.
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The performance of SPPs evaluated using the FPR exhibited little difference between
periods. The standard deviation calculated from the mean FPR of each SPP was approx-
imately 0.06 in each period. This indicated that the detection ability of the SPPs was
relatively consistent among the satellite products. This is in contrast to the results evaluated
using POD and FAR. FRP was much higher in the cold season than in the warm season.
The mean FPR values of each SPP were concentrated in the range 0.69–0.75 in the cold
season. In the warm season, they ranged from 0.20 to 0.34. Monthly FPR showed a regular
single-valley distribution throughout the year. The strongest performances were found in
CHIRPS and GPM.

The performance evaluation of CSI also showed little difference, with the standard
deviation being approximately 0.08 in each period. The SPPs showed the strongest ability
in July, with mean CSI values between 0.54 and 0.65. Performance was poor in the months
of the cold season, with the mean CSI < 0.45. The performance in the warm season was
also substantially better than that in the cold season. The mean CSI of each SPP was close
to or >0.50, except for CHIRPS.

The evaluation of the performance of A′ also showed little difference, with a standard
deviation of approximately 0.06 in most periods, except during January and February.
Performance evaluated using the POD, FPR, FAR, and CSI showed a seasonal pattern
during the year. However, performance evaluated by A′ did not show seasonal variations.
The performance of SPPs from March–May with the mean A′ < 0.65, was slightly lower
than that of the other months.
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Overall, the spatial and temporal performance of SPPs in detecting precipitation
occurrence showed variations when evaluated by different indices. In general, the SPPs
tend to exhibit better performance in east and south than that in west and north, when
evaluated using the POD, FAR and CSI indices. Performance in the warm season was
also substantially better than that in the cold season when evaluated using the POD, FPR
and CSI indices. However, the spatial and temporal performance of SPPs showed little
difference in the A′ index.

3.3. Performance of SPPs at Measuring Precipitation Series

Figure 6 shows the ability of satellite products to estimate monthly precipitation.
RE generally ranged from −80% to 80% at the stations. The mean RE of each SPP was
between −66% and 46%. Most SPPs (7/10) showed an overestimation in the QTP. The
mean overestimation of each SPP ranged from 19 to 46%, with a mean value of 27%.
GPM, which had the strongest ability in the RE, underestimated QTP precipitation by 13%.
However, it varied substantially among stations, with only 27% of stations (43/161) having
an RE within ±20%. PDIR-Now, CMORPH, and CHIRPS also showed better performance,
with an overestimation of approximately 20%. PERSIANN and PERSIANN-CCS had the
weakest performance at estimating the precipitation amount, with an underestimation
of approximately 65%. SPP measurements generally showed positive correlation with
observed precipitation in the QTP, except for the PERSIANN and PERSIANN-CCS. MSWEP
had the strongest correlation, with the mean CC at 0.87. CC was >0.70 at 94% (152/161)
of the stations. The PERSIANN-CDR and CHIRPS also showed a strong correlation, with
86% of stations having CC > 0.70. The mean CC of the two products were 0.82 and
0.81, respectively.
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Figure 6. Performance of SPPs at estimating monthly precipitation.

The CHIRPS measurements were in good agreement with the observed precipita-
tion in the QTP, with a mean NSE at 0.65. Measurements of the PDIR-Now and MSWEP
also matched well with the observed values, with the mean NSE values of the two prod-
ucts being 0.51 and 0.50, respectively. However, the other products showed relatively
poor agreement with monthly precipitation, with the mean NSE being <0.35 in each
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product. The SPPs showed poor performance in the evaluation of KGE, with the mean
value of KGE being only 0.40. MS and CHIRPS showed the strongest performance, with
KGE > 0.50 at approximately 63% of the stations. The variation in the products among
stations evaluated using IOA was substantially smaller than that evaluated using the other
four indices. CHIRPS showed the strongest performance, with IOA > 0.80 at 89% of the
stations. MSWEP, PERSIANN-CDR, and PDIR-Now also showed better performance, with
the IOA > 0.80 at 86%, 87%, and 80% of the stations, respectively.

The spatial performance of SPPs at estimating monthly precipitation is shown in
Figure 7. The RE of CHIRPS was within ±20% at most stations (88/161). However, great
overestimation (RE > 40%) was observed at 42 stations, mainly located in the southwestern
and northeastern regions. MSWEP overestimated precipitation at most stations (142/161).
The overestimation was higher in the northern and southwestern stations. From the mean
performance of all SPPs, RE was within ±20% at 61% of the stations, chiefly located in the
eastern regions. There were 30 stations with the RE > ±40%, chiefly located in the western
and northern regions. The overestimation was <20% at the southeastern stations, while it
was >40% at the western stations.
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The other four indices showed that the mean performance of all products was much
lower than that of CHIRPS and MSWEP. Only a few stations had CC > 0.80 for the mean
performance of all products. CHIRPS and MSWEP had CC > 0.80 at 119 and 131 stations,
respectively. The CC was substantially higher at the eastern stations than at the western
stations. The results of the IOA were similar to those of CC. For the mean performance
of all SPPs, the NSE and KGE values were <0.50 at 87% and 99% of stations, respectively.
CHIRPS and MSWEP performed well at most stations, with NSE > 0.70 at 70% and 52% of
stations, respectively. These stations were mainly located in the eastern QTP. There were
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also several stations with poor performance, chiefly located in the western regions, and in
the margins of the northern and southern regions.

Overall, except RE, the evaluation of all of the other four series indices showed that
CHIRPS and MSWEP outperformed the other products in measuring monthly precipitation
in the QTP. Only a few SPPs were able to capture the precipitation series, with the mean NSE
of all stations being >0.50, including CHIRPS, MSWEP and PDIR-Now. The performance of
CHIRPS and MSWEP was generally better in the eastern QTP than in the western regions.

3.4. Comprehensive Evaluation of SPPs

The overall performance of satellite products was quantitatively evaluated using the
improved RS method on the basis of 10 indices (Table 2). The evaluation of the five occur-
rence indices showed that the strongest products were concentrated in the MSWEP and
GPM. MSWEP showed the strongest performance in the CSI and POD indices, indicat-
ing that it had the strongest ability to capture precipitation occurrence in the QTP. GPM
showed the strongest performance in the FAR, FPR, and A′ indices, indicating that it had
the strongest comprehensive capture capability. CHIRPS showed the weakest ability to
detect precipitation occurrence, with the lowest values of the POD and CSI. PERSIANN
showed the weakest performance in the FAR and A′ indices. This was confirmed through
a comprehensive assessment of five precipitation occurrence indices using the improved
RS method. GPM had the highest RS value, at 0.75. The comprehensive performance of
the GSMaP-NRT and MSWEP on precipitation occurrence was better than the other SPPs,
with RS values of 0.62 and 0.65, respectively. CHIRPS and PERSIANN performed relatively
poorly, with RS values of 0.22 and 0.21, respectively.

Table 2. The overall performance of each SPP evaluated on the basis of each index.

SPPs A′ CSI FAR FPR POD CC IOA KGE NSE RE RSM RSO RSC

CHI 0.67 0.29 0.39 0.14 0.38 0.82 0.92 0.45 0.65 0.21 0.92 0.33 0.62
CMO 0.67 0.44 0.45 0.38 0.70 0.71 0.78 0.33 0.14 0.19 0.63 0.36 0.50
GaM 0.74 0.44 0.43 0.26 0.64 0.53 0.75 −0.03 0.05 0.31 0.39 0.54 0.46
GaN 0.74 0.46 0.36 0.23 0.62 0.55 0.77 0.07 0.10 0.27 0.45 0.62 0.54
GPM 0.75 0.44 0.25 0.12 0.53 0.75 0.79 0.39 0.28 −0.13 0.74 0.75 0.75
MS 0.74 0.58 0.40 0.47 0.96 0.87 0.88 0.46 0.51 0.29 0.84 0.65 0.75
PCS 0.63 0.37 0.47 0.33 0.60 −0.02 0.66 −0.54 0.04 −0.66 0.30 0.22 0.26
PDI 0.70 0.48 0.43 0.37 0.79 0.74 0.88 0.35 0.50 0.17 0.82 0.49 0.65
PDR 0.66 0.46 0.47 0.44 0.79 0.81 0.87 0.06 0.35 0.46 0.56 0.33 0.44
PER 0.63 0.37 0.49 0.34 0.61 0.00 0.41 −0.50 −0.51 −0.65 0.34 0.21 0.28

Note: RSC is the RS value evaluated on the basis of all ten indices. RSM and RSO are RS values evaluated on the
basis of series and occurrence indices, respectively. A′ is the index of Accuracy. Underlined values indicate the
worst performance, while bold values indicate the best performance.

The evaluation of five series indices showed that the SPPs with the strongest per-
formance were concentrated in CHIRPS, GPM and MSWEP. CHIRPS had the strongest
performance in the IOA and NSE indices, indicating that the CHIRPS measurements were
in good agreement with the observed series. MSWEP had the strongest performance in the
CC and KGE indices. GPM measurements showed that it possessed the lowest bias with
respect to the mean precipitation over the QTP. The comprehensive evaluation of series
indices showed that CHIRPS had the strongest performance, with the RS value reaching
0.92. PDIR-Now and MSWEP also showed better performance than the other SPPs, with RS
values of 0.84 and 0.82, respectively. PERSIANN-CCS showed the weakest comprehensive
performance, with an RS value of 0.30.

In the comprehensive evaluation of all ten indices, GPM and MSWEP outperformed
the other SPPs, with an RS value of 0.75. PDIR-Now and CHIRPS also showed better
overall performance than the other SPPs, with RS values >0.60. The PERSIANN and
PERSIANN-CCS showed the weakest comprehensive performance, with RS values of 0.28
and 0.26, respectively.
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4. Discussions
4.1. Limitations, Uncertainties and Novelty of the Study

The novelty of this study lies mainly in its quantitative comprehensive evaluation.
The comprehensive evaluation results previously obtained using SPPs were typically
subjectively affected. In other words, it is easy to obtain different comprehensive evaluation
results. In this study, based on the improved RS method, the comprehensive evaluation
of SPPs was quantitatively evaluated using multiple indices. The improved RS method
provided comprehensive and objective evaluation results.

The new ground observation network, which was set up by researchers, was included
in this study to increase the reliability of the results in this data-scarce region. There were
more SPPs evaluated in this study than in previous studies. Several new SPPs were found
to perform better than the satellite products used for evaluation in previous studies. For
example, the PDIR-Now, PERSIANN-CDR, and MSWEP, which had not been included in
previous evaluation studies for the QTP, had the strongest performance in terms of POD.
The mean POD values of these products were 0.96, 0.79, and 0.79, which is higher than the
values of the optimal SPPs (<0.75) previously evaluated [10,28–30].

The UTC of the SPPs was inconsistent with the Beijing time of the ground observation.
The conversion of time is described in Section 2.1.1. There were also several NTPDC
stations that provided only daily data. The SPPs with hourly precipitation were converted
to Beijing time at these stations. However, there were still a few SPPs providing only daily
series. This time inconsistency could have affected the evaluation results. A comparison
of the evaluation results showed that the time inconsistency only had a slight effect on
each occurrence index. It did not change the comparative evaluation results among the
different SPPs. The time inconsistency also had a small effect on the evaluation results of
series indices.

The lengths of the observed precipitation series were different between the CMA and
NTPDC stations. At present, the series acquired by many NTPDC stations are relatively
short, with the length of observation being <1 year at some stations. The author will attempt
to obtain more extensive and longer observation data for future studies.

4.2. The Performance of SPPs with Respect to Precipitation Levels, Indices, Spatial and
Temporal Distribution

SPPs showed the strongest ability to detect the occurrence of precipitation at levels of
10–25 mm, when evaluated using the FAR and CSI indices. The performance was relatively
poor at capturing rainstorm at the QTP. This was consistent with evaluation results reported
by Lei et al. [30] in the eastern QTP. The performance of SPPs was generally positively
correlated with precipitation levels when evaluated using the A′, POD, and FPR indices.
The higher the precipitation amount, the better the performance of SPPs.

The performance of SPPs varied substantially in different evaluation indices. Different
indices might give opposite evaluation results. For example, SPPs showed better perfor-
mance in the cold season than in the warm season when evaluated using the A′ and FAR
occurrence indices. However, the evaluation results of the CSI, POD, and FPR indices of
the same type were the opposite (Figure 5). CHIRPS showed the weakest performance with
POD and CSI among the occurrence indices, while it had the strongest performance among
the series indices for NSE and IOA (Table 2). Therefore, multiple indices are recommended
for the evaluation of SPPs in order to obtain comprehensive results. This might also be
useful for the evaluation of other products or models.

In general, the SPPs showed better performance in the southern and eastern QTP.
These regions are mainly located in the summer monsoon area, with relatively dense
precipitation stations. The performance was poor in the northern and western QTP. These
regions are in the westerly circulation area with few on-ground observation stations. The
relatively dense stations provided more reliable ground fusion data input for satellite
precipitation measurements. Conversely, precipitation under the influence of the summer
monsoon has strong seasonal regularity. However, the seasonal precipitation in the westerly-
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circulation-affected area is weak. The SPPs tended to show better performance at measuring
precipitation with strong seasonality. This was consistent with the simulation accuracy of
the evaluation results of actual evapotranspiration and surface evaporation on the global
scale [97,98]. The limited number of stations in the western part of the QTP might affect
the reliability of the evaluation results in this region.

GPM has previously been reported as having the strongest performance [10,30]. This
study also found GPM to show the strongest overall performance in the QTP. In addition,
it had the strongest performance at capturing false alarm rate/ratio and mean values.
Although most previous evaluations showed that the GPM had the strongest performance,
this was mainly because these evaluations focused on the indices of precipitation occurrence.
This study also found that it showed the strongest overall performance with regard to
precipitation occurrence indices. However, the performance of GPM in the evaluation
of series indices was lower than that of CHIRPS, MSWEP, and PDIR-Now. Lei et al. [30]
found that CHIRPS showed the weakest performance in the QTP based on the evaluation
of precipitation occurrence indices. However, the overall performance of CHIRPS was the
strongest among the 10 SPPs when evaluated using the series indices in this study.

Although the SPPs showed the ability to detect precipitation occurrence and series in
the QTP, their performance in the QTP was relatively poor compared with that in other areas
in China. For example, Wei et al. [24] found that the KGE of the optimal SPPs in eastern
China was >0.90, with values >0.70 for most SPPs. In this study, comprehensive evaluation
compared to both the CMA and NTPDC stations showed the mean KGE was <0.50 for each
of the SPPs. Tang et al. [22] found the mean CSI of the optimal SPPs in China to be close to
0.70. However, in this study, the mean value of CSI for the optimal SPPs in the QTP was
only 0.58, which is much lower than that in China overall. Overall, the accuracy of satellite
products in the QTP needs further improvement. The QTP is a relatively active area for
convective clouds and mesoscale convective systems [99]. Therefore, precipitation processes
on the QTP are complex, especially with respect to convective cloud precipitation [100].
This increases the difficulty of performing satellite precipitation estimates. It should be
noted that in addition to the variations in accuracy performance, the SPPs evaluated in
this study also have their own advantages. For example, PERSIANN CDR aims to provide
long-term continuous precipitation estimates, so it is expected that it will have lower
accuracy than GPM. Therefore, it is suggested that these issues could be considered in the
application of SPPs.

5. Conclusions

Ten high-resolution SPPs were quantitatively and comprehensively evaluated from ten
indices using an improved RS method in the QTP. Overall, the GPM and MSWEP showed
the strongest performance, with RS values of 0.75. CHIRPS and PDIR-Now also showed
better overall performance than the other SPPs, with RS values >0.60. The PERSIANN and
PERSIANN-CCS showed the weakest comprehensive performance. CHIRPS and GPM
had the strongest performance for measuring precipitation occurrence (RS = 0.92) and
series (RS = 0.75), respectively. While the optimal SPPs varied in terms of the indices used,
they were concentrated in the MSWEP, GPM and CHIRPS. MSWEP showed the strongest
performance in the POD, CSI, CC, and KGE indices, indicating that it had the highest ability
to detect precipitation occurrence, and the strongest correlation with observed values in
the QTP. GPM showed the strongest performance in the FAR, FPR, A′, and RE indices,
indicating that GPM had the lowest bias and false alarm ratio/rate, and the strongest
comprehensive capture capability.

Performance of SPPs varied substantially, in both products and stations. The SPPs
tended to overestimate precipitation in the QTP, with the mean overestimation of seven
SPPs being 27%. The bias of SPPs was marked in the QTP, with the RE generally being
between −80% and 80%. Even GPM, which showed the strongest performance in terms
of RE, only had RE within ±20% at 27% of stations (43/161). In general, most of the SPPs
showed the ability to detect precipitation occurrence. The mean values of A′, CSI, FAR, FPR,
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and POD for all SPPs across all stations were 0.69, 0.43, 0.41, 0.31, and 0.66, respectively.
SPPs showed relatively weak performance at measuring precipitation series. Only a few
SPPs could capture precipitation series, with the mean NSE of all stations being >0.50,
including CHIRPS, MSWEP and PDIR-Now. The SPP measurements over the QTP need to
be further improved, especially with respect to the measurement of precipitation series.

The performance of SPPs was generally positively correlated with the precipitation
levels evaluated using the POD, FPR and A′ indices. The higher the amount of precipita-
tion, the better the performance of SPPs. The SPPs showed the highest ability to capture
precipitation occurrence at the level of 10–25 mm when evaluated using the CSI and FAR
indices. SPPs showed better performance in the southern and eastern QTP, chiefly including
the Yangtze, Yellow, Nu–Salween, Lancang–Mekong, Yarlung Zangbo–Bramaputra, and
Ganges river basins. These basins are mainly affected by the East Asian monsoon and
South Asian monsoon, with relatively dense precipitation stations. The performance was
relatively poor in the western and northern QTP, chiefly including the Tarim, Indus, and
QTP inland river basins. These basins are mainly located in the westerly circulation area,
and there are few on-ground observation stations.

In general, the performance of SPPs showed a seasonal pattern during the year in all
precipitation occurrence indices except for A′ index. The evaluation results were consistent
in each period when evaluated using the POD, CSI and FPR indices. The strongest and
weakest performances were in July and December, respectively. SPPs showed better
performance in the warm season than in the cold season. However, the evaluation results
of the FAR and A′ indices were opposite, that is, the performance in the cold season was
slightly better than that in the warm season. Therefore, multiple indices are recommended
for the evaluation of SPPs in order to obtain comprehensive evaluation results.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs15133381/s1. Table S1: Observation stations of National Tibetan
Plateau Data Center used in this study.
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