
Citation: Xia, S.; Wang, Y.; Zhang, J.;

Dai, F. High-Speed Maneuvering

Target Inverse Synthetic Aperture

Radar Imaging and Motion

Parameter Estimation Based on Fast

Spare Bayesian Learning and

Minimum Entropy. Remote Sens. 2023,

15, 3376. https://doi.org/10.3390/

rs15133376

Academic Editor: Andrzej Stateczny

Received: 22 May 2023

Revised: 28 June 2023

Accepted: 30 June 2023

Published: 1 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

High-Speed Maneuvering Target Inverse Synthetic Aperture
Radar Imaging and Motion Parameter Estimation Based on Fast
Spare Bayesian Learning and Minimum Entropy
Shuangzhi Xia 1, Yuanyuan Wang 2,*, Juan Zhang 2 and Fengzhou Dai 2

1 The 54th Research Institute of China Electronics Technology Group Corporation, Shijiazhuang 050081, China;
20021210952@stu.xidian.edu.cn

2 National Key Laboratory of Radar Signal Processing, Xidian University, Xi’an 710071, China;
jzhang@xidian.edu.cn (J.Z.); fzdai@xidian.edu.cn (F.D.)

* Correspondence: yywang_96@stu.xidian.edu.cn

Abstract: High-speed maneuvering target inverse synthetic aperture radar (ISAR) imaging is always
a hot topic in signal processing. High-speed maneuvering targets often have high-order maneuvering
characteristics, such as translational and rotational characteristics, which destroy the signal structure
of stationary targets and make basic imaging processing methods such as range-Doppler (RD)
algorithm no longer suitable. In this paper, a high-resolution imaging method for high-speed
maneuvering targets is proposed, which uses the fast sparse Bayesian learning (SBL) algorithm and
the minimum entropy algorithm for ISAR high-resolution imaging and motion parameter estimation,
respectively. Because SBL makes full use of the characteristics of the target and the environment, it can
obtain an ISAR high-resolution image of the maneuvering target. However, the high computational
complexity caused by matrix inversion and some matrix operations in SBL iteration limit the practical
application of SBL in ISAR imaging. In view of the special structure of the matrix required to be
inverted, we propose a fast SBL algorithm, which uses a new decomposition method to obtain the
decomposition formula of the inverse matrix. Based on the decomposition factors, the multiplication
operation involving the inverse matrix can be quickly calculated using fast Fourier transform (FFT),
which greatly improves the computational efficiency. Image entropy represents the sharpness and
focusing degree of an image, and so the minimum entropy algorithm can estimate the motion
parameters of maneuvering targets more accurately. We combine the minimum entropy algorithm
with the fast SBL algorithm to realize phase error correction and high-resolution imaging, which has
better noise sensitivity and can obtain the best focusing degree image. Finally, simulation results
prove the effectiveness of this algorithm.

Keywords: high-speed maneuvering target high-resolution imaging; fast SBL algorithm; minimum
entropy algorithm; phase error correction

1. Introduction

Since radar imaging is not restricted by environmental and time factors, it has the
characteristics of all-weather, all-sky time, long-range action, and high resolution; therefore,
more and more attention has been paid to developments in the field of remote sensing
detection [1–6]. High-speed maneuvering targets, such as satellites, missiles and drones,
and other space objects, often have large radar radial velocity and acceleration [7]. The
high-speed maneuvering characteristics of targets broaden the one-dimensional-range
image of the broadband imaging radar, and the combined action of high-order motion
parameters such as velocity and acceleration makes it difficult to accurately compensate for
the one-dimensional-range image, resulting in a fuzzy two-dimensional image. As a result,
accurate detection, tracking, and imaging are not possible [8].
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Inverse synthetic aperture radar (ISAR) imaging technology is aimed at non-cooperative
targets, for which motion is uncertain and complex, and can obtain a two-dimensional
image of the target [8,9]. The key condition of ISAR imaging is the rotation of the target
relative to the radar. Two important aspects of ISAR imaging are high-resolution imag-
ing algorithms and motion compensation. In the existing ISAR imaging algorithms, the
traditional range-Doppler (RD) algorithm is widely used due to its small computation
amount. But, RD can obtain well-focused images for stationary moving targets, for ma-
neuvering targets, or for complex moving targets; after motion compensation, high-order
phase signals brought by high-order motion parameters still exist in their echo data, and
so the image obtained by RD is defocused, and the algorithm is invalid [10]. It is well
known that the electromagnetic scattering characteristic of the radar target is in the high
frequency region, and the echo signal of the target can be characterized by a few important
scattering centers [11]. The sparse characteristics of radar target echoes are consistent
with the requirement of the compressive sensing (CS) theory [11,12] on sparsity, and CS
technology can reduce the sampling rate of radar systems. Therefore, CS has attracted
wide attention and provides a new idea for solving the high-resolution ISAR imaging of
high-speed maneuvering targets [13,14].

Among the CS algorithms, sparse Bayesian learning (SBL) [15–17] is widely used with
high accuracy and strong robustness. SBL is a very important optimization algorithm based
on Bayesian theory and statistics. In SBL, in order to improve signal sparsity, a hierarchical
model is used to model the signal, that is, the prior information of the signal. Then, based
on prior information and known observed data, the posterior distribution of the signal is
solved using a Bayesian formula. The optimal mean value of the posterior distribution
obtained by iteration is the reconstructed signal value is then finally obtained. However, the
solution of the covariance matrix and the mean value of the posterior distribution involves
a matrix inversion operation, and the calculation amount of direct inversion is proportional
to the cube of the observed signal dimension. The large calculation amount hinders the
development of the practical application of SBL.

In view of the shortcomings of SBL, many scholars have proposed some fast SBL
algorithms. Therein, two low-complexity belief propagation (BP)-mean field (MF) SBL
algorithms have been proposed [18]. In [19–21], an efficient SBL algorithm was proposed,
which used a surrogate function to approximate the posterior density and to avoid matrix
inversion. Moreover, approximate message passing (AMP) and generalized approximate
message passing (GAMP) techniques were used to compute approximate marginal posteri-
ors with a very low complexity to circumvent matrix inversion [22,23]. These algorithms all
use some low-complexity methods instead of matrix inversion to reduce the computation;
however, they all use approximation, resulting in results inferior to the original SBL. In
order not to sacrifice the accuracy of SBL, a fast SBL without approximation is proposed
in [24], which takes advantage of the special structure of the matrix to be inverse and uses
Gohberg–Semencul (GS) decomposition [25,26] to obtain the decomposition formula of the
inverse matrix. Then, based on the GS decomposition, the expression involving the inverse
matrix can be calculated using fast Fourier, which greatly improves the computational
efficiency. To extend this idea, a new fast free-approximation SBL algorithm is proposed
in this paper, which uses a new decomposition method to obtain the inverse matrix. Both
theoretical derivation and experimental simulation prove that the proposed algorithm has
a lower computational complexity.

Motion compensation is the premise and basis of target ISAR imaging, and the com-
pensation accuracy greatly affects the focus and sharpness of the image [27,28]. Motion
compensation consists of envelope alignment and phase compensation. The traditional
envelope alignment method is still suitable for maneuvering targets. When the radar
resolution is not high, the rotation of the target in a short time can be regarded as uniform
rotation, and a good image can be obtained through a traditional phase compensation
technology, such as phase gradient autofocus (PGA) [29]. However, due to the maneuvering
characteristics of the maneuvering target, the traditional phase compensation methods
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are not very effective. Because an observation period is very short, in the radar signal
processing cycle, the radar echo of a high-speed maneuvering target can be represented by
a multi-component polynomial phase signal. When the target has a maneuvering motion
with constant acceleration, the target echo signal can be expressed as the signal of linear
frequency modulated (LFM) [30–34]. For more complex maneuvering targets, such as roll,
pitch and yaw, the target echo signal is modeled as the cubic phase signal (CPS) [35–39].
Estimating and compensating for the parameters of the multi-component polynomial signal
by signal processing has become the key to obtaining a high-quality and high-resolution
ISAR image.

At present, studies on the parameter estimation of the LFM signal are relatively mature.
Commonly used algorithms include Wigner–Ville distribution (WVD) [40], Wigner–Hough
transform (WHT) [41], modified WVD (M-WVD) [33], Lv’s distribution (LVD) [34], etc.
However, there are few studies on the phase parameter estimation of the CPS signal,
and many applications include a high-order phase compensation algorithm (PHMT) [42],
high-order cubic phase compensation algorithm (PGCPF) [43], improved discrete Fourier
algorithm (MDCFT) [35], etc. Although these algorithms improve the imaging quality of
complex maneuvering targets, these algorithms are based on signal decomposition, which
is sensitive to noise and requires a high amount of computation.

In ISAR imaging, the entropy of a two-dimensional image is a typical index for
measuring the image sharpness and focusing effect. The lower the entropy, the better
the image focus. Therefore, a new parameter estimation method based on minimum
entropy [44,45] and a quasi-Newton algorithm [46] is proposed in this paper to transform
the phase error compensation problem into a minimum entropy optimization problem.
With the accumulation of energy, when the optimal solution is reached, the image entropy
mainly comes from the strong scattering points, and the image becomes clearer. The
randomness of noise means it has little effect on image entropy. Therefore, the minimum
entropy algorithm can be used to estimate the phase error parameters more accurately. To
solve the optimization problem, we use the quasi-Newton algorithm to find the optimal
solution. In addition, the parameter estimation is combined with the proposed fast SBL
algorithm for high-resolution imaging, that is, the high-order motion parameters of the
target are accurately estimated in the iterative process of SBL.

The overall framework of this article is organized as follows. First, we give the
notations of this article. The ISAR high-speed target signal model is briefly described in
Section 2. In Section 3, we introduce in detail a new fast SBL algorithm and the minimum
entropy algorithm to achieve high-resolution imaging and parameter estimation in imaging.
Then, we validate the proposed methods using several numerical simulation results and
discussions in Section 4. Finally, some conclusions are given in Section 5.

Notations

In this paper, matrices, vectors and scalars are denoted by uppercase boldface letters,
lowercase boldface letters and italic letters. (·)−1, (·)H , (·)T and (·)∗ represent matrix inverse
operation, conjugate transpose operation, transpose operation and conjugate operation,
respectively. diag(·) denotes the main diagonal elements of a matrix. CN (x|0, A) denotes
complex Gaussian distribution with mean 0 and covariance A. Gamma(γ|a, b) denotes that
γ follows the Gamma distribution with shape parameter a and scale parameter b. (·)(i)
represents the value obtained after the ith iteration. [·]M×K denotes that the dimension of a
matrix is M× K. [·]M denotes that the dimension of a matrix is M×M or the dimension
of a vector is M. I and 0 denote the proper size identity matrix and zero matrix/vector,
respectively. For the vector x = [x0, x1, · · · xn−1], xi means the (i + 1)th element of x.
Re[·] and Im[·] denote taking the real part operator and taking imaginary part operator,
respectively.
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2. ISAR High-Speed Target Signal Model

Suppose that the radar transmits a LFM signal, after demodulation and range com-
pression, the radar receiving signal of a moving target is

s(tr, tm) =
I

∑
i=1

δi sin c
[

Br

(
tr −

2Ri(tm)

c

)]
exp

(
−j

4π

λ
Ri(tm)

)
(1)

where tr denotes the range fast-time variable. tm denotes the azimuth slow-time variable.
δi denotes the complex reflectivity of the ith scattering point of moving target after pulse
compression. I is the total number of scattered points of the target. Br is the bandwidth of
the transmitted signal. c is the speed of light. sin c(x) = sin(πx)

πx represents the sinc function.
λ represents the wavelength of the signal. Ri(tm) represents the instantaneous distance
between the radar and the ith scattering point on the target during the observation time.
The movement of the target relative to the radar can be divided into two parts: translation
and rotation; so, Ri(tm) has the form

Ri(tm) = Rtrans
i (tm) + Rrot

i (tm) (2)

where Rrot
i (tm) represents the instantaneous distance caused by the rotation of the target.

Rtrans
i (tm) represents the instantaneous distance caused by the translation of the target,

which is consistent for all scattered points on the target. Rtrans
i (tm) can be expressed as

Rtrans
i (tm) = Ro + r(tm). R0 denotes the initial radar distance at the target center. r(tm)

represents the instantaneous translational distance of the target.
According to the Weierstrass approximation theorem [47], the instantaneous distance

of the target’s translation in the accumulation time can be expressed as a polynomial
function related to the slow time, i.e.,

r(tm) = vtm + a1t2
m + a2t3

m + · · · (3)

where v denotes the target radial velocity. a1 and a2 denote the target acceleration and
acceleration rate, respectively. Since the cubic term is already relatively close to the actual
movement of the target, we do not consider the more than cubic term.

When the pulse accumulation time is short and the rotation angle of the target is small.
The target can be regarded as rotating at a constant speed. The distance generated by the
rotation of the target can be expressed as

Rrot
i (tm) = yi cos θ(tm) + xi sin θ(tm)

≈ yi + xiwtm
(4)

where θ(tm) denotes the instantaneous rotation angle of the target. With the target center
as the reference point, the coordinate of the ith scattering point is (xi, yi). w denotes the
target rotational angular speed.

Therefore, the instantaneous distance between the ith scattering point on the target
and the radar can be expressed as

Ri(tm) = Ro + vtm + a1t2
m + a2t3

m + yi + xiwtm (5)

Substituting (5) into (1), the discrete form of echo signal after range migration com-
pensation can be written as

s(n, m) = s̃(n, m) exp
(
−j

4π

λ

(
v

m
PRF

+ a1

( m
PRF

)2
+ a2

( m
PRF

)3
))

(6)
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where s̃(n, m) is the ideal discrete echo form of the target and has the form

s̃(n, m) =
I

∑
i=1

δi sin c
[

Br

(
n

Tpulse

N
− 2yi

c

)]
exp

(
−j

4π

λ
(R0 + yi)

)
exp

(
−j

4π

λPRF
xiwm

)
(7)

n and m denote range unit and pulse number, respectively. N and M denote the total num-
ber of range units and total number of pulses, respectively. PRF represents pulse repetition
frequency (PRF) of the radar signal. From (6), we can see that the phase change generated
by the scattering point movement on the maneuvering target can be approximately re-
garded as a polynomial, and the echo signal is a polynomial phase signal. However, these
motion parameters in the polynomial are unknown, and so the parameter values should
be estimated and compensated before imaging. The compensation accuracy will affect the
imaging quality.

The one-dimensional range profile sequence shown in (6) can be written in matrix
form after noise is added.

Y·n = EFX·n + ηn (8)

where Y·n ∈ CM×1, X·n ∈ CK×1 and ηn ∈ CM×1 denote the one-dimensional range image,
ISAR image and noise of the nth range unit, respectively. K represents the total number of
image Doppler units. E ∈ CM×M denotes the motion error of the target and is a diagonal
matrix, in which the mth diagonal element denotes the motion error of the mth pulse, i.e.,
Em,m = exp

(
−j4π

(
v m

PRF + a1
( m

PRF
)2

+ a2
( m

PRF
)3
))

. F ∈ CM×K denotes an overcomplete
Fourier matrix with M < K and has the form

F =


w0

K w0
K · · · w0

K
w0

K w1
K · · · wK−1

K
...

...
. . .

...
w0

K wM−1
K · · · w(M−1)(K−1)

K

, wm
K = exp

(
−j

2π

K
k
)

, k = 0, 1, 2, · · · , K− 1 (9)

As shown in (8), the imaging process of an ideal echo is that Y and F are known to
solve signal X, and X is known to have a certain sparsity, that is, most elements in X are zero.
But, the actual echo has a phase error, which will lead to the defocusing of the ISAR image.
In order to achieve high-resolution imaging, it is necessary to estimate the parameters
of phase errors and compensate them in imaging. Therefore, the imaging algorithm and
parameter estimation are the key factors affecting imaging results.

Among many signal reconstruction algorithms, SBL has received more and more
attention in recent years in the field of radar imaging because of its high accuracy in signal
recovery. SBL makes full use of the prior information of parameters and sample information,
and reconstructs signals through continuous iterative learning, so the reconstruction results
are of high precision. In addition, SBL has strong a robustness and can considerably
suppress the influence of noise. However, the high computational complexity of SBL
hinders its development. In this paper, we propose a fast SBL algorithm, FSBL-LC for short,
in which the time-consuming operations in SBL are replaced by some operations with a
low computational complexity, and most of the operations can be solved using FFT, which
greatly reduces the computational complexity.

Parameter estimation is generally divided into rough estimation and accurate estima-
tion compensation. Rough estimation is used to estimate the initial value of parameters
more accurately before imaging, and accurate estimation compensation is used to estimate
the accurate value of parameters in imaging and make compensation. In this paper, a
minimum entropy algorithm and fast SBL algorithm are combined for accurate parameter
estimation and ISAR high-resolution imaging. These will be elaborated on in detail in the
following section.
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3. Fast SBL and High-Order Motion Parameter Estimation

In order to solve the defocusing problem of an ISAR image of a high-speed target,
a novel high-resolution imaging algorithm with parameter-estimation-based SBL and a
minimum entropy algorithm is proposed, which uses a new fast SBL algorithm to achieve
high-resolution imaging, and uses the minimum Tsallis entropy algorithm to estimate the
motion parameters of the target in the echo signal. In the following part, we will introduce
the proposed fast SBL algorithm, the minimum Tsallis entropy algorithm, and how to use
them to achieve high-resolution imaging of high-speed moving targets in more detail.

3.1. The Proposed FSBL-LC Algorithm

The mathematical model of sparse signal reconstruction is

y = Dx + η (10)

where y ∈ CM×1, D ∈ CM×K, x ∈ CK×1,and η ∈ CM×1 are the measurement vector, the
overcomplete dictionary matrix with M < K, the sparse signal vector to be recovered, and
noise vector, respectively.

SBL adopts the hierarchical prior model. The first layer is the prior information of the
signal. It is assumed that the signal and noise follow complex Gaussian distribution and
their probability density functions (PDF) are, respectively,

p(x) = CN (x|0, A) (11)

p(η) = CN (η
∣∣∣0, β−1I) (12)

where A is a diagonal matrix for which the diagonal elements are γ−1
k in sequence. γk

denotes the precision (inverse variance) of xk. β denotes the precision (inverse variance)
of ηk. xk and ηk are the (k + 1)th element of x and η, respectively. γk and β are the
hyperparameters. CN (x|0, A) denotes complex Gaussian distribution with mean 0 and

covariance A and has the form CN (x|0, A) = π−K
K−1
∏

k=0
γk exp(−γkx2

k).

The second layer is the prior information of the hyperparameters. Assume that they
obey the Gamma distribution and their PDFs are

p(γk) = Gamma(γk|a, b) (13)

p(β) = Gamma(β|c, d) (14)

where a and b are the shape and scale parameters of γk, respectively. c and d are the
shape and scale parameters of β, respectively. Gamma(γk|a, b) denotes Gamma distri-
bution and has the form Gamma(γk

∣∣∣a, b) = ba

Γ(a)γa−1
k exp(−γkb) , where Γ(a) denotes the

Gamma function.
Based on the above prior information, the posterior distribution of a signal can be

obtained using a method similar to [15]:

p(x|y) = CN (µ, Σ) =
1

πK|Σ|
exp

(
−(x− µ)H

Σ−1(x− µ)
)

(15)

where the covariance and mean are

Σ =
(

βDHD + A−1
)−1

(16)

µ = βΣDHy (17)
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SBL is used to obtain the reconstruction signal by seeking the optimal mean through
continuous iteration. The updated covariance matrix and mean value in the iterative
process are shown in (16) and (17). The iterative formulas for hyperparameters can be
obtained by utilizing a similar procedure as in [15]:

γ
(i+1)
k =

1− γ
(i)
k ε

(i)
k + a(

µ
(i)
k

)2
+ b

(18)

β(i+1) =

N −
K−1
∑

k=0
α
(i)
k + c

‖y−Dµ(i)‖2
2 + d

(19)

where ε(i) = diag(Σ(i)) and the (•)(i) denotes the value after the ith iteration.
From the above principles and specific iterative steps of SBL, we know that the key

step of single iteration is to solve ε and µ, but their calculation involves matrix inversion
and some matrix multiplication operations involving an inverse matrix, which increases
the computational burden of SBL. However, we find that in ISAR imaging, the matrix to
be inverted is a Toeplitz matrix, so the inverse matrix and matrix multiplication involving
the inverse matrix can be quickly calculated using some product of Toeplitz matrices with
cyclic matrices and FFT, respectively. The following is a detailed introduction.

The parameters in the ISAR imaging model shown in (8) are substituted into (16) and
(17) yielding

Σ =
(

β(EF)HEF + A−1
)−1

=
(

βFHF + A−1
)−1

= A− βAFHR−1FA (20)

µ·n = βΣFHEHY·n = βAFHR−1EHY·n (21)

In (20) and (21), we use the Woodbury matrix identity to rewrite the covariance and mean,
where R = I+ βFAFH . We find the fact that Q = FAFH is a Hermitian–Toeplitz matrix that
has the form

Q =


q0 q∗1 · · · q∗M−1
q1 q0 · · · q∗M−2
...

...
. . .

...
qM−1 qM−2 · · · q0

 (22)

with

qm =
K−1

∑
k=0

1
γk

exp(−j2πmk/K) (23)

It can be seen that elements in Q can be solved quickly using FFT. Therefore, R is also a
Hermitian–Toeplitz matrix with the same structure as Q and its elements are also obtained
through K-point FFT.

Since R is an M×M Hermitian-Toeplitz matrix, it can be rewritten as

RM =

[
r0 rH

M−1
rM−1 RM−1

]
=

[
RM−1 r̃∗M−1
r̃T

M−1 r0

]
(24)

where rM−1 =
[
r1 r2 · · · rM−1

]T , r̃M−1 =
[
rM−1 rM−2 · · · r1

]T , RM−1 is a subma-
trix of RM and has the Hermitian–Toeplitz structure.

According to the matrix inversion formula, R−1
M has the form

R−1
M =

[
0 0
0 R−1

M−1

]
+

1
tM−1

[
1

pM−1

][
1 pH

M−1
]

(25)
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=

[
R−1

M−10 0
0 0

]
+

1
tM−1

[
p̃∗M−1

1

][
p̃T

M−1 1
]

(26)

where
tM−1 = r0 − rH

M−1R−1
N−1rN−1 (27)

pM−1 = −R−1
N−1rN−1 (28)

We define an M×M lower-triangular matrix in which the 1st main diagonal elements
are one and all other elements are zero, as well as an M×M cyclic matrix, as

LM =


0 0 · · · 0
1 0 · · · 0
...

. . . . . .
...

0 · · · 1 0


M

(29)

CM =


0 0 · · · 1
1 0 · · · 0
...

. . . . . .
...

0 · · · 1 0


M

(30)

We can obtain the fact [
0 0
0 R−1

M−1

]
= LM

[
R−1

M−1 0
0 0

]
CT

M (31)

Based on the fact in (31), the displacement representation of R−1
M can be written as

∇R−1
M = R−1

M − LMR−1
M CT

M

=

[
0 0
0 R−1

M−1

]
+ 1

tM−1

[
1

pM−1

][
1 pH

M−1
]

−LM

{[
R−1

M−10 0
0 0

]
+ 1

tM−1

[
p̃∗M−1

1

][
p̃T

M−1 1
]}

CT
M

= 1
tM−1

[
1

pM−1

][
1 pH

M−1
]
− 1

tM−1

[
0

p̃∗M−1

][
1 p̃T

M−1

]
(32)

Given ∇R−1
M , R−1

M has the form

R−1
M =

M−1
∑

m=0
(LM)m∇R−1

M

(
CT

M

)m

=
M−1
∑

m=0
(LM)m(wMwH

M − vMvH
M
)(

CT
M

)m

= LM(wM, LM)CH
M(wM, CM)−LM(vM, LM)CH

M(v̂M, CM)

(33)

where wM = 1√
tM−1

[
1

pM−1

]
, vM = 1√

tM−1

[
0

p̃∗M−1

]
, v̂M = 1√

tM−1

[
1

p̃∗M−1

]
,LM(wM, LM), and

CM(wM, CM) denote the lower triangular Toeplitz matrix and the cyclic matrix composed
of the elements of wM and have the form

LM(wM, LM) ,
[
wM LMwM · · · (LM)M−1wM

]
(34)

CM(wM, CM) ,
[
wM CMwM · · · (CM)M−1wM

]
(35)
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From (33), the calculation of R−1
M is converted to the product of a Toeplitz matrix

with a cyclic matrix. We call this decomposition the L-C decomposition in the paper, and
the resulting formula is called the L-C decomposition formula. wM and vM are called
L-C factorization factors of R−1

M , which can be solved by applying the Levinson–Durbin
(L–D)-type algorithm [24].

Based on the L-C decomposition formula of R−1
M in (33), the key steps in SBL can be

quickly calculated using FFT, which greatly improves computing efficiency.
From (20), we observe that A is a diagonal matrix, so ε can be obtained using the

dot product of β, the diagonal elements of A, and the diagonal elements of G = FHR−1
M F.

Let gK = diag(G) =
[
g0 g1 · · · gK−1

]T , namely gK is a vector made up of diagonal
elements of G. By substituting (25) into G, we can obtain

gk = FH
M(ωk)R

−1
M FM(ωk) =

M−1

∑
m=−M+1

cm exp(−j2πmk/K) (36)

where FM(ωk) denotes the (k + 1)-th column of FM and its form is shown in (9). cm is
the sum of all the elements on the m-th diagonal in R−1

M . It can be seen from (36) that
the gK can be quickly calculated using FFT, and cm can also be obtained using FFT. Let
ĉ =

[
c−M+1 · · · c−1 c0

]T , given the L-C factorization formula of R−1
M , we can obtain

ĉ = LM(wM, LM)w∗M −LM(vM, LM)v∗M (37)

where wM =
[
wm−1 2wm−2 · · · (M− 1)w1 Mw0

]T , wm is the (m+1)th element of wM.
The annotation for vM is similar to that for wM. Obviously, based on the L-C factorization
factor of R−1

M , ĉ can be obtained using the products of the Toeplitz matrix and vector,
avoiding the calculation of R−1

M . Fortunately, the product of the Toeplitz matrix and vector
can be converted to a circulant matrix–vector product, and then it can be solved via circular
convolution; so, ĉ can be solved using (2M− 1)-point FFT/IFFT.

From (21), µ·n can be solved in three steps: φM = R−1EHY·n, ϕK = FHφM and
µ = βAϕK. For φM, given the L-C decomposition formula of R−1 in (33), φM can
be calculated using two cyclic matrix–vector products and two Toeplitz matrix–vector
products. As mentioned above, the product of a Toeplitz matrix with a vector can be
quickly computed using FFT/IFFT, while the product of a cyclic matrix and a vector can be
converted into cyclic convolution and can be quickly computed using FFT/IFFT. Therefore,
φM can be obtained quickly via FFT/IFFT. GivenφM, we have ϕK, which can be obtained
using K-point IFFT. Finally, since A and E are diagonal matrices, µ·n can be computed using
the dot product of β, the diagonal elements of A and ϕK.

The specific steps of the proposed FSBL-LC are as follows:
Input: Y·n, E0.
Step 1: Initialization. Set the initial value of the hyperparameter γ

(0)
k = 1 and β(0) = 1.

a = b = c = d = 10−6.
Step 2: Update γ

(i+1)
k and β(i+1) according to (18) and (19). Note that Step 2 is not

required for the first iteration with the initial value.
Step 3: Compute the first column of RM according to (22) by using FFT withO(K log2 K),

and compute the L-C factorization factors of R−1
M by using the L–D algorithm with O

(
M2).

Step 4: Update ε(i+1) and µ(i+1)
·n by using FFT with O(M log2 M + K log2 K).

Step 5: Let i = i + 1, return to Step 2, and continue the loop until the loop stops.

3.2. High-Order Motion Parameter Estimation Based on Minimum Entropy

In this paper, the parameter values of the high-order motion parameter of the target are
accurately estimated in the iterative process of ISAR imaging. The accuracy of parameter
estimation has a great influence on imaging results. Image entropy is a good measure of
the focusing effect of the resulting image. So, the minimum entropy algorithm is often
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used to accurately estimate the motion parameter of the target. Among the many entropy
functions, Tsallis entropy is considered to be an application for explaining non-extensive
system problems, and so it tends to have better results than other entropies.

The Tsallis entropy of the ISAR image obtained using the SBL algorithm is

Tµn =
1

p− 1
−

N−1

∑
n=0

K−1

∑
k=0

1
p− 1

(∣∣µk,n
∣∣2

Pn

)p

(38)

where Pn is the total energy of the image of the nth range unit.
The target phase parameter estimation based on minimum Tsallis entropy can be

expressed as
{v̂, â1, â2} = argmin

v,a1,a2

(
Tµn

)
(39)

where v̂, â1 and â2 are the estimation values of the motion parameters of the target.
It can be seen from (39) that parameter estimation is transformed into an optimization

problem. Among many algorithms for solving optimization problems, the quasi-Newton
algorithm not only uses the gradient of objective function but also the second derivative
property of objective function; so, it has a higher accuracy and faster convergence rate.
BFGS correction is the most popular and effective quasi-Newtonian correction, and so it is
widely used. In the BFGS algorithm, the gradient of the cost function corresponding to each
parameter needs to be solved. We define a parameter vector θ containing the parameters to
be estimated, namely θ =

[
v a1 a2

]T . From (29), the gradient of image entropy Tµ with
respect to θ is

∂Tµn

∂θ
=

∂Tµn

∂
∣∣µk,n

∣∣2 ∂
∣∣µk,n

∣∣2
∂θ

= −
K−1

∑
k=0

N−1

∑
n=0

p
p− 1

∣∣µk,n
∣∣2(p−1)

Pp
∂
∣∣µk,n

∣∣2
∂θ

(40)

According to (21) and the high-order motion error E, we can obtain

µk,n = βγ−1
k

M−1

∑
m=0

(
FHR−1

n

)
k,m

Ym,n exp
(

j(
4πv

λPRF
m +

4πa1

λPRF2 m2 +
4πa2

λPRF3 m3)

)
(41)

Then, the gradient of
∣∣µk,n

∣∣2 with respect to θ is

∂
∣∣µk,n

∣∣2
∂θ

= 2Re
(

µ∗k,n
∂µk,n

∂θ

)
(42)

Substituting (42) into (40) yields

∂µk,n

∂v
= jβγ−1

k

M−1

∑
m=0

(
FH R−1

n

)
k,m

Ym,n exp
(

j(
4πv

λPRF
m +

4πa1

λPRF2 m2 +
4πa2

λPRF3 m3)

)
4πm

λPRF
(43)

∂µk,n

∂a1
= jβγ−1

k

M−1

∑
m=0

(
FHR−1

n

)
k,m

Ym,n exp
(

j(
4πv

λPRF
m +

4πa1

λPRF2 m2 +
4πa2

λPRF3 m3)

)
4πm2

λPRF2 (44)

∂µk,n

∂a2
= jβγ−1

k

M−1

∑
m=0

(
FHR−1

n

)
k,m

Ym,n exp
(

j(
4πv

λPRF
m +

4πa1

λPRF2 m2 +
4πa2

λPRF3 m3)

)
4πm3

λPRF3 (45)

So, the gradients of image entropy Tµ with respect to v, a1, and a2 are
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∂Tµn
∂v = −

K−1
∑

k=0

N−1
∑

n=0

2p
p−1
|µk,n|2(p−1)

Pp

·Im
(

µ∗k,nβγ−1
k

M−1
∑

m=0

(
FHR−1

n
)

k,mYm,n exp
(

j( 4πv
λPRF m + 4πa1

λPRF2 m2 + 4πa2
λPRF3 m3)

)
4πm

λPRF

) (46)

∂Tµn
∂a1

= −
K−1
∑

k=0

N−1
∑

n=0

2p
p−1
|µk,n|2(p−1)

Pp

·Im
(

µ∗k,nβγ−1
k

M−1
∑

m=0

(
FHR−1

n
)

k,mYm,n exp
(

j( 4πv
λPRF m + 4πa1

λPRF2 m2 + 4πa2
λPRF3 m3)

)
4πm2

λPRF2

) (47)

∂Tµn
∂a2

= −
K−1
∑

k=0

N−1
∑

n=0

2p
p−1
|µk,n|2(p−1)

Pp

·Im
(

µ∗k,nβγ−1
k

M−1
∑

m=0

(
FHR−1

n
)

k,mYm,n exp
(

j( 4πv
λPRF m + 4πa1

λPRF2 m2 + 4πa2
λPRF3 m3)

)
4πm3

λPRF3

) (48)

Based on the gradients obtained above, the updated formulas for parameters estima-
tion are

θ̂
(j+1)

= θ̂
(j) − λ(j)

(
B(j)

)−1
∇Tµ(θ̂

(j)
) (49)

where θ̂ and∇Tµ(θ̂
(j)
) denote the estimated value of θ and the gradient of the cost function

with respect to θ̂. The superscript (j) denotes the number of cycles. λ(j) is the search step

vector corresponding to θ̂(j), which can be obtained via the Armijo criterion. B(j) is the

approximate matrix corresponding to θ̂(j), which is used to replace the Hessian matrix of
the cost function.

The specific steps of accurately estimating the optimal parameters using the BFGS
algorithm are as follows:

Step 1: Initialization. Set the number of cycles j = 0. Set the initial parameter
value of the parameter to be estimated to the value obtained using the rough estimation,

namely θ̂(0) = θ̂rough(θ̂rough denotes the value obtained from the rough estimation). Set

the approximate matrix B(0) = I3×3. And calculate the gradient ∇Tµ(θ̂
(0)

) based on B(0)

and θ̂(0).
Step 2: The search step vector λ(j) is determined according to the Armijo criterion.

Step 3: Update θ̂(j+1) according to (49) and calculate µ·n by using the method described
in FSBL-LC.

Step 4: Update ∇Tµ(θ̂
(j)
) according to (47) and (48).

Step 5: Compute B(j+1) according to the following formula.

B(j+1) =

 B(j), (t(j))
T

s(j) ≤ 0

B(j) − B(j)s(j)(s(j))
T

B(j)

(s(j))
T

Bs(j)
+ t(j)(t(j))

T

(t(j))
T

s(j)
, (t(j))

T
s(j) > 0

(50)

where s(j) = θ(j+1) − θ(j), t(j) = ∇Tµ(θ̂
(j+1)

)−∇Tµ(θ̂
(j)
).

Step 6: Let j = j + 1, return to Step 2, and continue the loop until the loop stops.
The flow chart of high-resolution imaging, with embedded parameter estimation

based on FSBL-LC and the quasi-Newton algorithm, is shown in Figure 1.
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Figure 1. The imaging process based on the proposed method.

In the above imaging process, we find that the calculation of µ·n and ∇Tµ(θ̂
(j)
) in the

parameter estimation section contains the multiplication of R−1
n by the vector and Fourier

dictionary by the vector, which can be quickly calculated using FFT/IFFT based on the L-C
decomposition formula of R−1

n . In addition, in parameter estimation, rough estimation is
required first, because, for optimization algorithms, the initial value close to the true value
is very beneficial for finding the optimal parameters; so, it is necessary to carry out a rough
estimation of parameters before the accurate estimation of parameters, which does not only
improve the convergence efficiency, but also ensures the global optimal solution.

4. Simulation Processing Result

This section consists of two parts. Since our article focuses on high-resolution imaging
methods, we first verified the performance of the proposed FSBL-LC algorithm using
simulation experiments. Then, we presented the simulation and measured data experiments
of maneuvering target parameter estimation and high-resolution imaging based on the
minimum entropy algorithm and FSBL-LC.

4.1. Performance of FSBL-LC Algorithm

In this subsection, we only verify the FSBL-LC algorithm separately. We show the one-
dimensional signal reconstruction and the algorithm performance comparison graph. The
algorithms compared with the proposed FSBL-LC include the original SBL algorithm (DI-
SBL for short) and FSBL-GS (FSBL-GS is an approximation-free fast SBL algorithm proposed
in the literature [24]), which is abbreviated as FSBL-GS here. The difference between FSBL-
GS and the algorithm introduced in this paper lies in the different decomposition forms of
the inverse matrix. Since FSBL-GS has been compared with some reconstruction algorithms
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and the typical proposed fast SBL algorithm using approximations in the literature [24],
this paper is just a simple comparison with FSBL-GS. The hyperparameters are set to a = b
= c = d = 10−6. The initial values of γ and β are 1. The condition for SBL iteration to stop is
that the following convergence conditions are met:

‖µ(j)
.n − µ

(j−1)
.n ‖

‖µ(j)
.n ‖

≤ δ (51)

where δ denotes the convergence threshold and is set to 10−4.
In addition, the normalization error is defined as the qualitative comparative recon-

struction accuracy.

nRMSE =
‖x̂− x‖2
‖x‖2

(52)

where x̂ denotes the reconstructed signal and x denotes the real signal.
In Figure 2, we show the reconstruction results of a one-dimensional signal. In the

experiment, the simulated data are derived from a one-dimensional complex signal with
six frequency components. The SNR is set at 10 dB, the length of the observed data is 512,
and the super-resolution factor (SRF = K/M) is 4. Figure 2a shows the reconstruction result
of FFT, and Figure 2b shows the reconstruction results of DI-SBL, FSBL-GS, and FSBL-LC.
The red dots represent the real signal, and the blue line represents the reconstructed signal.
It can be seen from Figure 2 that the sidelobe of the FFT result is higher, and the results of
FSBL-GS, FSBL-LC, and DI-SBL are the same; because FSBL-GS and FSBL-LC do not adopt
approximation, the calculation speed is improved without sacrificing the reconstruction
accuracy.
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Table 1 shows the mean computation time and nRMSE for 500 Monte Carlo experi-
ments. The experiments used random signals. As can be seen from Table 1, the calculation
time of FSBL-LC proposed in this paper is the shortest, and the calculation efficiency is
46 times higher than that of DI-SBL and 2 times higher than that of FSBL-GS. DI-SBL
requires the computation of R−1 and some multiplication operations involving the inverse
matrix; so, the computational complexity is very high. Both FSBL-GS and FSBL-LC algo-
rithms solve the decomposition formula of R−1 so as to replace the direct inverse of the
matrix. They also use FFT to quickly solve the multiplication operation involving the in-
verse matrix. So, the computational complexity is reduced and the computational efficiency
is improved. Through observation, we can see that the difference between FSBL-GS and
FSBL-LC is that the decomposition formula of R−1 is different. When solvingφM in the
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first step of solving µ·n, the FSBL-GS algorithm uses the product of the Toplitz matrix and
vector to convert them into a high-dimensional cyclic matrix and vector product, and then
uses (2M− 1) point FFT and IFFT to calculate this quickly. FSBL-LC calculatesφM using
the product of cyclic matrix and vector, which can be quickly calculated using the M point
FFT and IFFT. It can be seen that FSBL-LC has a lower computational complexity.

Table 1. The mean computation time and nRMSE.

DI-SBL FSBL-GS FSBL-LC

Time(s) 8.4567 0.3640 0.1815

nRMSE 0.0226 0.0226 0.0226

Next, in Figures 3 and 4, we give the algorithm performance comparison diagram
with various SNR, lengths of observation window M, and SRF. In the experiment showing
the effect of SNR, the observation window of the simulation data is 256 and SRF is 4. In
the experiment showing the effect of M and SRF, SNR is set to 10 dB. Figure 3a shows the
effect of the calculation time on SNR, and Figure 3b is the reconstruction error diagram
at different SNR. It can be seen from the figure that the reconstruction results of DI-SBL,
FSBL-GS, and FSBL-LC are the same, and so the error curves coincide. The larger the SNR,
the smaller the reconstruction time and the smaller the reconstruction error. Compared
with the original SBL, the calculation efficiency of FSBL-GS and FSBL-LC is significantly
improved, and the calculation time of FSBL-LC is shorter than that of FSBL-GS. When
SNR is 20 dB, the error value is small, almost close to zero. Figure 4 is the calculation time
diagram with different M and SRF. The red line and dots represent the calculation time
of the DI-SBL. The blue line and dots represent the calculation time of the FSBL-GS. The
pink lines and dots represent the calculation time of the FSBL-LC. As can be seen from the
figure, as the length of the observation window becomes longer, the reconstruction takes
longer, and as the value of the super-resolution factor increases, so does the time.
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Figure 4. Average computational times of algorithms with M and SRF. The red line and dots represent
the calculation time of the DI-SBL. The blue line and dots represent the calculation time of the
FSBL-GS. The pink lines and dots represent the calculation time of the FSBL-LC.

4.2. Maneuvering Target Parameter Estimation and High-Resolution Imaging

After comparing the performance of the proposed FSBL-LC, we used the imaging
process shown in Figure 1 to achieve error parameter estimation and high-resolution
imaging of high-speed maneuvering targets in this subsection. The radar system and target
parameters in all experiments in this subsection are shown in Table 2. Motion compensation
was used before imaging. In the experiments, the minimum entropy of the image is taken
as the index of image quality, and the parameter rough estimation is realized by using an
exhaustive linear search.

Table 2. Radar system and target parameters.

Parameter Value Parameter Value

Carrier frequency 20 GHz Bandwidth 1 GHz

Pulse width 500 us Pulse repetition
frequency 200 Hz

Initial distance between target
center and radar 600 KM Rotational angular speed 0.015 rad/s

Range dimension sampling
number 512 Azimuth dimension

sampling number 1024

Firstly, we use simulation data from a simple satellite model to verify the validity of
the proposed parameter estimation and high-resolution imaging method. We model the
satellite as a high-speed maneuvering target with a non-stationary flight motion of uniform
rotation. Translational motion has an acceleration and an acceleration rate, that is, the
satellite’s translational motion is expressed as a third-order polynomial. Assume that the
satellite’s translational velocity is 10 KM/s, its translational acceleration is 120 M/s2, and
its translational acceleration rate is 40 M/s3. We added noise to a one-dimensional-range
image and set the SNR to 10 dB.

The one-dimensional-range image and imaging results of algorithms are shown in
Figure 5. Figure 5a shows the ideal satellite imaging result, namely the RD image result
when the target is flying smoothly. Figure 5b is the one-dimensional-range image of
the target in non-stationary flight. It can be seen from the figure that the maneuvering
characteristics of the target make the range image appear migration through range cell. The
one-dimensional-range image after envelope alignment, using the traditional minimum
entropy algorithm, is shown in Figure 5c. Figure 5d shows the imaging results obtained
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using FFT on the one-dimensional-range image after envelope alignment in the azimuth
dimension. It can be seen from the figure that the RD has been basically invalid due to
the phase error caused by the target motion characteristics. Figure 5e is the imaging result
obtained using FFT in the azimuth dimension after phase error correction based on rough
estimates. Since the rough estimate is a value close to the true value and RD has a low
resolution, the image is still heavily defocused. Figure 5f shows the RD imaging result after
phase error correction based on the proposed minimum entropy algorithm. It is clear that
RD imaging results are defocused. Figure 5g shows the target high-resolution ISAR image
obtained using the algorithm proposed in this paper. It can be seen from the figure that the
imaging effect of the proposed algorithm is very good, which can effectively compensate for
the phase error, and achieve high-resolution imaging of high-speed maneuvering targets.
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fast time dimension, which is because the estimated value of the target’s high-order mo-
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Figure 5. One-dimensional-range image and two-dimensional imaging results. (a) Ideal satellite
imaging result. (b) One-dimensional-range image before envelope alignment. (c) One-dimensional-
range image after envelope alignment. (d) RD imaging results before phase error correction. (e) RD
imaging result after phase error correction based on rough estimation. (f) RD imaging result after
phase error correction based on the proposed minimum entropy algorithm. (g) ISAR image obtained
using the proposed algorithm.

In addition, we also give the RD imaging results based on rough estimation, RD
imaging results after phase error correction based on the proposed minimum entropy
algorithm, and the images of our proposed algorithm when the SNR is 5 dB and 0 dB in
Figure 6. When the SNR is 5 dB, the imaging result obtained using FFT in the azimuth
dimension after phase error correction based on rough estimates, the RD imaging result
after phase error correction based on the proposed minimum entropy algorithm, and the
image obtained using the proposed algorithm are shown in Figure 6a, Figure 6b, and
Figure 6c, respectively. Figure 6d–f show the images when the SNR is 0 dB. It can be seen
from the figure that the RD has basically failed when the phase error is corrected using only
rough estimates, and the smaller the SNR, the more serious the defocusing of the image
obtained using RD is. After using the minimum entropy correction error proposed in this
paper, RD can obtain better imaging results; however, there is a defocusing phenomenon in
the fast time dimension, which is because the estimated value of the target’s high-order
motion parameters, obtained using the algorithm, has a large gap with the real value,
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and the precision of phase error compensation is poor. However, the proposed algorithm
can obtain better imaging results even at a low SNR, and the position and shape outline
information of the target can be obtained. However, when the SNR is low, the imaging
results obtained using our proposed algorithm also have defocusing problems, which is
because the accuracy of the estimation of error parameters is affected by the SNR. The lower
the SNR is, the greater the difference between the estimated error parameters and the real
value will be. When the phase error is not compensated for well, the image will defocus.

The average rough estimate values and the exact estimate values in the simulation
experiment with different SNR of the above satellite model of 500 Monte Carlo experiments
are shown in Table 3. From the table, we know that the rough estimate is close to the
real value, but the parameter value is closer to the real value after accurate estimation,
and the higher the SNR, the closer the estimated value of the parameter is to the real
value. The parameter estimated using the combination of minimum entropy and SBL is
closer to the real value than the parameter estimated using the direct minimum entropy
algorithm. In addition, Table 3 also shows the image entropy of the ideal image, the image
of RD, and the image of the proposed algorithm under different SNR. It can be seen from
the table that when the SNR is 10 dB, the difference between the image entropy of the
proposed algorithm and the ideal image is small. Therefore, the above analysis shows that
the proposed algorithm has good accuracy and strong robustness.
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Figure 6. The imaging results of RD and the proposed algorithm with different SNR. (a) RD imaging
result after phase error correction based on rough estimation when SNR is 5 dB. (b) RD imaging
result after phase error correction based on the proposed minimum entropy algorithm when SNR
is 5 dB. (c) ISAR image obtained using the proposed algorithm when SNR is 5 dB. (d) RD imaging
result after phase error correction based on rough estimation when SNR is 0 dB. (e) RD imaging result
after phase error correction based on the proposed minimum entropy algorithm when SNR is 0 dB.
(f) ISAR image obtained using the proposed algorithm when SNR is 0 dB.

Table 3. Rough estimate values and exact estimate values obtained using the proposed algorithm
with different SNR.

SNR (dB) 10 5 0

Estimate of target
motion parameters

Rough estimate value
[velocity (KM/s), acceleration (M/s2),

acceleration rate (M/s3)]

[10,
120.11,
40.01]

[10,
119.81, 40.04]

[10.001, 120.41,
39.93]

Exact estimate value in experiments of
RD image based on the proposed

minimum entropy algorithm
[velocity (KM/s), acceleration (M/s2),

acceleration rate (M/s3)]

[10,
120.029, 39.971]

[10,
119.977, 40.015]

[10,
120.031, 39.911]

Exact estimate value in experiments of
the proposed image algorithm

[velocity (KM/s), acceleration (M/s2),
acceleration rate (M/s3)]

[10,
120.001, 40.001]

[10,
119.958, 40.005]

[10,
120.011, 39.985]

Image entropy

Ideal image −1.6048 −1.6061 −1.6112

RD image based on rough estimate −1.6396 −1.6506 −1.6587

RD image based on the proposed
minimum entropy algorithm −1.6124 −1.6327 −1.6451

Image obtained by the proposed
algorithm −1.6070 −1.6254 −1.6320

For the measured data, in order to make phase error correction more accurately, it
is often necessary to select the order of the maneuvering target echo polynomial before
error correction. As shown in Figure 7, we used the Yak-42 aircraft to conduct actual
simulation. For the system for obtaining Yak-42 aircraft echo data, the bandwidth and
pulse repetition frequency of the radar employed to collect ISAR echo data are 400-MHz
and 300-Hz, respectively. Both the range dimension sampling number and the azimuth
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dimension sampling number are 256. Figure 7a,b are the imaging results of aircraft echo
modeling into second-order and third-order polynomials using the proposed algorithm,
respectively. Their image entropy values are 1.55453 and 1.5341, respectively, and have
been indicated on the images. By comparing the two images, it can be seen that the tail of
the aircraft in Figure 7b has a better focusing effect and a lower image entropy. Therefore,
the third-order polynomial signal is more fitting to the real echo signal of the aircraft.
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In fact, for the maneuvering target, the higher the order of distance polynomial, the
more accurate the description of the real maneuvering characteristics of the target; however,
the operational complexity will also increase. Therefore, the modeling of the polynomial
order should choose the appropriate order according to the actual situation. In practice, it
is generally possible to describe the motion characteristics of the target more accurately by
modeling second-order or third-order polynomials, while the accuracy of the higher-order
polynomial model is not very high, and the more parameters are estimated, the larger the
calculation amount will be.

5. Conclusions

In this paper, we combine the parameter estimation method based on minimum en-
tropy constraint with fast SBL to propose a high-speed maneuvering target high-resolution
imaging method. Compared with some existing fast SBL algorithms, the proposed fast
SBL algorithm does not use any approximation method, but uses the LC decomposition
algorithm to represent the inverse matrix. Based on the decomposition expression of the
inverse matrix, the operation involving the inverse matrix can be solved using FFT/IFFT.
The theory and experiment prove that the proposed algorithm can achieve high-resolution
ISAR imaging efficiently and accurately. In addition, the fast SBL algorithm based on
the LC decomposition method has a lower computational complexity than the fast SBL
algorithm based on GS decomposition. The estimation of motion parameters is also a key
step in the imaging of high-speed moving targets. The accuracy of parameter estimation
greatly affects the imaging results. The minimum Tsallis entropy is adopted for parameter
estimation in this paper, which takes into account the imaging quality of the whole scene.
Therefore, it has a stronger robustness, can achieve global optimization, and can obtain
more accurate parameter values.
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