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Abstract: In order to address the challenge of early detection of cotton verticillium wilt disease,
naturally infected cotton plants in the field, which were divided into five categories based on
the degree of disease severity, have been investigated in this study. Canopies of infected cotton
plants were analyzed with spectral data measured, and various preprocessing techniques, including
multiplicative scatter correction (MSC) and MSC-continuous wavelet analysis algorithms, were used
to predict the disease severity. With a combination of support vector machine (SVM) models with such
optimization algorithms as genetic algorithm (GA), grid search (GS), particle swarm optimization
(PSO), and grey wolf optimizer (GWO), a grading model of cotton verticillium wilt disease was
established in this study. The study results show that the MSC-PSO-SVM model outperforms the
other three models in terms of classification accuracy, and the accuracy, macro precision, macro
recall, and macro F1-score of this model are 80%, 81.26%, 80%, and 79.57%, respectively. Among
those eight models constructed on the basis of continuous wavelet analyses using mexh and db3, the
MSC-db3(23)-PSO-SVM and MSC-db3(23)-GWO-SVM models perform best, with the latter having
a shorter running time. An overall evaluation shows that the MSC-db3(23)-GWO-SVM model is
an optimal model, with values of its accuracy, macro precision, macro recall, and macro F1-score
indicators being 91.2%, 92.02%, 91.2%, and 91.16%, respectively. Moreover, under this model, the
prediction accuracy on disease levels 1 and 5 has achieved the highest rate of 100%, with a prediction
accuracy rate of 88% on disease level 2 and the lowest prediction accuracy rate of 84% on both disease
levels 3 and 4. These results demonstrate that it is effective to use spectral technology in classifying
the cotton verticillium wilt disease and satisfying the needs of field detection and grading. This study
provides a new approach for the detection and grading of cotton verticillium wilt disease and offered
a theoretical basis for early prevention, precise drug application, and instrument development for the
disease.

Keywords: cotton verticillium wilt; canopy spectrum; SVM; continuous wavelet transform;
disease severity

1. Introduction

Cotton verticillium wilt disease [1,2] is a soil-borne vascular disease that poses sig-
nificant challenges in disease eradication once it takes hold. It is a widespread and cross-
regional disease that causes extensive incidence and spread and has emerged as a major
obstacle for cotton yield in Xinjiang [3]. Symptoms of infected plants include leaf wilting,
boll shedding, and reduced boll size, leading to substantial yield losses and compromised
fiber quality [4]. Consequently, the prevention and monitoring of cotton verticillium
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wilt disease occurrence and progression have become a primary focus and challenge for
cultivators, breeders, pathologists, and remote sensing scientists [5].

Traditional disease monitoring primarily relies on field sampling and surveys. How-
ever, these methods are time-consuming, labor-intensive, poorly timed, and susceptible to
human factors, all of which can compromise the accuracy of results [6,7]. In light of the
rapid outbreak of cotton verticillium wilt disease and the demanding spatial and temporal
resolution requirements of satellite sensors, traditional satellites have the challenges of
delivering high-quality data to meet the requirements of practical applications [8]. Thus,
ground-based spectroscopy measuring technology has become essential for effectively
monitoring cotton verticillium wilt disease.

In recent years, there has been more and more research on the diagnoses and monitor-
ing of plant diseases and pests on plant leaf or canopy scales [9–14]. When plant leaves
are infected by pathogens, they often exhibit various forms of spots, necrotic areas, or
wilting, thus resulting in their reduced pigment contents and activities. Consequently,
their leaf spectral reflectance of visible light increases, accompanied by a blue shift in the
red-edge region (670–730 nm) [15]. Moreover, those disease-susceptible plants undergo
significant structural changes on their canopy scales (e.g., altered leaf inclination and stem
tilting) and experience variations of plant water status caused by leaf chlorosis, which can
even bring out stem inversion under severe stresses. These changes can induce varied leaf
spectral reflectance patterns within the near-infrared and short-wave infrared bands [16].
For instance, among peanut crops with leaf spot disease, a significant decrease in the
near-infrared spectral reflectance of peanut canopies has been observed with the disease
progression, which is utilized for disease detection in that region [17]. In the study of winter
wheat powdery mildew, it was discovered that with the increase in disease severity, there
is a significant decrease in the leaf near-infrared spectral reflectance, with drred (red-edge
slope) being the most sensitive parameter for powdery mildew detection. Eventually, a
powdery mildew detection model based on Σdr680–760 nm (the area under the red edge
peak) was developed [18]. Therefore, the leaf’s near-infrared spectral reflectance is a critical
parameter for monitoring cotton verticillium wilt disease.

Continuous wavelet transform (CWT) is a mathematical tool used for analyzing
non-stationary signals, providing time-frequency representations of these signals by de-
composing them into scaled and translated wavelets [19]. CWT convolves an input signal
with wavelets at different scales and positions, measuring their similarities to the signal
at each scale and time position throughout the convolution process. CWT can be used to
decompose the spectral data of wheat leaves and quantify their aphid densities, with results
better than those of conventional sensitive spectral indices [20]. The machine learning clas-
sifier after CWT processing has consistently outperformed the other four machine learning
classifiers (k-nearest neighbor (KNN), support vector machine (SVM), neural network (NN),
and extreme gradient boosting (Xgboost)) in measuring wheat canopy hyperspectra to
distinguish healthy and infected wheat. Moreover, this classifier can accurately distinguish
wheat canopies with fusarium head blight (FHB) disease from healthy wheat canopies [21].
With the spectral data, vegetation indices, and wavelet features as described above, a
discriminant model was established in this study based on Fisher’s linear discriminant
analysis (FLDA) method and SVM [22]. Wavelet features are more effective in classifying
crops with different stresses than spectral data and vegetation indices. Therefore, the
accuracy of estimation models can be improved through the use of the continuous wavelet
method in analyzing crop canopy spectral data.

Optimization algorithms are mathematical tools used to find the best solution (optimal
values) for a given problem [23]. These optimization algorithms include genetic algorithm
(GA), grid search (GS), particle swarm optimization (PSO), and other algorithms. These
algorithms iteratively explore a search space to minimize or maximize an objective function
under certain constraints. GA is a heuristic search algorithm that finds the optimal solution
to an optimization problem by simulating the process of biological evolution [24]. GS is
a commonly used parameter search algorithm determining the optimal combination of
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hyperparameters for machine learning models [25]. PSO is a population-based metaheuris-
tic optimization algorithm created under the inspiration of the collective behavior of bird
flocking or fish schooling [26]. Since the beginning of this century, various optimization
algorithms [27,28] have been developed. Compared with traditional population optimiza-
tion algorithms that are likely to generate optimal local results and have slow convergence
speeds, the grey wolf optimization (GWO) algorithm has a higher problem-solving capac-
ity [29]. The GWO algorithm has been widely used in element concentration prediction,
crop classification, and other fields [30]. A classification model was constructed in some
previous research to distinguish the maturity of pasture purslane based on the improved
support vector machine and partial least squares discriminant analysis method using the
gray wolf optimizer (GWO-SVM), with good results achieved [31]. A GWO-SVM model
was used to detect the adulteration of pepper powder, and this model outperformed the
methods of hierarchical clustering analysis, orthogonal partial least squares discriminant
analysis, and random forest algorithm in detecting the adulteration of pepper powder [32].
Scholars [33] have verified that the gray wolf optimization algorithm can be used to im-
prove the classification performance of support vector machines in classifying Millennium
tomato varieties.

In summary, the GWO-SVM method has been widely used in many fields, and the
GWO algorithm has the advantages of few parameters, simple calculation, strong robust-
ness, high result accuracy, and fast convergence speed. Thus, it has been widely used in the
classifications of agricultural products. However, in the literature, the GWO algorithm has
been rarely used to grade the cotton Fusarium wilt disease. With the development of ma-
chine learning and data mining algorithms, GWO algorithm has been increasingly applied
in the relevant crop research [34–39]. The method and modeling of spectral data analysis
have been used in pest and disease recognition and monitoring of rice [40], wheat [41],
soybeans [42], and other crops together with the methods of principal component analysis
(PCA) [43], SVM [44], and neural networks [45,46], and other methods. With the PCA and
competitive adaptative reweighted sampling (CARS) methods, feature variables can be se-
lected, and with SVM, a model can be established [47]. Eventually, it has been verified that
the CARS-PCA-SVM model has the best performance and can classify and detect the rice
blast disease at an early stage under different field conditions. Moreover, Multiple spectral
fluorescence imaging (MFI) and SVM models were used for detecting early-stage powdery
mildew disease [48]. Based on the analysis of correlations among spectral transformation,
vegetation indices, hyperspectral feature parameters, and disease severity during different
time periods, a random forest model for predicting the degree of panicle neck blast disease
based on vegetation indices and hyperspectral feature parameters was constructed [49].
With a combination of chlorophyll fluorescence spectra with chemometrics, such algorithms
as partial least squares discriminant analysis (PLS-DA) and PCA-SVM were employed to
identify tea diseases [50]. Generally speaking, the SVM models outperform most of the
other models in crop disease detection [51]. Therefore, this study has used the SVM models
to grade the cotton wilt disease.

Based on the above analysis, visible and near-infrared spectra data were used for this
grading research. Continuous wavelet decomposition was performed on the spectra data
of the cotton crown layer, and radial basis functions were used as the kernel functions of
SVM. GA, GS, PSO, and GWO were used to optimize SVM parameters for achieving better
classification results. This paper has provided a new method for grading the cotton wilt
disease in the cotton crown layer and the technical support for monitoring the cotton wilt
disease and precise drug spaying at the field and regional scales.

2. Materials and Methods
2.1. Sample

In 2022, an experiment was conducted in the Shi Tuan Experimental Field (81◦21′4.079′′E,
40◦37′11.418′′N) in Alar City, Xinjiang, as shown in Figure 1. Tahe 2-type cotton was
planted on 10 April 2022. The data of plants with cotton verticillium wilt disease were
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collected in the field. Diseased plant samples were collected as described below, and Table 1
shows the number of diseased plant samples collected.
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Table 1. Quantitative statistics of samples.

Level Training Set Testing Set Number of Samples

1 75 25 100
2 75 25 100
3 75 25 100
4 75 25 100
5 75 25 100

Entire sample set 375 125 500

The grading criterion for cotton crown verticillium wilt disease is described as follows.
The infected cotton field was evenly divided into 500 plots, each of which had an area of
one square meter. Every two adjacent plots were spaced one to two meters apart. The
5-point survey method was employed, with each plot selecting 5 symmetrical points (a
total of 5 cotton plants), to investigate disease index. The severity of the plant disease was
divided into 5 levels: Plants with a Level 1 disease had no diseased leaves, plants with a
Level 2 disease had no more than 25% of diseased leaves, plants with a Level 3 disease had
diseased leaves accounting for 25–50% of their total leaves, plants with a Level 4 disease
had more than 50% of diseased leaves, and plants with a Level 5 disease were dead or
dying plants [1]. The number of plants at each level at each location was recorded, and the
disease index (DI) of the test population was calculated with the following formula:

DI = ∑ (X× f )× 100
n×∑ f

(1)

In this equation, X represents the grade value of each level, n represents the highest
disease level, and f represents the number of plants at each level.
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2.2. Data Acquisition

With the ASD FieldSpec HandHeld 2 (350–1075 nm) portable hyperspectral radiometer
manufactured by the American company ASD (Analytical Spectral Device, Boulder, CO,
USA), cotton canopy hyperspectral data were measured in this study. The best time period
for spectral data collection was from 12:00 to 14:00 local time [5] when the light was more
stable and more perpendicular to the ground. During the measurement process, the probe
was kept vertically downward and was always 20 cm away from the ground, with a 25◦

field of view. Throughout the entire process, facing the sun, the observing experimenter
always stood behind the target area. The recording member and other experimenters
always stood behind the observing experimenter, avoiding walking around in the area and
standing between the sunlight and the target area. To conduct the measurement at the
next location, all experimenters approached the target area without trampling it. After the
test, they left the target area through the entry route. Before and after each measurement,
standard reference boards were used for standard calibration, and 5 spectral curves were
measured and drawn at each measuring point, with the average curve calculated and used
as the spectral curve of that measuring point. Moreover, the spectral reflectance at each
point was calculated with the conversion formula of reflectance and whiteboard values.

2.3. Data Processing

The primary procedure of data processing is shown in Figure 2. The first step was to
preprocess the original spectral data using MSC, followed by the processing of continu-
ous wavelet transform (CWT) applied. The second step was to perform the population
optimization algorithm, which includes four optimization algorithms: GA, GS, PSO, and
GWO. The third step was to establish an analytical model, which includes the SVM models
and CWT-SVM models generated with these four optimization algorithms. The fourth step
was to compare the performance of different models in evaluating the severity of cotton
verticillium wilt disease.
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2.4. Continuous Wavelet Analysis

From the perspective of signal processing, the wavelet analysis method can be used
to analyze the frequency and time aspects of data and extract useful information from
signals. Therefore, CWT can decompose a reflectance spectrum into a series of wavelet
energy coefficients at different frequency levels with the following formula.

W f (a, b) =
1√
a

∫ +∞

−∞
f (λ)ψ

(
λ− b

a

)
dλ (2)
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In this formula, a is the frequency scale factor, which is set as a gradient of 2n

(n = 1, 2, . . . , 8), and b is the translation factor, which is the central wavelength of the
mother wavelet function.

Previous studies have shown that the curve of the absorption characteristics can be de-
scribed with a Gaussian function [52] or a combination of multiple Gaussian functions [53]
to a great extent. Thus, the mother wavelet function ψ(λ) is a second-order Gaussian
function. Based on the conclusions of previous research [52], this study used db3 as the
mother function [54] for comparative analysis.

In Formula (2), f (λ) represents the one-dimensional reflectance spectrum, and the
wavelet coefficients Wf(a,b) (denoted as WFa,b) are two-dimensional data, which include a
frequency level dimension (1, 2, . . . , 8) and a wavelength λ (325–1075 nm) dimension.

2.5. SVM Algorithm

Based on the idea of establishing a classification hyperplane as the decision boundary
to maximize the separation margin between positive and negative examples, Support
Vector Machine [55] (SVM) has been developed as an approximate implementation of
structural risk minimization. Moreover, this algorithm can be used in pattern classification
and nonlinear regression. As mentioned earlier, a Gaussian kernel function was used to
optimize the SVM model. Therefore, two important parameters, C (penalty factor) and
g (RBF kernel deviation) were used as the optimal parameters. In order to optimize the
parameters and reduce the parameter search time, such optimization algorithms as GS,
GA, PSO, and GWO were used in this study to improve the predictive capacity of SVM
in distinguishing different levels of cotton wilt disease. Moreover, the SVM classification
program was implemented in the MATLAB R2020a environment. Figure 3 presents the
general implementation process of the SVM-based model with GS, GA, PSO, and GWO
optimization algorithms. According to the process, data were collected and processed first.
Then, the dataset was randomly divided into the training and testing sets with a 3:1 ratio.
After that, four intelligent optimization algorithms, which are GA, GS, PSO, and GWO,
were performed. The specific algorithms can be found in Sections 2.5.1–2.5.4. When the
objective conditions were met, the best parameters were generated and output, and the
SVM models were evaluated using metrics, such as Accuracy and Recall.

2.5.1. GA

Genetic Algorithm (GA) [56] has its origin in computer simulation of biological systems
and is a practical, efficient, and robust optimization algorithm. In this study, the accuracy
of the training set under cross-validation (CV) was used as the parameter of the fit function
in GA, and GA was used to optimize the parameters of SVM.

2.5.2. PSO

The particle swarm optimization (PSO) algorithm applies an iterative optimization
technique based on swarm intelligence [57]. In this study, the PSO algorithm was also used
to optimize the parameters of SVM. With the distinctive particle swarm algorithm utilized,
the fitting degrees of particles were continuously updated until an overall optimal solution
was obtained.

2.5.3. GS

The optimal values of the GS parameters [58], c and g, within a certain range, have
been singled out in the following way: Under a given c value and g value, the training set
was used as an original dataset, and the K-CV method was used to obtain the classification
accuracy of the validation set. Next, the values of c and g under which the highest
classification accuracy of the training set was achieved, were viewed as the optimal values
of GS parameters.
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optimization algorithms.

2.5.4. GWO

Grey Wolf Optimization Algorithm [29] was used to select the optimal parameters.
This algorithm was developed under the inspiration of hunting behaviors of gray wolves.
Three main phases are involved in the algorithm: Encircling, attacking, and searching. The
wolf pack randomly searches for potential solutions, generates several sets of parameters,
and selects the three best-performing wolves from them. In a model constructed based
on the GWO optimization function simulating the hunting behaviors of gray wolves, α
represents the most capable wolf, followed by β and γ. β and γ primarily assist α in
making decisions and obey its instructions for hunting. ω represents the wolf with the
lowest rank in the pack. Under the leadership of α, β, and γ, the whole pack collectively
attacks the prey and searches for a global optimal solution step by step.

2.6. Model Evaluation Methods

The commonly used evaluation parameters for multi-classification problems [59]
include Accuracy, Recall, Precision, and F1-score. The formulas for calculating these
parameters are as follows:

Accuracy = (TP + TN)/(TP + TN + FP + FN) (3)

precision = TP/(TP + FP) (4)

recall = TP/(TP + FN) (5)
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F1-score = 2 × recall × precision/(recall + precision) (6)

Macro precision =
1
k ∑k

i=1 precisioni (7)

Macro recall =
1
k ∑k

i=1 recalli (8)

Macro F1-score =
1
k ∑k

i=1 F1− scorei (9)

In Formulas (3)–(6), TP represents the number of positive samples correctly predicted
as positive, TN represents the number of negative samples correctly predicted as negative,
FN represents the number of positive samples incorrectly predicted as negative, and FP
represents the number of negative samples incorrectly predicted as positive. Accuracy rep-
resents the percentage of correctly predicted samples among all samples. Recall represents
the number of correctly classified instances in the actual category, and precision represents
the number of correctly classified instances in the predicted category. The F1-score is a
harmonic average of precision and recall, evaluating the accuracy of the model. A value
close to 1 indicates a good result for each of these four indicators. The average values of
these four indicators of the model were obtained in this study through 20 repeated calcu-
lations. This study used the macro-average (arithmetic mean) of the obtained precision,
recall, and F1-score of each category to comprehensively evaluate the performance of the
classification model. Formulas (7)–(9) are the formulas calculating these macro-averages,
with i representing the number of categories classified.

3. Results
3.1. Spectrum Processing and Analysis

The spectral reflectance characteristics of cotton canopy are mainly influenced by leaf
pigment content and cell structure, as well as multiple factors such as canopy structure [1,5].

From Figure 4, it can be seen that the spectral curves of cotton canopies with different
disease levels exhibit a similar pattern. Their spectral reflectance is low in the visible
light range (400–700 nm) and high in the near-infrared range (700–1075 nm). A reflection
peak appears near a wavelength of 550 nm, while two absorption valleys appear near
wavelengths of 490 and 680 nm.
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Their spectral reflectance increases sharply within a wavelength range of 690–750 nm
and forms a significantly high reflectance plateau within a near-infrared range of 750–900 nm.
There are troughs and peaks at 750 and 900 nm. The reason is that the near-infrared light
can penetrate through chlorophyll and form strong reflection at the leaf tissue. Therefore,
the spectral reflectance of cotton canopy increases sharply between wavelengths of the
red and near-infrared light, resulting in a significantly high reflectance plateau in the
near-infrared range. In order to reduce the interference caused by environmental factors,
instruments, and measurement methods, MSC was used to process the high-spectrum data.
From Figure 5, it can be seen that in the near-infrared (750–1075 nm) range, the spectral
reflectance of cotton canopies with different degrees of verticillium wilt disease is lower
than that reflectance of a healthy cotton canopy, and the spectral reflectance gradually
decreases with the increase of disease severity.
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3.2. Grading of Cotton Crown Wilt Disease Based on the SVM Model

After the preprocessing of MSC, the spectra data of cotton canopies with wilt disease
were optimized with the GA, GS, PSO, and GWO algorithms. A Radial Basis Function
(RBF) was used in the SVM model as a kernel function to perform the classification. The
final results are shown in Table 2.

In the GA-SVM algorithm, the population size, maximum breeding generation, crossover
probability, and mutation probability were assigned with values of 20, 20, 0.9, and 0.05,
respectively. The parameters c and g were assigned a value range of 0–100. After 20 itera-
tions, fitting degrees of all the parameters mentioned above reached a maximum value and
then remained stable. The optimal values of c and g were 19.9469 and 7.3388, respectively.
Accuracy, macro precision, macro recall, and macro F1-score of the prediction set obtained
values of 53.6%, 56.28%, 53.6%, and 51.46%, respectively.

In the GS-SVM model, the population size, crossover probability, and mutation prob-
ability were assigned with values of 20, 20, and 0.2, respectively. The maximum number
of iterations was set to 20. When the maximum number of iterations has been reached, or
the fitting degree of the best individual has not improved for 20 consecutive generations,
then the optimization process should be terminated. In this model, the optimal values of
c and g obtained were 0.25 and 0.125, respectively, and the CV Accuracy of 100%. In this
study, a high-spectrum grading model of cotton crown wilt disease was established with
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a fine parameter selection method applied for rough data selection. The obtained values
of Accuracy, Macro Precision, Macro Recall, and Macro F1-score of the prediction set are
66.4%, 68.12%, 66.4%, and 67.25%, respectively.

In the PSO-SVM model, the particle dimension, the number of particles in each
dimension of the particle swarm, and the maximum optimization generation of the particle
swarm were assigned, with values of 2, 20, and 20, respectively. The penalty parameter
c and the kernel parameter g were assigned with search ranges of 0.1–100 and 0.01–1000,
respectively. The obtained optimal values of c and g obtained are 1.841 and 0.01, respectively.
The value of CV Accuracy calculated is 100%. Furthermore, a high-spectrum classification
model of cotton crown wilt disease was constructed in this model, with the Accuracy,
Macro Precision, Macro Recall, and Macro F1-score of the prediction set assigned with
values of 80%, 81.26%, 80%, and 80.63%, respectively. Similarly, in the GWO-SVM model, a
high spectrum classification model of cotton crown wilt disease was constructed, with the
Accuracy, Macro Precision, Macro Recall, and Macro F1-score of the prediction set assigned
with values of 64%, 66.2%, 64%, and 65.08%, respectively.

Under all these four models, those four indicators of the training set all obtained a
value of 100%. Under the PSO-SVM model, the prediction set achieved the best results in
terms of Accuracy, Macro Precision, Macro Recall, and Macro F1-score, with a total running
time of 79.72 s. Under the GS-SVM model, the prediction set achieved the 2nd best results
in terms of those indicators as described above, with the longest total running time of
146.53 s. Under the GWO-SVM model, the prediction set achieved the 3rd best results in
terms of those indicators mentioned above, with the shortest total running time. Compared
with the prediction set under the GWO-SVM model, the prediction set under the GA-SVM
model had worse results in terms of the indicators as described and a longer total running
time. Under the PSO-SVM model, the obtained values of those indicators of the prediction
set are acceptable but cannot meet the expectations.

Figure 6 shows the confusion matrices of cotton crown wilt disease severity classifi-
cations under the MSC-GA-SVM, MSC-GS-SVM, MSC-PSO-SVM, and MSC-GWO-SVM
models. Figure 6a,c,e,g presents the data corresponding to the modeling sets in all these
four models, indicating an accuracy of 100% in disease severity classification and no missed
or false classifications. From the confusion matrix of the prediction set shown in Figure 6b,
it can be seen that the prediction accuracy of disease levels 2 and 3 is all about 50%, and
there is only one level-4 sample correctly classified. Figure 6d shows that the prediction
accuracy of disease levels 2 and 3 is all less than 40% and that the prediction accuracy of
disease levels 1 and 2 is 88% and 84%, respectively. As shown in Figure 6f, the prediction
accuracy of disease level 4 is 48%, and there are 13 samples of disease level 4 wrongly
classified as samples of disease level 5. It also exhibits that the prediction accuracy of
disease level 3 is 72%, and there are seven samples of disease level 3 wrongly classified as
samples of disease level 4. Figure 6h indicates that the prediction accuracy of both disease
levels 1 and 2 is 64%, and there are nine samples of disease level 1 and nine samples of
disease level 2 wrongly classified. It also shows that the prediction accuracy of disease
level 3 is 72%, and there are 14 samples of disease level 3 wrongly classified as samples of
disease level 4. From this figure, it can also be seen that the prediction accuracy of disease
level 4 is 48%, and there are 13 samples of disease level 4 wrongly classified as samples
of disease level 5. Among all these four models, disease level 4 has the lowest prediction
accuracy, followed by disease levels 3, 1, and 2, subsequently. All samples of disease level 5
are correctly classified. Each wrongly classified sample is mostly classified as the level that
is adjacent to its actual level.
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Figure 6. Confusion matrices of level classifications of cotton canopy wilt disease under the SVM
models. (a) Training set of the GA-SVM model, (b) testing set of the GA-SVM model, (c) training set
of the GS-SVM model, (d) testing set of the GS-SVM model, (e) training set of the PSO-SVM model,
(f) testing set of the PSO-SVM model, (g) training set of the GWO-SVM model, (h) testing set of the
GWO-SVM model.

Table 2. Classification results of the cotton verticillium wilt disease based on the SVM models.

Model Dataset Accuracy (%) Macro
Precision (%)

Macro
Recall (%)

Macro
F1-Score (%) Time (s)

MSC-GA-SVM
Training set 100 100 100 100

50.74Testing set 53.6 56.28 53.6 51.46

MSC-GS-SVM
Training set 100 100 100 100

146.53Testing set 66.4 68.12 66.4 64.67

MSC-PSO-SVM
Training set 100 100 100 100

79.72Testing set 80 81.26 80 79.57

MSC-GWO-SVM
Training set 100 100 100 100

5.33Testing set 64 66.2 64 63.48

3.3. Grading of Cotton Wilt Disease with a Combination of Continuous Wavelet Analysis and
SVM Models
3.3.1. Analysis of Wavelet Coefficient Curves at Different Decomposition Levels

With the continuous wavelet transform method, the MSC-processed spectral curves
were decomposed into wavelet coefficients at eight decomposition levels. Figure 7 shows
the CWT results of some cotton samples. It can be seen that the values of wavelet coefficients
gradually increase with the decomposition level, and the value of high-frequency noise
decreases with the increase of the decomposition level. Therefore, with the increase of the
decomposition level, the spectral curves flatten out, and some distinctive absorption peaks
become more significant at appropriate decomposition levels, as presented by the curves
shown in this figure under the decomposition levels of 1–6. However, some absorption
peaks of extremely smooth spectral curves under very high decomposition levels will
disappear, as shown in Figure 7a. It will make the quantitative analysis difficult.
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Figure 7. Wavelet coefficient curves at different decomposition levels. (a) Wavelet basis functions
(mexh), (b) wavelet basis functions (db3).

3.3.2. Establishment and Comparison of Cotton Wilt Disease Grading Models Based on the
Continuous Wavelet Analysis and the SVM Model

With the continuous wavelet transform method with mexh and db3 used as the wavelet
basis functions, the MSC-preprocessed spectral data of cotton canopies with verticillium
wilt disease were decomposed into wavelet coefficients at the decomposition levels of 1–8.
Then, the SVM parameters were optimized with the GA, GS, PSO, and GWO algorithms,
and finally, the cotton disease levels were classified with the SVM models, with the optimal
results of each model shown in Tables 3 and 4.

Table 3. Classification results of cotton canopy wilt disease based on the wavelet (mexh) method and
SVM models.

Model Dataset Accuracy (%) Macro
Precision (%)

Macro
Recall (%)

Macro
F1-Score (%) Time (s)

MSC-mexh(21)-GA-SVM
Training set 100 100 100 100

126.48Testing set 81.6 84.14 82.4 82.18

MSC- mexh(21)-GS-SVM
Training set 100 100 100 100

319.02Testing set 88.8 90.28 88.8 88.67

MSC-mexh(21)-PSO-SVM
Training set 100 100 100 100

178.6Testing set 89.6 90.7 89.6 89.53

MSC-mexh(21)-GWO-SVM
Training set 100 100 100 100

30.39Testing set 87.2 87.94 87.2 87.16
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Table 4. Classification results of cotton canopy wilt disease based on the wavelet (db3) method and
the SVM models.

Model Dataset Accuracy (%) Macro
Precision (%)

Macro
Recall (%)

Macro
F1-Score (%) Time (s)

MSC-db3(23)-GA-SVM
Training set 100 100 100 100

266Testing set 89.6 91.26 90.4 90.42

MSC-db3(23)-GS-SVM
Training set 100 100 100 100

389.38Testing set 88.8 91.5 90.4 90.33

MSC-db3(23)-PSO-SVM
Training set 99.73 99.74 99.74 99.74

135.3Testing set 91.2 92.02 91.2 91.16

MSC-db3(23)-GWO-SVM
Training set 97.6 97.68 97.6 97.61

41.68Testing set 91.2 92.02 91.2 91.16

Under a continuous wavelet function of mexh, all these four models can achieve their
best results within a low-frequency range at decomposition level 1. From Table 3, it can be
seen that the Accuracy, Macro Precision, Macro Recall, and Macro F1-score indicators of
the prediction set under the MSC-mexh(21)-PSO-SVM model have obtained better values
than those indicators of the prediction set under the other three models. Under this model,
the obtained values of the Accuracy, Macro Precision, Macro Recall, and Macro F1-score
indicators of the prediction set are 89.6%, 90.7%, 89.6%, and 89.53%, respectively.

From Table 4, it can be seen that under a continuous wavelet function of db3, all those
four models can achieve their best results within a low-frequency range at decomposition
level 3. The prediction sets under the MSC-db3 (23)-PSO-SVM and MSC-db3 (23)-GWO-
SVM models obtain the same values of Accuracy, Precision, Recall, and F1-score, which are
91.2%, 92.02%, 91.2%, and 91.16%, respectively. Between these two models, the MSC-db3
(23)-GWO-SVM model has a shorter running time. With the processing of the db3 wavelet
function, these four indicators of the prediction set under each model shown in Table 4 have
obtained much better results than those indicators of the prediction set shown in Table 2. A
comparison between the prediction sets under the MSC-db3(23)-GA-SVM model shown in
Tables 2 and 4 presents an increase in the value of the Macro F1-score indicator from 51.46%
to 90.42%, indicating the largest increase in the value of this indicator among all models.
Similarly, a comparison between the prediction sets under the MSC-db3(23)-GWO-SVM
model shown in Tables 2 and 4 presents an increase in the value of the Macro F1-score from
63.48% to 91.16%. Therefore, through these comprehensive analyses, it can be determined
that the MSC-db3(23)-GWO-SVM model can be used to classify the severity of the cotton
verticillium wilt disease.

A comparison between Tables 3 and 4 indicates that the models with db3 used as a
wavelet basis function are better than those models with mexh used as a wavelet basis
function in generating the best results of the prediction set. Therefore, this paper has only
presented the confusion matrices of level classifications of the cotton canopy verticillium
wilt disease under the wavelet (db3) function and the SVM models, with the results shown
in Figure 8.

Figure 8 shows the confusion matrices of the cotton canopy verticillium wilt disease
classifications under the MSC-db3(23)-GA-SVM, MSC-db3(23)-GS-SVM, MSC-db3(23)-PSO-
SVM, and MSC-db3(23)-GWO-SVM models. The data of the modeling sets under all these
four models are presented in Figure 8a,c,e,g. It can be seen that all these modeling sets
have nearly 100% accuracy in classifying the severity of the cotton verticillium wilt disease,
only with a few false classifications. As indicated by the confusion matrix of the prediction
set shown in Figure 8a, the prediction accuracy of all those five disease levels is higher
than 80%, and the numbers of disease level-3 samples wrongly classified as disease level-2
ones, disease level-3 samples wrongly classified as disease level-4 ones and disease level-4
samples wrongly classified as disease level-3 ones are 3, 5, and 4, respectively. Figure 8d
shows that the prediction accuracy of all those five disease levels is higher than 80% (with
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the 100% prediction accuracy of levels 1 and 5), and the numbers of wrongly classified
samples of disease levels 2, 3, and 4 are 3, 5, and 4, respectively. From Figure 8f, it can
be seen that the prediction accuracy of disease levels 2, 3, and 4 is 88%, 84%, and 84%,
respectively, with the numbers of disease level-2 samples wrongly classified as disease
level-5 ones, disease level-3 samples wrongly classified as disease level-2 ones and disease
level-4 samples wrongly classified as disease level-1 ones are 3, 4, and 4, respectively. As
shown in Figure 8h, disease levels 1 and 5 all have a prediction accuracy of 100%, with
the numbers of wrongly classified samples of disease levels 2, 3, and 4 being 3, 4, and
4, respectively. Among all those four models, disease level 5 has the highest prediction
accuracy of 100%, followed by disease levels 1, 2, 3, and 4, subsequently.
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function and the SVM models. (a) Training set under the db3(23)-GA-SVM model, (b) testing set
under the db3(23)-GA-SVM model, (c) training set under the db3(23)-GS-SVM model, (d) testing set
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under the db3(23)- PSO -SVM model, (g) training set under the db3(23)-GWO-SVM model, (h) testing
set under the db3(23)-GWO-SVM model.

4. Discussion
4.1. Analysis of Spectrum Features of Cotton Verticillium Wilt Disease

In recent years, the increasing application of hyperspectral technology in agriculture
has made it possible to quickly acquire vegetation information. Through vegetation spectral
reflectance, the damage caused by plant diseases and pests can be monitored. A study on
the rice blast disease has revealed that there are significant differences among the near-
infrared spectral reflectance data of rice plants with different disease levels [14]. The more
severe blast disease a rice plant suffers, the lower spectral reflectance its leaves will present.
Similarly, a study on wheat stripe rust has shown that the spectral reflectance of winter
wheat with different damage levels has a “peak” at the “green edge” and a “valley” at the
“red edge” and that within the near-infrared range, the spectral reflectance of winter wheat
significantly decreases with the increase of the plant’s disease severity [60]. In this study, it
has been found that there are “green peaks” and “red valleys” in the reflectance spectrum of
a cotton canopy and that in the near-infrared range, the spectral reflectance curve gradually
flattens out with the increase of the disease severity, presenting a “red edge” and “blue
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shift” phenomenon. It indicates that the spectral reflectance curve can well reflect the
severity of the cotton wilt disease a plant suffers. In conclusion, it is feasible to use the
hyperspectral data to estimate the severity of the wilt disease a cotton canopy suffers.

4.2. Performance Comparison of Different Optimization Algorithms

SVM algorithm can handle the problem of nonlinear and high-dimensional small
sample classification, and its classification accuracy is much higher than that of neural
networks. The penalty factor C and the kernel function σ play a very important role in the
improvement of SVM’s classification accuracy. If C and σ are too large or too small values,
the data will be “over-fitted” or “under-fitted”. In order to avoid using those C and σ with
too large or too small values, in this study, GA, GS, PSO, and GWO algorithms were used
to search the optimal values of these two SVM parameters intelligently.

Among those four algorithms compared in Table 2, the modeling and prediction results
of the MSC-PSO-SVM algorithm are better than those results of the other three algorithms,
and the GWO-SVM model is superior to the other three models in terms of the algorithm
running time. The GS-SVM model has a poor prediction performance, with the longest
running time. These findings are consistent with the results of the previous studies [61],
in which the PSO-SVM algorithm was compared with such traditional machine learning
algorithms as SVM and random forest and such optimization algorithms as GWO-SVM and
convolutional neural network (CNN). The PSO-SVM algorithm has the best performance,
with an identification accuracy of 92.11%, a precision of 90%, a recall rate of 94.74%, and an
F1 score of 92.31%.

4.3. Improving Model Performance through CWT De-Noising at Different Decomposition Levels

As shown in Table 2, the MSC-PSO-SVM model is the best prediction model among
all four models, with the values of Accuracy, Macro Precision, Macro Recall, and Macro F1-
score of the prediction set being 80%, 81.26%, 80%, and 79.57%, respectively. However, the
results presented by the confusion matrix of cotton verticillium wilt disease classification
shown in Figure 6h cannot meet the expectations. In order to further improve the prediction
accuracy of this model, CWT was used to process the spectral data, with the spectral
reflectance converted into wavelet coefficients, as shown in Figure 7. With the number of
decomposition level increased from 1 to 6, the wavelet coefficient curves flatten out, and
some distinctive absorption peaks are amplified. However, when the curves become too
flat, some absorption peaks will disappear. Those wavelet decomposition levels within a
low-to-medium frequency range can maintain the absorption characteristics of crop spectral
reflectance [62] and effectively eliminate the high-frequency noises in spectral data [58].
Thus, with the high-frequency wavelet decomposition technique, the absorption features
can hardly be figured out in the crop spectral reflectance curve, which is not conducive to
the analysis of crop’s physiological and biochemical composition [63].

A comparison between Tables 2 and 4 reveals that, after the CWT processing, all
models’ prediction accuracy of the severity of cotton verticillium wilt disease has improved
significantly, with the GA-SVM model showing the largest improvement. The values of
Accuracy, Macro Precision, Macro Recall, and Macro F1-score of the prediction set in this
model have increased from 53.6%, 56.28%, 53.6%, and 51.46% to 89.6%, 91.26%, 90.4%, and
90.42%, respectively. Meanwhile, after the CWT processing, the results of the PSO-SVM
model have been slightly improved. A comparison between Tables 2 and 3 shows similar
results, indicating that the CWT can improve the prediction accuracy of the cotton disease
severity through decomposing spectral data. Previous studies [20–22,64] have also pre-
sented similar results. Some scholars have pointed out that the CWT-processed spectral
data can reflect the quantity of aphids [20]. Some other scholars have found that the predic-
tion accuracy of the severity of wheat stripe rust disease can be enhanced by processing
the spectral data with CWT [22]. This study shows that, with a wavelet mother function of
mexh and a wavelet decomposition level 1, the wavelet decomposition coefficients have the
strongest correlation with the severity of cotton verticillium wilt disease, and all those four
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models have achieved their optimal results. Meanwhile, with a wavelet mother function
of db3 and a wavelet decomposition level 3, the wavelet decomposition coefficients also
have the strongest correlation with the severity of cotton verticillium wilt disease, and all
those four models have also achieved their optimal results. In most previous studies, mexh
has been used as the wavelet mother function, with good results achieved. In this study,
both mexh and db3 were used as the mother function, with their results being compared. It
shows that the results with db3 as the mother function are better than those results with
mexh as the mother function. However, it is yet to be discussed which mother wavelet
function and which decomposition level should be used in the optimization. Like some
previous research, this study has used sym8 as the wavelet mother function, with the best
prediction accuracy achieved under a wavelet decomposition level 6 [65].

4.4. Limitations of This Study and Future Work

In this study, the canopy-layer spectral data of the tahe 2-type cotton with wilt disease
were collected. With the methods of MSC spectral data preprocessing and continuous
wavelet analysis, a cotton wilt disease detection model was established based on the SVM
algorithm combined with various optimization algorithms, with the results shown in
Tables 3 and 4 and Figure 8g,h. The study results show that the MSC-db3(23)-GWO-SVM
model has achieved the best classification results with the shortest algorithm running time.

However, this study has only investigated the spectral data of a specific cotton variety.
Therefore, in order to verify the stability and accuracy of the MSC-db3(23)-GWO-SVM
model in classifying the cotton wilt disease, more cotton varieties, planting patterns, and
field data sets should be taken into consideration in future studies.

This study has only focused on the disease levels of cotton plants. Future studies
can use the multi-spectral remote sensing image data collected by drones to implement
real-time monitoring of cotton fields and formulate management plans for cotton fields
based on the continuous wavelet analysis method and GWO-SVM models, thus providing
a research basis for the large-scale, low-cost, and accurate monitoring and diagnosis of
cotton fields. Hyperspectral instruments have been identified as relatively expensive.
In response, ongoing research focuses on developing cost-effective instruments that are
specifically designed to meet the requirements of farmers. These endeavors aim to enhance
the practical applicability of hyperspectral models in agricultural settings.

5. Conclusions

This study has used cotton plants with canopy wilt disease as an experimental object
and analyzed their crown spectral data. The cotton canopy wilt disease was divided into
five different grades in this study. Four models, namely GA-SVM, GS-SVM, PSO-SVM, and
GWO-SVM, were established and then optimized with the continuous wavelet analysis
method (mexh and db3). Based on the cotton crown hyperspectral data, this study has
classified and predicted the cotton verticillium wilt disease severity, with the conclusions
shown below:

(1) Based on the cotton crown spectral data, the SVM models combined with the GA, GS,
PSO, GWO optimization algorithms can be used to classify the cotton wilt disease
severity. The MSC-PSO-SVM model can achieve good classification results with a
relatively long running time. The GWO-SVM model has the shortest running time
with relatively low parameters, but the results generated through this model are
not satisfactory.

(2) After different CWT processing, the accuracy, macro precision, macro recall, and
macro F1-score indicators under all eight models have obtained better values. Among
these eight models, those four indicators under the MSC-db3(23)-PSO-SVM and MSC-
db3(23)-GWO-SVM models have obtained the same and highest values. After the
wavelet (db3) processing, the accuracy, macro precision, macro recall, and macro
F1-score indicators under the GWO-SVM model have achieved the biggest increase in
their values. The algorithm running time of this model is relatively short.
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(3) Under the MSC-db3(23)-GWO-SVM model, the best results have been obtained on
the classification of cotton crown wilt disease severity, and the prediction accuracy
rates of the prediction set in this model on disease levels 1, 2, 3, 4, and 5 are 100%,
88%, 84%, 84%, and 100%, respectively.

This study has used a specific cotton variety to perform disease research at the plant
level. In future studies, multi-spectral image data collected by unmanned aerial vehicles can
be introduced to perform real-time monitoring of cotton fields and formulate management
plans for cotton fields. Therefore, the prescription maps provided by these unmanned
aerial vehicles can be used to conduct the spraying of pesticides in various ways, thus
reducing the use of pesticides and protecting the ecological environment.
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