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Abstract: Monitoring the fuel moisture content (FMC) of 10 h dead vegetation is crucial for managing
and mitigating the impact of wildland fires. The combination of in situ FMC observations, numerical
weather prediction (NWP) models, and satellite retrievals has facilitated the development of machine
learning (ML) models to estimate 10 h dead FMC retrievals over the contiguous US (CONUS). In this
study, ML models were trained using variables from the National Water Model, the High-Resolution
Rapid Refresh (HRRR) NWP model, and static surface properties, along with surface reflectances and
land surface temperature (LST) retrievals from the Visible Infrared Imaging Radiometer Suite (VIIRS)
instrument on the Suomi-NPP satellite system. Extensive hyper-parameter optimization resulted in
skillful FMC models compared to a daily climatography RMSE (+44%) and an hourly climatography
RMSE (+24%). Notably, VIIRS retrievals played a significant role as predictors for estimating 10 h
dead FMC, demonstrating their importance as a group due to their high band correlation. Conversely,
individual predictors within the HRRR group exhibited relatively high importance according to
explainability techniques. Removing both HRRR and VIIRS retrievals as model inputs led to a
significant decline in performance, particularly with worse RMSE values when excluding VIIRS
retrievals. The importance of the VIIRS predictor group reinforces the dynamic relationship between
10 h dead fuel, the atmosphere, and soil moisture. These findings underscore the significance of
selecting appropriate data sources when utilizing ML models for FMC prediction. VIIRS retrievals,
in combination with selected HRRR variables, emerge as critical components in achieving skillful
FMC estimates.

Keywords: fuel moisture content; 10 h dead vegetation; machine learning models; wildland fires;
VIIRS retrievals

1. Introduction

Wildland fires continue to have a significant impact on personal health/safety, the econ-
omy, infrastructure, and the environment. In the United States, the size and severity of
fires have trended upwards over the past 30 years largely due to the effects of increased
fuel loads from fire suppression, warmer and drier climatic conditions, and the growth of
human development in the Wildland Urban Interface (WUI) [1]. One recent example of
a particularly destructive wildfire is the Marshall Fire, which swept through the cities of
Superior and Louisville, Colorado on 30 December 2021. Dry, windy conditions contributed
to one or more grass fires spreading rapidly into urban areas. The fire destroyed 1084
buildings, led to two fatalities, and had an estimated cost in excess of USD 2 billion [2–4].
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Improved fire modeling will provide land managers and public safety officials with better
situational awareness of changing fire risk and help to predict the spread of dangerous
wildfires such as the Marshall Fire.

One of the most important factors in improving current numerical fire modeling,
for example, with WRF-Fire [5], is providing accurate estimates of current fuel moisture as
inputs to the model. Rothermel [6] discusses the impact of fuel moisture on the complete-
ness and rate of fuel consumption (reaction velocity), which is an important factor in model
performance. Coen et al. [5] performed sensitivity experiments on the WRF-Fire model
that show significant changes in spread as fuel moisture values are increased or decreased.
In general, increases in fuel moisture reduce fire spread and eventually approach or reach
a point of extinction. One problem with the dependence of fire models on fuel moisture
is the difficulty of finding high-quality gridded FMC data that cover the CONUS and
Alaska (AK) at a resolution required for effective fire spread prediction. Capturing spatial
variability with a resolution of 100 m or lower is generally considered favorable as it allows
for better representation of the fine-scale features relevant to fire modeling. Note that the
standard approach in WRF-Fire is with the FMC set to be constant in time and space at 8%.
Developing solutions to this problem is a primary objective of our research.

The two major categories of fuel moisture are live and dead fuel moisture [7]. Dead
fuel moisture content (DFMC) is a key component of determining fire risk and is dependent
on weather conditions instead of other factors, such as evapotranspiration [8]. It is conven-
tional to categorize DFMC in bins according to how quickly moisture in the fuel approaches
equilibrium with moisture in the environment. For example, 10 h fuels (diameters of 1/4 to
1 inch) approach equilibrium with environmental moisture in 10 h. Other categories are 1 h,
100 h, and 1000 h fuels. The Wildland Fire Assessment System (WFAS) [8] currently pro-
vides interpolated DFMC observations and forecasts for the CONUS and AK interpolated
from in situ observations at remote automated weather stations (RAWS). The observation
data from these stations are used as predictand values in this research.

Numerous studies have noted the effectiveness of using meteorological observations
for retrieving DFMC estimates [9–17]. However, RAWs are relatively sparsely distributed
and can lead to complications in operational deployment of FMC estimation products [18].
More recently, remote sensing (satellite) retrievals, in particular MODIS and MSG-SEVIRI,
have been used to overcome limitations from other ground observations for retrievals of
both live [7,19–22] and DFMC [11,18,23–25]. MODIS instruments are on board circumpolar
satellites and thus provide finer spatial resolution than sensors on board geostationary
satellites, such as MSG-SEVIRI, which in turn provide higher temporal resolution. For
example, Nieto et al. used MSG-SEVIRI retrievals to provide hourly estimates of equilibrium
moisture content [23]. More recently, Dragozi et al. showed that MODIS reflectance bands
provided satisfactory accuracy in DFMC estimation for wildfires in Greece [18].

In this work, we investigate the effectiveness of estimating 10 h DFMC using the
satellite reflectance bands from the VIIRS instrument. There are several reasons why VIIRS
is preferred to MODIS. First, VIIRS is seen as a replacement for the highly successful
MODIS instruments on the Terra and Aqua satellites, which are approaching end of life,
while VIIRS instruments are still being launched. Second, VIIRS has a broader swath width
(3000 km compared to MODIS’ 2330 km) and improved resolution in the edges of the
swath. Third, the resolution in many of the VIIRS channels is slightly improved relative
to MODIS. VIIRS also includes many of the same channels as MODIS and can generate
similar derived products.

We also focus on utilizing machine learning as the main modeling approach to predict
10 h DFMC using meteorological and remote sensing observations across various sites in
CONUS as input predictors. The use of machine learning for the prediction of FMC has
been growing in recent years [25–30]. In particular, this work builds on that performed by
McCandless et al. [25], which utilized MODIS reflectance bands and National Water Model
(NWM) data paired with RAWS data in random forest (RF) and neural network (NN)
models to predict DFMC for CONUS. Other recent advancements include the application
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of support vector machines (SVM) [15], convolutional neural networks [30], and long
short-term memory (LSTM) networks [28]. As described in Section 2, the data sets that
are used to train machine learning models are tabular. Only linear regression, gradient
boosting approaches, and standard feed-forward fully connected neural networks are
considered herein as extensive experimentation has revealed that more complex machine
learning approaches do not yield superior performance [31]. Expanding on McCandless’
application, several explainability methods are herein applied to the ML models as a means
of identifying the most important predictors. We also probe the most important predictors
by group (e.g., VIIRS, weather inputs, etc.). These last two investigations are important
for identifying whether the ML predictions make physical sense, as well as for designing a
minimal model for use in operation.

One potential downside in the study by McCandless et al. is that the performances
of the trained models used are likely over-optimistic due the random splitting of the data
used to perform cross-validation [25]. They first split the data using 25 randomly chosen
days held out as the test set. The remaining days were split randomly on site locations into
training and validation sets (80/20). Random splitting essentially ignores specific space
and time correlations that exist in fuel moisture content training data sets, such as that
used in this study. Therefore, models to predict FMC and trained on random splits likely
represent (overly) optimistic performance due to overfitting on data present in hold-out
splits that closely resemble examples in the training split. A primary future objective of this
study is the application of models trained on CONUS to Alaska (and potentially Canada).
As VIIRS has not been in operation for nearly as long as MODIS, the data sets cover a
relatively short time period (three years). Hence, sites are withheld from the training data
and are only present in either a test or validation split. This way of splitting aims to break
the space and time correlations across the splits. Models trained on these data, therefore,
should produce more realistic performance estimates.

To assess the effectiveness of using machine learning for predicting 10 h DFMC using
VIIRS and other input predictors, we structure our investigation as follows: Section 2
provides a description of the data sets used for training the ML models. In Section 3, we
define the specific ML models examined in this study, along with the statistical metrics
utilized to evaluate their performance. We also outline the training and hyper-parameter
optimization procedures. In Section 4, we present and compare the results obtained from
the trained models, emphasizing the identification of the most influential input predictors.
Finally, in Section 5, we discuss the results and significance of the investigation.

2. Data Sets

The data set used to train and evaluate the machine learning models spans a three-year
period (2019–2021). The following sections describe the FMC observations used in the
predictand data set (Section 2.1), the predictor data sets (Section 2.2), a correlation analysis
of the predictand/predictor variables (Section 2.3), and how the training data set was split
to independently train and validate the models (Section 2.4).

2.1. Predictand Data Set

In order to create the 10 h FMC data set, raw FMC observations were downloaded
from the Meteorological Assimilation Data Ingest System (MADIS) archive (ftp://madis-
data.ncep.noaa.gov//archive/, accessed on 6 December 2022) from 1 July 2001 through
31 December 2021. This archive contains hourly compressed NetCDF files and was 2.5 T in
total size. After the full archive was downloaded, fuel moisture data and site information
were extracted from the hourly files and combined into yearly NetCDF files. Only sites
over CONUS were kept. During this phase, sites were removed that had either missing
site identifiers or inconsistent site location information. Many sites were reported with
different location information throughout the year, so the site with the most recent location
information was kept (i.e., site S with location X reported on 1 January 2010 would be
removed if site S was reported with a different location any time after 1 January 2010).

ftp://madis-data.ncep.noaa.gov//archive/
ftp://madis-data.ncep.noaa.gov//archive/
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A data log containing sites that changed locations was maintained throughout the entire
process. After the yearly files were created, the data from all years were combined into one
NetCDF file containing sites over the CONUS region. Only sites that reported non-missing
data between 2019 and 2021 were included in this file. In the end, there were 1823 RAWS
sites. A QC flag was added to these files to indicate whether or not the data had passed a
simple range check (0–400%).

In order to quantify the skill of ML models, we use climatographies as a reference
forecast. If the ML model has lower skill than the climatography, the climatography forecast
should be used, and vice versa. The skill scores are defined and discussed in further detail in
Section 3.2. Two separate climatographies were created from the FMC data using only data
prior to 2019, one using only the day-of-year (DOY) and another using day of the year along
with the hour of the day (DOY–HR). In order to calculate the DOY climatography, each site’s
data were combined over a 31-day window (15 days prior to the current day and 15 days
after the current day) for all years making up the data set. For DOY 1, the climatography
would consist of DOYs 351–16 (with 365 being 31 December). For leap years, data on
February 29th were combined with data on the 28th. After the data were combined for each
site and day of year, the average, standard deviation, and count of the total data set were
recorded. A minimum of six years of data was required for each day of the year. Otherwise,
the average and standard deviation were set to missing. The DOY–HR climatography was
calculated similarly to the DOY climatography, except that we only used data acquired at
the same hour of our target one. For example, the climatography for site S on DOY 145 at
1200Z would combine all site S data at 1200Z from 2001 to 2018 for DOY 130–160.

2.2. Predictor Data Set

The predictor data sets consist of variables from four different sources: static variables
characterizing the surface characteristics, including monthly climatographies from the
Weather Research and Forecasting (WRF) Preprocessing System (WPS); analysis variables
characterizing the near surface atmospheric conditions and the soil state from the High-
Resolution Rapid Refresh (HRRR) model; hydrologic variables from the analysis of the
National Water Model (NWM); and surface reflectance (sfc rfl) retrievals (VNP09-NRT)
and land surface temperature (LST) retrievals (VNP21-NRT) from the VIIRS instrument on
board Suomi-NPP. The complete list of variables is shown in Table 1.

The HRRR is an operational hourly updating numerical weather prediction model
covering the CONUS with 3 km grid spacing [32]. The HRRR uses the Rapid Update
Cycle (RUC) land surface model to represent the flow of moisture and energy between
the atmosphere and land surface, with nine soil levels [33]. Importantly, the training and
evaluation period of this study (2019–2021) spans two operational versions of the HRRR,
HRRRv3 and HRRRv4. Changing versions of the model may affect the outputs, and this
can introduce inhomogeneities in the time series of the variables. This can affect the training
of the ML models. More details on the HRRR configuration and performance differences
by version are provided by [32,34].

The NWM is an operational hydrologic model covering the CONUS at 1 km grid
spacing. NWM receives its precipitation input from a variety of sources, including quanti-
tative precipitation estimates and model forecasts, the latter of which include HRRR for the
short-range predictions (out to 18 h lead time).

The predictor data sets have different spatio-temporal resolution, so some data manip-
ulation was necessary to pair them with the predictand data set (see Section 2.1) to create
the training data set. The temporal pairing of HRRR and NWM variables is straightforward
since they are both available every hour, which is the resolution of the predictand data
set. Some manipulation was required to pair the monthly climatographies and VIIRS data
sets. The climatographies were linearly interpolated to each day of the year, whereas VIIRS
retrievals were assigned to the nearest hour. The VIIRS reflectance retrievals are available
for download every six minutes, and each one of these granules were assigned to the
nearest hour.
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Table 1. Variables from each predictor data set. The space and time resolutions of each data set are
static (1 km, 3 month climatographies), HRRR (3 km, hourly), NWM (1 km, hourly), and VIIRS (375 m
or 750 m, daily overpasses over CONUS). All data sets utilized Coordinated Universal Time (UTC).

Static HRRR NWM VIIRS

Canopy fraction 2 m temperature Soil moisture Sfc rfl M1
Soil clay fraction 2 m relative humidity Evapotranspiration Sfc rfl M2
Urban fraction Soil moisture availability Sfc rfl M3
Elevation Skin temperature Sfc rfl M4
Impermeability Mean sea level pressure Sfc rfl M5
Irrigation Canopy water Sfc rfl M7
Land use Snow cover Sfc rfl M8
Soil sand fraction Snow depth Sfc rfl M10
Lowest soil category 2 m dew point temperature Sfc rfl M11
Top soil category 2 m specific humidity Sfc rfl I1
Snow albedo 2 m potential temperature Sfc rfl I2
Albedo clim Cloud cover Sfc rfl I3
Green fraction clim Water equivalent snow depth LST
Leaf area index clim Global horizontal irradiance

Sensible heat
Latent heat

Ground heat
Precipitable water

Precipitation
Precipitation rate

All the data sets were spatially interpolated into a grid over CONUS at 375 m grid
spacing. This is the grid spacing of the finest-resolution VIIRS channels (I bands). The NWM
model grid spacing is 1 km. It was interpolated to the 375 m grid following a nearest
neighbor interpolation. There are other methods for performing interpolation using data
from more than one point; however, we selected the nearest neighbor interpolation as
it is always associated with a valid retrieval for a given point. The nearest neighbor
interpolation is the same approach used to interpolate the HRRR variables at 3 km grid
spacing into the target grid of 375 m. In the case of VIIRS reflectances retrievals, only those
retrievals without clouds or snow were interpolated into the 375 m grid. Again, the nearest
neighbor interpolation was used. This is the same interpolation procedure used for the land
surface temperature retrievals available at 750 m grid spacing. Only the retrievals labelled
as high or medium quality were used. Finally, the monthly climatographies available at
1 km grid spacing were interpolated to the 375 m grid following the nearest neighbor
approach as well.

Hence, the majority of the predictors are available at a coarser grid spacing than the
target grid at 375 m. To illustrate sensitivities to the target resolution, we also independently
interpolated the predictors to a 2250 m grid spacing resolution using averages of the
available data within the 2250 m grid cells.

In total, 44 million data points are associated with the predictors listed in Table 1.
The four predictor groups do not have equivalent temporal spacing. For example, the VIIRS
are only collected twice a day, meaning that, for any one predictand (fuel moisture) value,
not all predictors across the four groups will have values associated with them. We do not
consider any ‘imputation’ or other strategies for filling in missing values, so the choice of
which predictors are selected as model inputs will determine the total amount of data where
all predictor fields have finite values and will influence a model’s prediction performance.

2.3. Predictor/Predictand Correlations

Selecting all predictors listed in Table 1, as well as the 10 h DFMC (51 in total), there are
940,000 data points where all 51 fields have finite values. Figure 1 shows how the predictors
from all the groups correlate with each other and with the fuel moisture values. The figure
shows that there are several HRRR predictors that are highly correlated with the fuel
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moisture (both positive and negative), in particular the temperature- and water-associated
variables. The HRRR temperature predictors also positively correlate strongly with the LST
predictor, which also has high (negative) correlation with the DFMC. The LST predictor is
also modestly correlated with the M10 and M11 VIIRS bands.

S
ta
tic

H
R
R
R

NWM

V
IIR

S

LST

Figure 1. The computed correlation matrix is plotted for all the predictors in Table 1 and the 10 h DFMC.

Next, correlations are high among the VIIRS bands, but no one band strongly correlates
with DFMC, with the exception of M10 and M11, for which the correlation is modest.
The static variables, including green fraction and albedo monthly climatographies, are also
observed to correlate strongly with the M8, M10, and M11 VIIRS band. However, only
these and a few of the other static predictors show appreciable correlation with DFMC,
and none of the NWM variables correlates strongly with DFMC.

2.4. Data Splitting and Standardization

Once a selection of input groups is selected, the resulting data set is split into training
(80%), validation (10%), and testing (10%) data splits in order to train and test an ML
model. Then, this is repeated 10 times via cross-validation by resampling the training and
validation sets while holding the test set constant. As noted in the introduction, we consider
two approaches to splitting: (1) by random selection, and (2) by randomly holding out
sites (defined by latitude/longitude, of which there are about 1600 prior to 1 January 2019).
The former selection does not consider that subsets of the data are highly correlated in
either time, space, or both; therefore, data points that are similar may end up in both
training and validation/testing splits. In the latter approach, holding out a random subset
of sites from a split aims to separate out those correlated data points correctly (e.g., they all
should go to the same split). In both cases, a stratified approach was also used so that all
three splits effectively had a representative sample of the FMC values.
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The relative ranges of all the predictors listed in Table 1 need to be transformed into a
new coordinate system so that the features having the largest spread do not dominate the
weight space of an ML model. During model optimization (discussed below), we found
that performance was usually better when the values for each quantity listed in Table 1
and the fuel moisture value were standardized independently into z-scores according to
the formula Xj = (Xj − u)/s, wherein u and s are the mean and standard deviation of
Xj, so that the mean is zero and the standard deviation is one (computed on the training
set and then applied to the validation and test sets). The predicted FMC value is then
inverse-transformed back into the original range observed in the training data set.

3. Methods
3.1. Machine Learning Models

Figure 2a illustrates three ML models considered: (a) linear regression (LR), (b) a
scalable, distributed-gradient-boosted decision tree (eXtreme Gradient Boosting, e.g., the
XGBoost “model”) [35], and (c) a vanilla feed-forward multi-layer perceptron (MLP) neural
network similar to those used in [36]. The LR approach was chosen as the baseline ML
model because it assumes a linear dependence of the FMC on each predictor, for n total
predictors, and will be the simplest model considered.

(a) Linear Regression (LR)

(b) XGBoost (XGB)

(c) Multi-layer perceptron (MLP)

x
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(d) Model optimization with ECHO

1
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HPC 2

H
PC

 1

Database

6

FMC = a0 + a1 x1 + a2 x2 + … + an xn

Study

2
Updateloss

Predict on dataset

Figure 2. Schematic illustration of the three ML models considered. (a) Linear regression (LR), where
xi represents the inputs to the model and ai represents fitting constants. (b) XGBoost (XGB) containing
k number of trees (one is illustrated). (c) Feed-forward multi-layer perceptron architecture (MLP).
(d) Illustration of the scalable hyper-parameter optimization approach used by ECHO to find the
best-performing XGB and MLP models. HPC refers to a high-performance computing cluster.

The XGB and MLP models are both non-linear and of increasing model and train-
ing complexity, both relative to LR, and often MLP relative to XGB. XGBoost is a highly
optimized and regularized software implementation of the Gradient Boosting Machine
introduced by Friedman [35,37]. Gradient boosting is an iterative algorithm that trains on
the residuals of prior iterations in order to correct and reduce error [37], as is schematically
shown in Figure 2b. The XGB model was chosen because it usually outperforms deep
learning methods for tabular data sets [38] and thus is commonly recommended [31,39].
XGB also typically requires much less tuning compared to MLPs and is usually much faster



Remote Sens. 2023, 15, 3372 8 of 19

to use. These are important considerations because the model is to be deployed opera-
tionally in the near future. However, neural network ensembles are often as performant as
XGB, and there are more methods available to probe model explainability and uncertainties
associated with model predictions, so we investigate them as well. The MLP is one of
the simplest deep learning approaches, and it was chosen over more complex models,
such as recurrent architectures, which are also commonly used to train on data sets with
time dependence.

With the linear regression model, the values of coefficients ai in the figure correspond-
ing with the input features xi can be computed from n + 1 equations using least squares.
The number of data points is much larger than n and thus we have a statistically robust
determination of the coefficients ai. XGBoost uses a weighted sum from an ensemble of
decision trees to make FMC predictions (a single tree is shown in Figure 2b). Each iteration
in the algorithm uses the computed root-mean-square error (RMSE) from the previous
round to make the current fit. We initially also considered random forests but found them
always to be inferior to XGBoost, so we only focused on the XGBoost model.

The MLP comprises a stack of N fully connected feed-forward layers and activation
functions. The first input layer transforms the chosen input groups into a representation
of size L and is followed by a LeakyReLU activation. The last layer transforms the latent
representation of the input described by preceding layers into size one and uses a linear
activation. The neural network becomes deep if there are subsequent layers sitting between
the first and last layers of size L and separated from each other by LeakyReLU activation
functions. After all LeakyReLU activation functions, we used a 1D batch normalization
and a dropout layer, respectively.

For the MLP, the weights of the model are updated by computing a training loss on a
batch of inputs and then using gradient descent with back propagation [40] along with a
pre-specified learning rate to reduce the training error. Model training involves repeating
this process and occasionally computing the RMSE on the validation split, then stopping
training once the validation RMSE is no longer improving. We reduced the learning rate by
a factor of ten when the validation loss reached a plateau.

The XGB and MLP models were both subject to extensive hyper-parameter optimiza-
tion to find the best-performing models according to the RMSE computed on the validation
split. We used the Earth Computing hyper-parameter optimization package to perform
scaled optimization for both models, performing 1000 hyper-parameter selection trials for
XGB and MLP models for random and site splits (at 375 m and 2250 m), as illustrated in
Figure 2d. The first 100 trials used random parameter sampling, and then, from 100 onward,
a Bayesian approach using a Gaussian mixture model strategy was employed to perform an
informed search (see [41] for more details). For XGB, the varied hyper-parameters were the
learning rate, the minimum drop in loss needed to make a further partition on a leaf node of
the tree (denoted γ), the maximum tree depth, the number of estimators (boosting rounds),
the training sub-sample rate, and the sub-sample ratio of columns when constructing each
tree. For the MLPs, the varied parameters were the number of layers N, the size of each
layer L, the learning rate, training batch size, the L2 penalty, and the selection of the training
loss. The training loss choices were the mean absolute error, the RMSE, the Huber loss,
or log-hyperbolic cosine (log-cosh) loss.

3.2. Statistical Metrics

As noted, the RMSE was used as the validation and testing metric for all three models.
In addition to the RMSE, the coefficient of determination is also used as a performance
metric. They are defined as

RMSE =
(

1
N ∑N

i=1(yi − f (xi))
2
)1/2

(1)

R2 = 1 − ∑N
i=1(yi− f (xi))

2

∑N
i=1(yi−ȳ)2 , (2)
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wherein xi represents the ith vector input of predictors, f (xi) is the predicted ith fuel
moisture value, yi is the ith true fuel moisture value, ȳ is the average fuel moisture for
the data set, and N is the data set size. To determine how well the model performance
compares relative to climatographies for the DFMC, two skill scores are defined as

Skill(RMSE) = 1 − RMSE(ML)
RMSE(Clim)

(3)

Skill(R2) = R2(ML)−R2(Clim)
1−R2(Clim)

. (4)

A skill score larger than zero means the model outperforms the climatography on this
metric (1 indicates the model is perfect), while less than zero means the climatography
estimate is better (zero means the model and the climatography are equivalent in terms of
metric performance).

3.3. Model Interpretation

In order to probe how the XGB and MLP training parameterization describes the
DFMC values, we employed several methods to help explain the predicted outputs of
the XGB and MLP models in terms of the input predictors. The permutation method
measures the importance of each feature by computing the error difference before and after
perturbing the feature value given some input x. Small changes in error typically indicate
lower importance, and vice versa.

Secondly, the SHapley Additive exPlanations (SHAP) [42,43] method seeks to quantify
how much each feature value contributed to a model prediction, relative to the average
prediction, in the feature’s respective units. For example, a SHAP value for the input land
surface temperature of +1 K, relative to an average value, means that the input explained
that much of the predicted output value. As this example illustrates, there will be a SHAP
value for each input that can be used to explain the output of either the XGB or MLP model.
Formally, the SHAP value for a feature is its average marginal contribution as computed
across all possible subsets of the model inputs that contain it [42].

Finally, applied only to the XGB model is the gain method for estimating importance.
The gain estimates the relative feature importance according to how much the feature
tree contributed to the total model FMC prediction. The larger the contribution, the more
important a feature, and vice versa.

4. Results
4.1. Predictor Group Importance

We first determined which groups were the most important to use as potential predic-
tors by training and testing the XGB model on all combinations of the four groups listed
in Table 1, plus the LST treated as its own group (hence, 31 total relevant combinations),
on the 375 m data sets. The same model hyper-parameters were used. Figure 3 shows the
performance metrics RMSE (bottom row) and R2 (top row) for the random (left column)
and site (right column) testing data splits. Both quantities were ordered by the computed
R2 (least to greatest). In the figure, the key denotes the usage of input features during
training. A value of 1 indicates that the group of features was used, while 0 signifies that it
was not used.
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Figure 3. The XGB model was trained on 31 relevant combinations of the 5 possible input groups
using the same training and model hyper-parameters. The key indicates whether a group of input
features was used during training, indicated by 1, and 0 if it was not. Panels (a,b) show the average
R2 score, while (c,d) show the average RMSE. The panels in (a,c) used the random validation split,
while (b,d) used the site validation split. For each split, the data points for both R2 and RMSE were
sorted using the R2 score.

In the RMSE figures for both split types, the zig-zag pattern depends on the VIIRS
surface reflectances set. When the reflectances are used as predictors, a clear drop in
the RMSE is observed (e.g., improved performance), but there is not a similarly strong
dependence in the computed R2. This behavior is observed with both the MLP and LR
models (not shown). The LST feature is also helpful but not necessary as the performance
gains over not including it are relatively small for XGB. The importance of VIIRS reflectances
as a group is due to the relatively fast equilibration times between the dead fuels (mostly
sticks and brush at 10 h) and the atmosphere, which are best captured by the twice-a-day
retrievals. In contrast, the NWM variables do not seem to be necessary as they hardly
affect performance when used as predictors, which is reasonable because the 10 h fuel
equilibrates with the atmosphere and not the soil.

In terms of lower RMSEs, the HRRR and VIIRS variables play the most important
roles as predictor groups, and the (11111) models had the lowest ensemble average RMSE
for both splits, with (01111) coming in a close second. Thus, the static predictors do not
play a significant role in either random or site split routine. This is potentially useful for
using the model outside of the CONUS (e.g., in Alaska) because the static variables are
site-dependent and can be ignored as model inputs. However, this remains to be tested
until Alaska data become available. Finally, the worst model in both split cases is that
utilizing the NWM only.

4.2. Model Performance

Table 2 compares the computed bulk performance metrics for the LR model and
hyper-parameter-optimized XGB and MLP models for the random and site test splits,
respectively. Figure 4 compares the model predictions versus the 10 h DFMC targets for
the training, validation, and test split for the XGB model trained on site splits at 375 m
resolution. Figure 4a shows 2D histograms, while Figure 4b shows the 1D distributions for
the three splits. The models trained on the random split used all predictors, while those
trained on the site split left out the static predictors.
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Table 2. The three ML models are compared using the RMSE and R2 metrics. The rows show the
metric values for the two splits (random and site) at 375 m and 2250 m resolutions. In all cases,
a 10-fold cross-validation splitting routine was used to estimate the mean and standard deviation of
each quantity for the testing data set.

RMSE (Split) Linear Regression XGB MLP

Random 375 m (11111) 3.44 ± 0.01 2.48 ± 0.02 2.37 ± 0.08
Random 2250 m (11111) 3.65 ± 0.01 2.64 ± 0.01 2.29 ± 0.17
Site 375 m (01111) 4.12 ± 0.01 3.56 ± 0.09 3.71 ± 0.02
Site 2250 m (01111) 3.53 ± 0.01 3.04 ± 0.04 3.21 ± 0.02

R2 (Split)

Random 375 m (11111) 0.45 ± 0.001 0.72 ± 0.01 0.74 ± 0.02
Random 2250 m (11111) 0.45 ± 0.002 0.71 ± 0.01 0.78 ± 0.03
Site 375 m (01111) 0.37 ± 0.003 0.53 ± 0.02 0.49 ± 0.01
Site 2250 m (01111) 0.51 ± 0.001 0.64 ± 0.01 0.59 ± 0.01

(a)

(b)

Figure 4. (a) 2D histograms showing the true 10 h DFMC value with the corresponding predicted
value using the Site 375m (01111) XGB model (see Table 2). The dotted line represents a 1-1 rela-
tionship. The brighter colors indicates higher counts. (b) Bulk histograms representing the true and
predicted values of the 10 h DFMC. From left to right, the three columns correspond to the models’
performance on the training, validation, and test splits, respectively.

Table 2 shows that, overall, the models always perform better on the random split
relative to the site split, which is expected as the random splitting most likely contains
correlated subgroups of data in both training and testing splits. The performance of
models trained on the site split, which represent the more realistic performance we might
expect when the model is in operation over both CONUS and Alaska, is always lower by
comparison. Additionally, slightly better performance is usually observed when models
are trained on the 2250 m relative to the 375 m data sets (but this is not always the case
for XGB).

Table 2 also shows clearly that both XGB and the MLP models outperform the LR on
all metrics and on both data splits at 375 m and 2250 m resolutions. The MLP is observed
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to outperform the XGB on the random split, while XGB outperforms or is comparable in
performance to the MLP on the site split, which did not include the static (site-dependent)
variables as predictors. This is important because, operationally, XGB is much faster to use
compared to the relatively large MLP model, which contains six hidden layers, each of size
6427 neurons.

The 2D histograms in Figure 4a illustrate the comparable performance of the XGB
model across the three splits. The metrics reported in the table exhibit similar values for the
training and validation splits, although they are not shown. Specifically, the 2D histograms
reveal a clear linear relationship between the true 10 h DFMC value and the predicted
value for all three training splits. In Figure 4b, similar patterns emerge among the true
bulk histograms, with a prominent peak around 8 and a secondary, less pronounced peak
around 25. Overall, the predicted distributions closely resemble the true distribution for all
three splits. However, the model tends to predict more DFMC values around the main peak
while struggling to accurately characterize the second minor peak. Additionally, the model
encounters difficulties in predicting very small FMC values. These findings suggest that
the model did not exhibit significant overfitting on either the validation or test splits.

Figure 5 shows the performance metrics computed at the site level over CONUS for
the XGB model trained on the 375 m site data split. Clearly, the model produces the best
results in drier areas (for example, the desert in southwest and southern California, which
has the lowest RMSE and highest R2 scores), where the FMC does not change as much.
On the other hand, the performance varies more in the Pacific Northwest, where more
variability in fuel moisture is occurring, which is logically harder for the model to capture
as well. The model trained on the random split shows better performance, as expected,
although both models show similar trends (such as better performance in drier areas).

Test R2Test RMSE
(c)
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Figure 5. The RMSE and R2 metrics are shown in (a,b) and (c,d), respectively, for XGB models trained
on the random and site data splits (top and bottom rows, respectively). In all panels, circles show
training points, squares show validation points, and triangles show test data points. In (c,d), points
with negative R2 values are clipped to zero.

4.3. Model Skill

Figures 6 and 7 show the spatial distributions of the model skill scores computed using
Equations (3) and (4) at the site level across time using hourly and daily climatography
estimates, respectively. Both the figures show that the models outperform climatography
estimates for most of the sites on the CONUS map, with fairly consistent skill observed
across different regions according to both RMSE and R2. The outlier sites, where the
climatography estimate has the higher skill, tend to be in the mountainous west. Overall,
the random and site RMSE performances improved over the daily climatography estimates
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by 61% and 44%, respectively. The hourly climatography is a better model than the daily
climatography, and the skill scores are, as expected, smaller, with improvements of +47%
and +24% for the random and site splits, respectively. Similar increases are observed with
the R2 skill score metric. The figures also show that the training, validation, and testing
splits yielded similar results, corroborating the results from Figure 4 that the model is not
too overfitted to the training data split in each case.
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Figure 6. Panels (a,b) and (c,d) present the computed hourly skill scores for RMSE and R2, respectively.
The top and bottom rows depict the random and site splits, respectively. Within each panel, circles
represent training data, squares represent validation data, and triangles represent test data.
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Figure 7. Panels (a,b) and (c,d) show the computed daily skill scores for RMSE and R2, respectively.
Similar to Figure 6, the top and bottom rows correspond to the random and site splits, respectively.
Each panel showcases circles for training data, squares for validation data, and triangles for test data.

In order to understand the time dependence of the model performance, Figures 8 and 9
plot the RMSE and R2 skill scores for the random and site test splits by month, respectively,
starting with January (1) and ending with December (12). The data points were computed
by averaging over hour-of-the-day, day-of-the-year (DOY–HR) and day-of-the-year (DOY)
and then grouped by month to create the box–whisker diagrams in the figures.

Figure 8 shows, for both splits and both climatography estimates, that the models
are more skillful throughout the year, with more than 75% of points having skill larger
than 0 at all times. However, there is still a small fraction of model predictions that are
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worse compared to the climatography estimates, and all outliers are less skillful than
the climatography estimates of DOY–HR. By contrast, the results are improved for DOY
compared to DOY–HR.
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(a) (b)DOY-HR Climatography DOY Climatography

Figure 8. The hour-of-the-day, day-of-the-year (DOY–HR) and day-of-the-year (DOY) skill scores
for RMSE are shown in (a,c) and (b,d), respectively. The top and bottom rows show the random and
site splits, respectively. Points above the dashed line in the panels indicate the model is more skillful
relative to climatography estimates, while points below indicate that climatography estimates are
more skillful. Points with negative values are clipped to zero.
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Figure 9. The hour-of-the-day, day-of-the-year (DOY–HR) and day-of-the-year (DOY) skill scores for
R2 are shown in (a,c) and (b,d), respectively.

There is also a clear seasonal performance dependence when compared to DOY–HR
climatography. In particular, the model RMSE performance peaks in the spring and fall
and bottoms out in the summer and winter (Figure 8a,c). Model R2 performance against
DOY also shows performance hitting a minimum in the summer while remaining roughly
flat during the other three seasons (Figure 9a,c). The lower skill score is due to the expected
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larger diurnal variability in the summer. Additionally, the lower model skill on the hourly
climotagraphy indicates, as expected, that hourly climatography is more skillful than daily.

Since climatography is a model local to each site, it has the inherent advantage of only
introducing errors at one specific location. Our XGB and MLP models are trained using
data from all sites, so errors must be minimized across all locations simultaneously. We
are also not training the ML models with site-identifying information. For these reasons,
we would expect the climatography of some sites to have lower error than the XGB or
MLP model that was trained without site-specific data. However, we think it is worth
conducting the comparison because it is sufficient to show that our model is skillful.

4.4. Predictor Importance

Finally, we quantify the relative predictor importance using the permutation, SHAP,
and gain methods. These methods can guide feature selection, feature engineering,
and model refinement processes, improving the model’s performance. Note that Figure 3
showed the dependence of the predictors as a group; the individual predictor importance
allows to identify which predictors within a group are the most important. Figure 10a,b
show the three computed quantities for each predictor used in random and site test splits,
respectively. The figure shows the three importance metrics sorted from greatest to least
importance after being summed.

(a) Random (11111)

(b) Site (01111)

Figure 10. The computed predictor importances are shown stacked one on top of the other for the
gain, permutation, and SHAP metrics. Panels (a,b) show the XGB model trained on the random
split (using all predictors, e.g., (11111)) and site model using all predictors except the static group
(e.g., (01111), respectively.
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Both models predict LST medium and relative humidity at 2 m as the top two predic-
tors (in different order). Additionally, the top six of seven predictors are the same for the
two models, which are LST, relative humidity at 2 m, potential temperature at 2 m, canopy
water, soil moisture availability, and skin temperature. In other words, the FMC predictions
are mostly explained using temperature and moisture predictors, which seems physically
reasonable. The relative importance of the top five predictors also dominates those in the
bottom half. However, the three methods do not rank the predictors identically. For ex-
ample, the gain approach clearly differs from the other two on the importance of canopy
water: it only shows that predictor being relatively significant. By contrast, the SHAP and
permutation approaches suggest that precipitable water has higher importance.

The importance levels of the VIIRS reflectances are also absent in both figures, and they
are always in the bottom half of predictor importance. This apparent lack of importance
quantification by all three methods is due to the high correlation among the reflectances.
When combined with the results from Figure 3, the VIIRS reflectances are understood to be
important as a group, but any one individual band alone is not sufficient to contribute to
the explanation of FMC, as Figure 10 shows.

5. Discussion

Overall, the above analyses highlight several important data and model choices,
as well as deployment considerations involved in modeling FMC with machine learning.
First, the performance of ML models is highly dependent on the data sources selected as
fuel moisture predictors. Clearly, the most important predictor groups needed to produce
skillful XGB (and MLP), relative to measured climatographies, are the HRRR and VIIRS
retrievals. The VIIRS retrievals contribute as a group due to high band correlation, while a
small number of individual predictors in the HRRR group have relatively high importance
according to the explainability techniques used. In Figure 10, the LST predictor has high
overall explainable importance, but it has low importance in Figure 3 when included as an
input group. Thus, the predictor can be removed without causing a significant performance
decline. This is primarily due to its strong correlation with the potential temperature
at 2 m in the HRRR group. Recall that, when both HRRR and VIIRS retrievals are not
used as model inputs (e.g., the surface temperature predictors are removed), the RMSE
performance drops significantly (Figure 3), especially for the site split, corroborating the
high importance of the surface temperature predictors (Figure 10). We also observed
essentially the same group importance result for the MLP model (the results are not
shown but are closely comparable to that presented for XGB). The overall importance
of the two groups corroborates the dynamic relationship between the 10 h fuel and the
atmosphere, and with soil moisture.

Furthermore, the XGB and MLP models are performing well relative to other FMC
retrievals over CONUS. Specifically, in McCandless et al. [25], which utilized MODIS
reflectance bands as input predictors, the model errors were typically 25–33% of the vari-
ability of the FMC data, while here we observed 15–20%, with the models trained on
random splits having lower error relative to those trained on site splits. Other studies have
reported similar errors and model performances [10,44]. With either ML model (XGB or
MLP) and the current 3-year data set, we still need to know when a trained model performs
better compared to climatographical baselines for it to be effectively useful; otherwise,
the climatography estimates should be used. Note that the relatively low R2 score for the
model trained on the site split indicates that further performance improvements need to be
sought after, but the climatography scores tell when the model is practically useful.

Next, the random and site approaches to splitting the data set before training ML
models demonstrate the difference between an ideal scenario and expected performance
when carefully preparing training and validation splits. Generally, the ML model performs
worse on the site split, while the random split performs better due to the high space
and time correlation between the training splits. The site split approach has an added
advantage since the model validation does not depend on specific sites, unlike the random
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split approach. Therefore, ML models trained on decorrelated data splits may be more
useful in regions outside the training data, such as Alaska, but still with similar climates
and geographies. It is worth noting that both splits are not overfitted on the hold-out
splits as predicted FMC distributions and testing metrics look similar across the training,
validation, and testing splits. Spatially, the performance is relatively uniform over CONUS,
with likely some California bias. As more data become available, these problems can be
resolved. The models, including new variations, will be tested with the additional data,
although, for early release, we intend to use ML models trained on the site split.

Finally, even though we primarily focused on the performance of the XGB model,
the best MLPs perform similarly on the site splits and outperform XGB on the random splits.
Therefore, which model should be used in deployment? For several reasons, the XGB model
will be used initially. First, the optimized architectures contain millions of fitted parameters,
which necessitates GPU computation during inference to obtain the best performance,
as well as future training when more data are available. By comparison, even the optimized
XGB found here (which is pretty large) can be orders of magnitude faster to run relative to
the MLP on the GPU (depending on the overall size of the MLP). Specifically, the optimized
XGB models trained on site and random splits took on the order of minutes to train and the
order of seconds to evaluate the full grid over CONUS (about 1800 grid points). Depending
on the size and number of hidden layers in an MLP, it may take hours (or longer) for
training or inference phases.

Secondly, the MLPs are able to obtain the reported performance, in part due to the
transformation of the predictors and the predicted FMC into z-scores before training the
model, which requires performing the inverse transformation on the predicted FMC during
inference. Even though the same transformations are applied to the XGB model (and
the linear regression baseline), this is not usually required for the XGB model. Applying
preprocessing transformations may limit the ability of trained models to be generalized
beyond the distributions present in the training data sets, and this further represents
another computational step needed during deployment. Lastly, while we did not study
their performance here, the XGB model can be trained on data sets with missing values,
whereas neural networks currently require masking or imputation strategies.

6. Conclusions

In summary, we have found that hyper-parameter-optimized XGB and fully connected
feed-forward neural architectures are both skillful with respect to hourly and daily cli-
matographies for the task of 10 h DFMC prediction. By exploring all combinations of input
groups, the main predictor sources are found to be from HRRR and VIIRS. In particular,
the most important HRRR predictors are those relating to temperature near the surface
and available moisture. By contrast, the VIIRS bands seem to be important only when
included as a group rather than any one band dominating either models’ explanations.
This latter finding is the result of fast equilibration of 10 h dead sources and the atmosphere
and soil. Even though the models provide better estimates relative to known climatological
estimates, by including more diverse and comprehensive data, the models may capture
additional information and relationships that contribute to more accurate FMC estimates.
This and the prediction of live FMC are the main objectives for future studies.
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