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Abstract: Low-altitude slow-moving small (LSS) targets are defined as flying at altitudes less than
1000 m with speeds less than 55 m/s and a radar crossing-section (RCS) less than 2 m2. The detection
performance of ground-based radar using the LSS target detection technique can be significantly
deteriorated by the diversity of LSS targets, background clutter, and the occurrence of false alarms
caused by multipath interference. To address the LSS target detection problem, we have devised a
novel two-dimensional electronic scanning active phased array radar system that is implemented in
the software-defined radar architecture and propose a transmit beam control algorithm based on the
low peak-to-average ratio (PAPR). Meanwhile, we devised a flexible arbitrary radar waveform gener-
ator to adapt to complex environmental situations. Field experiment results effectively demonstrate
that our radar can be used to detect LSS targets. Moreover, an ablation experiment was conducted to
verify the role played by transmit beam control and adaptive waveform optimization and generation
in improving the system performance.

Keywords: LSS target detection; software-defined radar; transmit beam control; adaptive waveform
generation

1. Introduction

Nowadays, low-altitude slow-moving small (LSS) targets, which fly at altitudes less
than 1000 m with speeds less than 55 m/s and a radar crossing-section (RCS) less than
2 m2 [1], pose a severe threat to public safety and personal privacy [2]. In response to
the potential threat of LSS targets, all kinds of sensors, including acoustic sensors [3,4],
infrared cameras [5,6], and radars [7,8], have been comprehensively studied. Among those
sensors, radar, especially ground-based radar, which can provide continuous all-day-long
surveillance of a large area in all weather conditions, has become the major sensor of LSS
target detection [9]. However, the LSS target detection technique via ground-based radar
is still a demanding and challenging task. With the low altitude of the LSS targets, the
candidate targets’ echoes are drowned in the strong ground-reflected clutter leading to
either false alarms or false negatives. At the same time, due to the slow flight speed and
the small RCS of the LSS targets, it is difficult to distinguish the targets from the slow-
moving ground clutter even with the moving target indicator (MTI) and moving target
detection (MTD) approaches resulting in large quantities of false negatives and false alarms.
The characteristics of the LSS targets and the complexity of the background environment
significantly deteriorate the detection of LSS targets.

Numerous studies have been carried out to improve the detection of LSS targets utiliz-
ing ground-based radar in complex environments. In summary, the LSS target detection
strategies can be categorized into three types: methods based on sophisticated signal pro-

Remote Sens. 2023, 15, 3371. https://doi.org/10.3390/rs15133371 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15133371
https://doi.org/10.3390/rs15133371
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-3601-6189
https://orcid.org/0000-0002-8045-0073
https://doi.org/10.3390/rs15133371
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15133371?type=check_update&version=3


Remote Sens. 2023, 15, 3371 2 of 23

cessing algorithms, methods based on transmit/receive beam optimization, and methods
based on the optimization or innovation of radar systems [10].

Methods in the first category concentrate on algorithm design. Weak target signals
can be detected with high confidence in complex environments with the help of specially
designed signal processing algorithms. In [11], a new LSS target detection algorithm based
on spatial-temporal features measure (STFM) was proposed, which enhanced targets and
suppressed the background clutter. In [12], Huang proposed the improved complete en-
semble empirical mode decomposition with adaptive noise (ICEEMDAN) method and
adaptive CFAR technology to suppress strong clutter, which realizes the effect of reducing
the false alarm rate and improving the detection accuracy. Furthermore, Sun proposed
an improved self-balanced sensitivity segment model to detect LSS targets, significantly
improving the detection accuracy and computational efficiency [13]. In [14,15], a novel
model of the echoes of LSS targets was proposed, considering multipath interference, atmo-
spheric attenuation, and system loss. By comparing the performance of the Kalmus filter
with that of the classic FIR filter, it was verified that Kalmus filters are indeed more suitable
for low-speed target detection. Moreover, a novel long-time coherent integration (LTCI)
method was established [16] to balance computational cost and integration gain. In [17],
an LSS target detection system based on the multi living agent (MLA) was proposed [18].
Unlike the traditional methods based on clutter filtering, a new LSS target detection ap-
proach that integrated the whitening filter was used to extract the target information when
the targets were mixed with the interfering signal, which provided a new way to solve
the problem of slow target detection [19]. Compared with traditional detection methods,
the LSS detection methods based on signal processing algorithms achieved a significant
breakthrough [20]. However, these detection methods only consider the benefits of signal
processing, without taking full advantage of beamforming, waveform generation, and other
improvement aspects to fulfill a systematic optimization strategy. In addition, the proposed
detection methods generally require certain assumptions about the observed targets and
the environment. When the natural environment does not match the model hypothesis, the
detection methods lack robustness for diverse targets and unexpected background clutter
and interference, ultimately leading to the deterioration of the detection performance.

Due to the rapid development of classical array signal processing methods, LSS
target detection methods based on transmit/receive beam optimization have been widely
studied in recent years [21]. These methods have focused on interference suppression
by beamforming, so that the clutter was counteracted. Abdulrazaq developed a small-
scale digital array radar capable of detecting a slow-moving and small RCS UAV at a
relatively long range, which produced the desired beam by summing the output [9].
Xu proposed a transmit beam control algorithm for phased array radar, which considered
several practical requirements simultaneously, including robustness against the array
error, main lobe loss minimization, and sidelobe suppression on the ground side [1].
Wan proposed an anti-jamming robust adaptive beamforming algorithm in FDA-MIMO
radar. This algorithm utilizes covariance matrix reconstruction and spatial power spectrum
estimation methods to improve the estimation accuracy of the signal covariance matrix
and the desired target steering vector, thus calculating the optimal weights vector for the
adaptive beamformer [22]. Liu proposed a transmit beamforming model for a dual-function
multiple-input-multiple-output (MIMO) radar and a multiuser MIMO communication
transmitter, which provided more degrees of freedom for MIMO radar and was, thus,
able to obtain improved performance [23]. In [24], a new technique with two weight
vectors was proposed, which can also achieve impressive results in LSS target detection
by selecting waveforms for specific detection scenarios. McCormick proposed a two-stage
iterative method of alternating projection to design multifunction waveforms [25,26]. This
method can improve the power efficiency of the resulting set of multifunction waveforms.
However, these methods only focus on the design of the transmit/receive beam and do
not sufficiently consider adaptive waveform optimization to achieve optimal detection
performance. Meanwhile, these methods are not explicitly designed to suppress ground
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clutter, and the echoes received by the radar will be swamped by clutter, which leads to the
degradation of the radar’s detection performance.

Recently, methods based on the optimization or innovation of radar systems have
become the rising approach for LSS target detection in complex environments, such as
the methods used in environmental sensing radar, the methods adopted in the Doppler
division multiple access (DDMA) MIMO radar system, and the methods utilized in the
software-defined radar based on digital beamforming. In [27], a Fraunhofer Institute
for High Frequency Physics and Radar Technology (FHR) cognitive radar architecture
based on a three-layer model of human cognitive performance was presented, enabling the
identification of air targets and target-matched waveform design. Yang proposed a novel
DDMA MIMO radar system [28]. By designing DDMA waveforms, the orthogonality of
the transmit signal is ensured. The optimization of array element positions using genetic
algorithms improves angle estimation performance. The system has been experimentally
verified to meet the detection and tracking performance of LSS targets. Software-defined
radar, enabling adapting to complex environments and diverse targets, is an efficient radar
system that has been widely applied for LSS target detection recently. It can flexibly alter
the operating mode of the radar via control software [29], providing functions such as
reconfiguring the transmit waveforms [9], selecting the orthogonal waveforms on trans-
mit antennas adaptively [30], and applying different space modulations of the transmit
signal [31]. Wu designed and implemented a software-defined phased array radar [32],
effectively reducing the cost of a beam-pointing system, compared with traditional phased
array radars. A minimum software-defined radar system proposed in [33] integrated
various software-based functions such as waveform generation, beam control, and signal
processing. With the arbitrary configuration of software parameters, the radar system could
be applied in diverse LSS target detection environments. Although the software-defined
radars provide a more flexible way for LSS target detection, the design of software-defined
radar is mainly based on the characteristics of the signal, instead of focusing on the system
architecture design.

Currently, the radars that detect LSS targets are designed for specific system com-
ponents and lack a unified design. We have devised a novel two-dimensional electronic
scanning active phased array radar system to tackle this challenge. This system system-
atically integrates a design for LSS target detection consisting of beamforming control,
arbitrary waveform generation, signal processing, and environment sensing.

The main contributions of this study can be summarized as follows:

1. We developed a novel two-dimensional electronic scanning active phased array radar
implemented in a software-defined radar architecture, providing an adaptive LSS
target monitoring capability under various complex environments.

2. We proposed a transmit beam control algorithm based on the low peak-to-average
ratio (PAPR) constraint that can significantly improve the LSS detection performance
under strong ground clutter and inference.

3. We devised a flexible arbitrary radar waveform generator that can generate various
complex waveforms depending on the feedback of the environmental sensing module.

The rest of the paper is organized as follows. An overall overview of the radar system
is given in Section 2. The first characteristic of the developed system, i.e., transmit beam
control, is discussed in Section 3. Another feature of the developed system, i.e., arbitrary
wave generation and signal processing, is introduced in Section 4. The system development
is analyzed and concluded in Section 5. Finally, conclusions are drawn in Section 6.

2. System Overview
2.1. Specification

Due to the complex environment and the diversity of LSS targets, we devised this
novel two-dimensional electronic scanning active phased array radar system. The devised
radar can detect LSS targets ranging from 300 m to 6000 m under various complex detection
environments and divergent targets with velocities smaller than 98 m/s. Furthermore, this
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radar works in the X-band, which has an instantaneous bandwidth of 40 MHz, providing
sufficient range resolution for targets. Moreover, to tackle the complex clutter and various
interferences, our system is implemented in the software-defined radar architecture with
three characteristics: software-implemented real-time operations, working flow reconfigu-
ration by adaptive waveform optimization, and transmit beam generation and optimization.
The specifications of the entire system are listed in Table 1.

Table 1. System Specifications.

Parameter Value

Frequency X-band
Instantaneous Bandwidth ≤40 MHz

Signal Form Constant frequency, linear frequency
modulation, non-linear frequency modulation

Pulse Repetition Period 84–100 µs
Pulse Width 2–20 µs
Transmit Power ≤250 W
Detection Range 300∼6000 m@0.01 m2

Maximum Detection Velocity 98 m/s
Range Resolution ≤10 m
Velocity Resolution ≤0.734 m/s
Short Distance Blind Region ≤300 m

Search Range
Azimuth: 90◦

Elevation: 0◦∼30◦

Range: 0.3∼10 km@0.05 m2

Electrical Scanning Range
Azimuth: −45◦∼45◦

Elevation: −15◦∼15◦

Measurement Accuracy
Azimuth: ≤0.3◦

Elevation: ≤0.5◦

Range: ≤4 m

Size Antenna size: 384 × 240 mm
Single array size: ≤600 × 400 × 150 mm

Number of Array Elements 288

Interval of Array Elements Azimuth: 16 mm
Elevation: 20 mm

The devised radar, as shown in Figure 1, contains seven composition parts: the antenna
array, the transmitter module, the receiver module, the radar control module, the signal
generation and preprocessing module, the signal and data processing module, and the
display module.

The radar control module controls the digital-to-analog converter (DAC) to generate
the transmit waveform, then sends it to the transmission module and the relevant phased
array antenna module. The RF signal is transmitted into the free space and reflected
backward once it reaches the candidate targets. The received echo passes through the RF
front-end, the receiver, and the analog-to-digital converter (ADC) successively, and the IF
signal is obtained. Subsequently, it is fed to the signal preprocessing module built on an
FPGA, where digital orthogonal demodulation is applied to generate the baseband signal.
The baseband signal is sent to the signal processing module for further processes, including
matched filtering (MF), moving target detection (MTD), constant false alarm rate (CFAR)
detection, and plot clotting. The plots are sent to the data processing module for track
association, tracking filtering, and environment sensing. The environment sensing process
will collect the required characteristics of the targets and the environment and send them
to the arbitrary waveform generator. The arbitrary waveform generator will determine the
optimal signal type and corresponding parameters of the waveform and generate them
in the next dwell according to the data passed by the environment sensing process. It
should be declared that the signal processing module, the data processing module, and the
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waveform optimization process are all implemented by software executed on the CPU of
an industry computer.

Figure 1. Structure of the developed radar system (NCO: numerically controlled oscillator; FIR:
finite impulse respond; CIC: cascaded integrator comb; BPF: band-pass filter; AMP: amplifier; LNA:
low-noise amplifier).

2.2. Antenna Module

Each antenna array, whose structure is shown in Figure 2, can provide a coverage
range of 90 degrees. Each array consists of 18 transmitter/receiver (TR) components that
are organized in three rows and six columns without overlap between the arrays. As
illustrated in Figure 3, each TR component contains 16 channels, arranged in 4 × 4 arrays.
The 16 echoes of each TR component are synthesized into one signal via beamforming
through the TR component. By configuring the phase shifter and attenuator in the TR
components, the amplitude and the phase of the signal received by each antenna array
element can be adjusted to achieve the function of analog beam control. Moreover, with
the aid of transmit beam control, this system can enhance the capacity of interference
suppression and improve the detection performance of LSS targets. Specifics on transmit
beam control will be described in Section 3.

Figure 2. Photograph of the antenna array.
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Figure 3. Arrangement and structure of the TR component. Each TR component has a configuration
interface for controlling channel switching and configuring the phase shift and attenuation values of
each array element.

Figure 4 shows the antenna patterns of the measurement results. Measurements
were performed using a near-field scanner (NFS) in an anechoic chamber which can avoid
external interference on signal transmission and reception. Setting the beam direction
towards (40◦, 0◦) for testing and plotting the two-dimensional transmitting pattern of the
array is shown in Figure 4a, and the one-dimensional transmitting pattern of the UV cutting
plane beam is shown in Figure 4a. Figure 4a shows that the beam gain near point (40◦, 0◦)
is close to 0 dB, while the beam gain at all other angles is less than −13 dB. Figure 4b
shows the azimuth beam width and elevation beam width of the UV cutting plane passing
through point (40◦, 0◦) are (4.77◦, 10.29◦) and the highest sidelobe gain is −11.12 dB.

(a) (b)

Figure 4. The transmitting pattern when the beam is directed towards (40◦, 0◦). (a) Two-dimensional
array emission pattern; (b) one-dimensional emission pattern of over-beam UV section.

2.3. Transmitter and Receiver Module

For the transmitter module, we adopt the master oscillator power amplifier. It consists
of a preamplifier, an intermediate RF power amplifier, and an output RF power amplifier
capable of transmitting a phase-integrated signal with high-frequency stability through
secondary up-conversion. A superheterodyne receiver is applied in the receiver module to
filter out-of-band interference and noise through secondary down-conversion. The radar
control module regulates the timing of the entire radar to ensure that it operates efficiently
under the preset mode. Figure 5 shows the distribution of the modules.

We conducted tests on the transmitter module. The RF working frequency was set
to 9.5 GHz, and a signal combining wide and narrow pulses was used for testing. The
frequency ranges of the 20 µs wide pulses and the 2 µs narrow pulses varied from 127 MHz
to 145 MHz and from 105 MHz to 123 MHz, respectively. Figure 5a shows the frequency
spectrum, and it can be seen that the intermediate frequency (IF) signal has a central
frequency of 125 MHz, and the amplitude of the wide pulse is larger than that of the narrow
pulse. When this IF signal was connected to the IF end, the test results at the RF end are
shown in Figure 5b, with an IF point of 128 MHz corresponding to an RF frequency point
of 9.503 GHz, verifying the regular operation of the frequency conversion function on the
transmitter module.
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(a) (b)
Figure 5. The frequency spectrum diagram of the IF input and the RF output. The spectrum graph
(a) shows that the intermediate frequency (IF) signal has a center frequency of 125 MHz. The spectrum
graph (b) shows that the radio frequency (RF) signal has a center frequency of 9.503 GHz.

2.4. Signal Generation and Preprocessing Module

Figure 6 shows a photograph of the signal generation and preprocessing board, which
was developed based on Xilinx’s Kintex 7 Series FPGA. The AD9253 chip is used for analog-
to-digital conversion. The DA 9139 chip is configured to generate an analog IF transmission
signal and the four intermediate frequency signals are sampled and digitally quadrature
demodulated. The amplitude and phase of the baseband signal are then calibrated. Finally,
the signal generation preprocessing module performs orthogonal demodulation on the raw
data and sends it to the signal and data processing module through the optical fiber.

To simulate the actual working conditions of the system, we adopt a wide pulse
frequency range of 127 MHz to 145 MHz and a duration of 20 µs, and a narrow pulse
frequency range of 105 MHz to 123 MHz and a duration of 2 µs. Figure 7a shows the
corresponding frequency spectrum, where the intermediate frequency signal has a central
frequency of 125 MHz, which demonstrates that the amplitude of the wide pulse is larger
than that of the narrow pulse. The IF signal was then connected to the IF end and the
corresponding channel of the RF end was connected to a spectrum analyzer. The RF test
results are shown in Figure 7b, verifying that the frequency conversion function of the
system works well.

Figure 6. Photograph of the signal generation and preprocessing board.
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(a) (b)
Figure 7. The IF input and RF output of the transmitter module. (a) Waveform diagram connected to the
sampling board; (b) Time-domain waveform and frequency-domain spectrum of the output waveform.

2.5. Signal and Data Processing Module

All the software used to realize the signal processing function works on a general-
purpose industrial computer. Based on the current environment and target type, the system
drafts the transmitted beam form and realizes the shape. Furthermore, it reduces the near-
ground lobe and main beam form, and finally degrades the near-ground side reflection
clutter. The echo signal goes through analog beamforming, RF front-end, and secondary
up-conversion of the receiver to finally obtain the IF signal. It is sent into the FPGA for
orthogonal demodulation processing to obtain the baseband sampling signal, which will
be transmitted to the signal processing module in the CPU through an optical fiber. The
module carries out PC, MTD, and CFAR detection on the baseband signal successively to
obtain the target. The captured target’s basic information, category information, and envi-
ronment information are sent to the environment sensing module. Waveform, beamform,
and other indication system commands are adaptively created and communicated to the
antenna subsystem and waveform generation subsystem to produce the corresponding
beam and waveform. Figure 8 shows a photograph of the CPU chassis and PCIE card.

Figure 8. The industry computer used for signal processing and data processing, including its CPU
and PCIE card.

Traditional radar signal processing systems face challenges such as a low development
efficiency and limited flexibility when implemented on platforms such as FPGA and DSP.
To address these issues, a software-defined radar technology that is software-reconfigurable
and customizable has been adopted to design and implement the radar signal processing
system on a multi-core CPU server platform. The system employs a multi-process archi-
tecture and modular design for radar signal processing and data processing. It utilizes
parallel real-time processing by leveraging multi-threading programming tools such as
OpenMP and high-performance mathematical computation libraries such as FFTW for each
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functional module, enabling the transformation of raw echo signals into detected tracks. To
adapt to different detection environments, a differentiated and reconfigurable configuration
scheme is employed to achieve precise target search and tracking. The system has been
validated to possess strong real-time capabilities and high flexibility, demonstrating its
potential value in engineering applications.

Based on the requirements of real-time performance, compatibility, and scalability, we
have chosen the Linux distribution operating system Ubuntu 20.04 [34] for the software-
defined radar system. In the system, we have improved the efficiency of the operating
system by optimizing task scheduling, using parallel programming, optimizing memory
management, and reducing interrupts, thereby meeting the real-time requirements of
the system.

3. Transmit Beam Control

Consider a narrowband signal transmitted by an N-elements ULA with element
spacing d = λ/2, as shown in Figure 9. In fact, if the gain and phase errors resulting from
inaccurate element spacing and non-ideal RF chains are incorporated into the array element
weight vector, when the error is small, the actual amplitude squared expectation of the
beam response is a function of ‖ω‖2. In order to design a robust beamformer, ‖ω‖2 should
be small. Therefore, we set the following robust constraint

‖ω‖2 ≤ b (1)

where b is the upper bound of the prescribed norm, and different values can be specified
according to the specific requirements.

Figure 9. Transmit array layout of a ULA.

In addition to improving the robustness, maximizing transmit power is important to
improve the reliability of the sensing system. For TBF, the transmit signal needs to meet
CM constraint or have low PAPR. According to the definition of PAPR, the constraint on
transmit weights can be expressed as

rPAPR = N
max

i=1,2,··· ,N
|ωi|2

||ω||2 ≤ N
max

i=1,2,··· ,N
|ωi|2

1/N
= N2 max

i=1,2,··· ,N
|ωi|2 ≤ ζ (2)

During the LSS target detection, there is a large amount of clutter and interference
existing on the ground, which increases the difficulty of LSS target detection. Therefore,
we need to design the array weight vector to severely suppress the sidelobe levels of the
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transmit beampattern on the near-ground side so that the reflected ground clutter can
be significantly reduced. Thus, we aim to minimize the PSL on the ground side while
preserving the array response in the SOI direction. Then, the corresponding TBF problem
can be formulated as the following min–max optimization problem [35],

min
ω

max
θq∈ΘG

∣∣∣ωHa
(
θq
)∣∣∣

s.t.
∣∣∣ωHa(θ0)

∣∣∣ = 1

rPAPR ≤ ζ

ωHω ≤ b

(3)

where ΘG indicates the direction set corresponding to the ground side clutter region, a
(
θq
)

is the array steering vector at the direction θq, and θq ∈ ΘG.
Based on the invariant characteristics of the constraint function

∣∣ωHa(θ0)
∣∣ = 1 under

an arbitrary phase rotation of !, the modulo operation (||) can be cleverly eliminated, further
transforming the model into a simpler convex optimization problem. The global optimal
solution is then obtained by solving using the CVX toolbox. In addition to CVX, there
are multiple methods available for solving, and the results obtained by these methods are
generally consistent.

In practical beamforming applications, the assumed signal steering vector often suffers
from a certain error, i.e., a certain mismatch between the assumed signal steering vector and
its actual value. In order to improve the robustness of beamforming against an arbitrary
steering vector mismatch, the actual steering vector is introduced as follows

â = a + ae

ε = {ae| ‖ae‖ ≤ εe}
(4)

where ae is the steering vector error. The uncertainty region of â can be modeled as a ball
set ε, and εe is the radius of the ball.

Considering the model in (4), the problem (3) above can be equivalent to

min
ω

max
{θq∈ΘG,â(θ)∈ε}

∣∣∣ωH â
(
θq
)∣∣∣

s.t.
∣∣∣ωHa(θ0)

∣∣∣ = 1

|ωi| ≤
√

ζ/N, ∀i

ωHω ≤ b

(5)

Problem (5) can be finally transformed into the following convex optimization problem
by the combination of the triangle inequality and Cauchy–Schwartz inequality

min
{ω,t}

t + εe‖ω‖

s.t.
∣∣∣ωHa(θ0)

∣∣∣ = 1

|ωi| ≤
√

ζ/N, ∀i

ωHω ≤ b∣∣∣ωHa
(
θq
)∣∣∣ ≤ t, θq ∈ ΘG

(6)

Note that the objective function and all the constraints in (6) are not influenced when
an arbitrary phase rotation is introduced into ω. Therefore, we can replace the constraint∣∣ωHa(θ0)

∣∣ = 1 with ωHa(θ0) = 1 and then translate the problem (6) into a convex problem.
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Since convex problems always have a globally optimal solution, we can easily resolve the
problem (6) by using an off-the-shelf toolbox, such as CVX [36].

In the simulation part, we first compare the transmit beampatterns generated by the
proposed method and other typical beamforming methods, including SMI beamforming,
static beamforming, NCCB beamforming, and WCPO beamforming, to evaluate the effec-
tiveness of the proposed TBF method. Then, to quantize the influence of the PAPR and
norm constraints on TBF, the performance under different parameter configurations is
further studied. The simulation results are shown in Figure 10.

(a) (b)
Figure 10. The transmit beampatterns generated by the proposed TBF method. (a) Comparison of
beampatterns generated by five different methods (snapshots = 32). (b) Beampatterns synthesized
under varying PAPR tolerances with constant upper limits of norm = 0.035.

The numerical results prove that the proposed beamforming method can effectively
suppress the interference on the ground side because of the very low sidelobe level and
is robust to the steering vector mismatch. Obviously, the weights of the transmit beam
control can be pre-calculated before the radar system runs.

4. Scalable Arbitrary Wave Generator and Signal Processing

As shown in Figure 11, a scalable and adaptive waveform optimization framework is
developed, improving the performance of LSS target tracking in complex environments.
A hierarchical strategy based on a deep network and Kalman filtering is utilized to select
the optimal type of transmit signal and optimize the corresponding parameters. The
entire waveform optimization procedure is carried out by software implemented in a
high-level programming language for convenience and scalability. Moreover, FPGA rather
than the traditional DDS is utilized to generate the required analog waveforms, which
are subsequently sent to the transmitter. Meanwhile, the optimal waveform generated by
the waveform optimization software is also used to construct a matched filter for echo
signal processing.

Figure 11. Waveform generation and processing framework.
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4.1. Adaptive Waveform Optimization Strategy for Target Tracking

To implement real-time waveform optimization for LSS target tracking, the system
builds a waveform library composed of three types of signals, i.e., constant frequency (CF),
linear frequency modulation (LFM), and non-linear frequency modulation (NLFM). The
parameters of these signals are varied in a predefined range, as shown in Table 2. Then,
based on the waveform library, a hierarchical decision scheme is established to select the
waveform and the corresponding parameters.

Table 2. The predefined waveform in the developed radar.

Name Description Parameters Plot

CF s(t) = Arect(t/T ) τ ∈ (1, 20) µs

LFM s(t) = Arect(t/T )e(j2π f0t+jπαt2) τ ∈ (2, 20) µs
B ∈ (1, 40) MHz

NLFM s(t) =


1√
T

(
t
T

)
exp(j( f0 + θ(t)))

0

0 < t < T
others

τ ∈ (2, 20) µs
B ∈ (1, 40) MHz

In the first stage, the type of transmitting signal is determined by modeling the
waveform selection problem as a classification task. A waveform selector based on a four-
layer multilayer perceptron is established to decide the optimal signal type, which is shown
in Figure 12. The model’s input is a feature vector composed of the target information (i.e.,
distance, azimuth, elevation, and velocity), SNR, and a clutter power spectrum density
obtained in the current dwell. The model’s output is the predicted signal type for the
following dwell in the one-hot form. The model is trained offline with a training sample
set constructed based on expert knowledge. The training data are obtained from field
measurements. Prior to completing the network training, we fix the radar transmission
parameters and transmission waveform. We conduct tracking tests on targets in different
scenarios to obtain corresponding measurement accuracies. From these tests, we select
the combination with the optimal measurement accuracy, which is then validated and
evaluated by multiple domain experts. Based on this, we establish our neural network
training database, which includes the optimal parameter combination, corresponding
environmental factors, and waveform characteristics. We use the samples in this database
to train the neural network. Using the backpropagation algorithm with gradient descent,
we adjust and optimize the new network parameters. Once the training is finished, the
model can select the optimal waveform online, according to the input feature vector.

Figure 12. Waveform selection neural network based on the multilayer perceptron.
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In the second stage, the optimal parameters of the selected waveform will be searched
in the corresponding parameter library utilizing the method proposed by Kershaw et al. [37].
The method integrates the parameter optimization procedure into the conventional Kalman
filtering equations and solves it by minimizing the mean square tracking error. In this
method, the Kalman filtering equations can be written as

Sk(θk) = HPk/k−1HT + N(θk) (7)

Kk(θk) = Pk/k−1HTSk
−1(θk) (8)

x̂k/k(θk) = x̂k/k−1 + Kk(θk)(yk − Hx̂k/k−1) (9)

Pk/k(θk) = Pk/k−1 − Kk(θk)Sk(θk)Kk
T(θk) (10)

x̂k+1/k(θk) = Fx̂k/k(θk) (11)

Pk+1/k(θk) = FPk/k(θk)FT + GQkGT (12)

where H is the state-to-measurement transformation matrix; N(θk) is the measurement
noise covariance matrix at time k that shows its explicit dependence on the transmitted
waveform parameters; Kk is the Kalman gain at time k; yk is the measurement at time
k; F is the state-transition matrix; G is the state noise input matrix; Qk is the covariance
matrix of the process noise at time k; and Pk/k−1 are the prior state estimate and prior
covariance matrix at time k− 1, respectively; x̂k/k and Pk/k are the posterior state estimate
and posterior covariance matrix at time k, respectively.

According to (12), it can be found that the covariance update equations in the Kalman
filter are dependent on both Qk (assumed known for all k) and N(θk). In [38], the Cramer-
Rao lower bound (CRLB) of an unbiased estimator of N(θk) is calculated by the inverse
of the Fisher information matrix J(θ), i.e., N(θk) = A[J(θ)]−1 AT . A is the transformation
matrix between the receiver estimation parameters and the tracking system measurement
vector, which is independent of the waveform parameters. If we use the CRLB as the
estimation of N(θk), the measurement noise covariance matrix is dependent only on the
background noise level and the transmitted waveform parameter vector. Hence, the
measurement noise covariance matrix at time k + 1 is known once the next waveform
parameter vector is selected, thus allowing a prediction to be made of the smoothed
tracking error covariance matrix at time k + 1. The matrix is given by

Pk+1/k+1(θk+1) = Pk+1/k − Pk+1/k HT ×
(

HPk+1/k HT + N(θk+1)
)−1

HPk+1/k (13)

where the expressions for Sk+1(θk+1) and Kk+1(θk+1) have been included in full to show
the dependence of the tracking error covariance on the measurement noise covariance
matrix. The only unknown in (13) is the waveform parameter vector θk+1, thus providing
us with a means of selecting the next transmitted waveform.

Taking the mean square tracking error minimization with a Kalman tracker as the
criterion, the objective function of the optimal waveform parameters’ selection can be im-
plemented by minimizing the trace of Pk+1/k+1(θk+1) in terms of the transmitted waveform
parameters, i.e.,

θk
∗ = arg L = arg min Tr{Pk+1/k+1(θk+1)} (14)

As presented in [37], the waveform parameters only influence the measurements of
the range R and the radial velocity v. Hence, the Kalman tracker for searching for the
optimal parameters of the waveform should work in a one-dimensional tracking scenario,
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concerning the range and the radial velocity. However, the standard Kalman tracker for a
phase-array radar system usually works in four-dimensional space, including the three-
dimensional position and the radial velocity. Accordingly, two Kalman trackers are adopted
in the developed system to incorporate the waveform parameter optimization procedure
into the standard target tracking process. One for conventional target tracking and the
other for optimal parameter searching. The working flow of the waveform parameter
optimization is illustrated in Figure 13, which determines the parameters of the selected
waveform by a grid search over the space of allowable parameters in the predefined
waveform library. Once the optimal parameters are determined, the selected waveform and
the corresponding parameters will be sent to configure the radar system for the next dwell.

Figure 13. Dynamic waveform parameter optimization algorithm based on Kalman filtering.

4.2. Software-Defined Arbitrary Waveform Generation and Processing

Although most of the current arbitrary waveform generators are implemented by
combining a DSP and an FPGA, the developed arbitrary waveform generator with the
software-defined architecture is built on a combination of a CPU and an FPGA. As shown
in Figure 14, the arbitrary waveform generator comprises a digital signal optimizer, a
digital signal generator, and a digital–analog converter (DAC). The digital signal optimizer
is the software implemented in a high-level programming language and executed in a
high-performance industry computer, determining the optimal waveform and the corre-
sponding parameters. The digital signal generator is developed in the FPGA, which fetches
the selected waveform and its parameters, analyzes the required parameter information,
generates the corresponding parameters through timing control, and finally completes the
waveform generation. The generated digital signal will be converted into an analog signal
by the DAC and subsequently sent to the transmitter.

Figure 14. Diagram of the arbitrary waveform generator with a software-defined architecture.
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The signal type and the corresponding parameters are also used to construct the
matched filter of the echoes in the signal and data processing subsystem on the CPU. In
the upcoming dwell, pulse compression with the filter built with the optimal transmitted
signal will be applied to the received baseband digital echoes, preparing range profiles for
the following tasks, including MTD, CFAR, position measurement, and target tracking.

Compared with the mainstream arbitrary waveform generators based on the com-
bination of an FPGA and a DSP, this system adopts a fully software-based structure,
significantly alleviating the complexity of the FPGA timing design and the communica-
tion design between the DSP and FPGA, and guarantees the accuracy of the generated
signal. Furthermore, such a structure is also a flexible and scalable framework into which
advanced artificial intelligent approaches can easily be integrated to improve the waveform
design and optimization performance, as well as to expand and update the candidate
waveform library.

5. Experiments and Analysis
5.1. Experimental Setup

To comprehensively evaluate the performance of the developed radar system, a field
experiment was conducted at Anhui East China Photoelectric Technology Research Institute.
The diagram of the spatial relationship and the photography of the site view is presented in
Figure 15. The radar system with only one array was placed at a flat beach against a small
river, covered by grasses and brush. A 43 cm × 43 cm PHANTOM4 RTK unmanned aerial
vehicle (UAV) manufactured by Dajiang Innovation Technology Co., Ltd. (DJI) , Shenzhen,
China, was adopted as the candidate LSS target in the validation experiments. At the
beginning of each experiment, the ground range between the UAV and the radar system
is 600 m and the height of the UAV is 200 m. Due to the limited wireless transmission
distance of the UAV flight control system, we set the maximum flight distance to 2200 m.
In this experiment, the UAV flies horizontally at 10 m/s to 2200 m from the radar and then
returns along the same route. A global positioning system (GPS) was installed on the UAV
to provide ground truth for the accuracy evaluation.

The antenna transmits the raw data and all monitoring information of the antenna
module to the server via 10G ethernet. The server stores the received data on the disk and
then the processing software performs radar signal processing and data processing on the
stored data.

The processing software synchronizes the received GPS timestamps to the target track
information and stores them in the server disk. Meanwhile, real-time track and timestamp
information of the UAV is stored in the UAV’s SD card. After the experiment, the position
of the UAV and the measurements of the system are aligned according to the time stamp.
The accuracy is measured by comparing the aligned measurements and the corresponding
ground truth obtained by the UAV.

A series of evaluation experiments were conducted to comprehensively validate the
developed system. First, the overall performance of the LSS target detection and tracking
was evaluated by searching and tracking the UAV in the proposed scenarios with clutter
caused by grasses and brush. Furthermore, ablation experiments were also carried out to
demonstrate the effectiveness of the proposed transmit beam control approach and the
adaptive waveform optimization and generation scheme. In the ablation experiments,
the transmit beam control and the adaptive waveform optimization and generation were
turned off by the system control code to demonstrate their contributions to the performance
of the LSS target detection and measurement.
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(a)

(b)
Figure 15. The scenario of the validation experiment. (a) The spatial geometric relationship of the
radar, the moving target, and the background clutter. (b) Photograph of the radar system, the UAV,
and the environment.

5.2. Performance Evaluation of the Developed Radar System
5.2.1. Detection and Tracking

The detection and tracking performance of the developed radar were evaluated utilizing
the UAV in the scenario presented in Figure 15. The 2D and 3D range-Doppler (RD) map of
the UAV obtained by MTD with 256 pulses is shown in Figure 16, where the UAV appears
in the range bin of 600 m and the velocity bin of 4.76 m/s. The target signal and the ground
clutter can be easily distinguished due to the improved signal-to-noise ratio (SNR) brought
about by coherent accumulation in MTD. Meanwhile, accurate target information can be
obtained directly from the RD map, including the amplitude, the velocity, and the distance.

(a)
(b)

Figure 16. Range-Doppler map of the UAV obtained by MTD with 256 pulses. (a) Two-dimensional
MTD result chart. (b) Three-dimensional MTD result chart.

The candidate targets can subsequently be extracted from the RD map with a 2D
CFAR detector, and the target detection results are sent to the P-type radar indicator
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presented in Figure 17. The satellite image of the experiment site is loaded with geocode
and utilized as the base map in the radar indicator. The candidate target is plotted in the
concentric circles of the indicator according to its range and azimuth angle. In addition,
other information such as the elevation angle, the altitude, and the velocity is all listed in
the target’s information table in the indicator, as shown in Figure 17.

Figure 17. The detection result shown in P Type Radar Indicator.

As shown in Figure 18, we installed a GPS module that can report the real-time position
of the radar. Meanwhile, the RTK UAV can provide its real-time position information i.e., the
latitude, the longitude, and the altitude. The GPS module and RTK UAV provide position
information in the latitude and longitude coordinate system which will be converted
according to the method described in “photogrammetric computer vision” to extract
position information in the northeast celestial coordinate system [39]. By performing the
GPS position and the RTK UAV information registration, the ground truth of the UAV’s
relative distance, azimuth angle, and elevation angle to the radar can be obtained.

Figure 18. The experimental equipment consists of a radar, UAV, and GPS.

By comparing the measured data with the ground truth, the curve of the measurement
errors of the distance, the azimuth angle, and the elevation angle can be depicted. The
measurement experiments were carried out ten times to make a comprehensive evaluation,
and the average errors of each parameter are plotted in Figure 19.

The ideal error curve should oscillate around a zero value and gradually decrease in
amplitude while the tracking process becomes stable. However, the actual error curves
in Figure 19 do not meet expectations. Through analysis of the system, we attribute the
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results to two factors. First, the data rate of the RTK UAV and GPS is 20 Hz, while the radar
data rate is 50 Hz, which causes registration errors due to inaccurate alignment during
calculation. Secondly, the asynchronous clocks of the RTK UAV and the radar, as well as
the absence of clock synchronization in the experiments, will lead to errors caused by clock
jitter. Accordingly, the error curves stay within a certain range. As a result, we can derive
the measurement accuracy of the system: range: ≤4 m, azimuth: ≤0.3◦, and elevation:
≤0.5◦, which meets the requirements of the system indices.

(a)

(b)

(c)

Figure 19. Error curves according to the distance. (a) Distance curves’ variations with distance; (b) Az-
imuth angle curves’ variations with distance; (c) Elevation angle curves’ variations with distance.

5.2.2. Real-Time Analysis

To verify the real-time performance of the entire system, we used the system’s internal
clock to measure the time consumption of each processing step. The running time of each
step was measured more than 10 times, and the average time and variance of each step are
illustrated in Figure 20.

Figure 20. Analysis of real-time performance.
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As shown in Figure 20, the waveform selection, transmit beam control, signal pro-
cessing, and data processing of the system is in a pipelined form, so although the total
processing time is 45 ms, the processing time of each module is less than 20 ms, there-
fore, the system meets real-time requirements. The industry computer can guarantee the
performance of the radar in real-time operation.

5.3. Ablation Experiments and Analysis

The main purpose of the ablation experiment is to verify the role played by transmit
beam control and adaptive waveform optimization and generation in improving the system’s
performance. Furthermore, in the same experimental environment, the corresponding target
tracking and detection performance is tested with this feature turned on and off.

5.3.1. Validation of the Transmit Beam Control

The contribution of the transmit beam control approach is validated by comparing
the detection results obtained with and without this approach. Figure 21 depicts the
comparison, where the first column represents the results obtained without the approach,
and the second column shows the results obtained with the proposed method. In Figure 21a,
there is heavy clutter around the candidate target in the range-Doppler map accumulated
with 256 pulses thanks to ground echoes caused by the absence of the transmit beam control.
In Figure 21b, most of the ground clutter is alleviated since the sidelobes of the transmit
beam on the near-ground side are suppressed, and the reflected ground clutter is reduced.
The detected targets in Figure 21c,d show the same results. Many false alarms, marked by
red boxes, can be found in the detection result obtained without the transmit beam control,
while few appear in the result obtained with the proposed method.

(a) (b)

(c) (d)
Figure 21. The ablation experiment’s result of transmit beam control. (a) Two-dimensional MTD
result chart, showing the target mixed with multiple false alarms. (b) Two-dimensional MTD result
chart, showing an apparent target without any false alarms. (c) Detection result shown in P-type
radar indicator, showing the target mixed with multiple false alarms. (d) Detection result shown in
P-type radar indicator, showing an apparent target without any false alarms.
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5.3.2. Validation of the Adaptive Waveform Optimization and Generation

The contribution of the hierarchical adaptive waveform optimization and generation
scheme is evaluated according to the target tracking accuracy. We conducted multiple
ablation experiments and compared the results. The experimental results are shown in
Table 3. In addition, we conducted comparative experiments using a constant waveform
(LFM) and an adaptive waveform. The tracking error is calculated under two waveform
selection methods for tracking targets in the same state. The root mean square error (RMSE)
is utilized as an evaluation metric to analyze the effect of waveform parameter optimization.
The calculation formula for the root mean square error in distance filtering using adaptive
waveforms is as follows:

RMSE =

√
1
N

n

∑
i=1

(ŷi − yi)
2 (15)

where ŷi is the measured distance using adaptive distance, yi is the ground truth of the
UAV’s relative distance to the radar, and N is the sampling number of distance. The root
mean square errors of the filtering distance and the filtering velocity are plotted in Figure 22.
It can be seen that as the tracking loops are stably established, the root mean square errors
of the measurements in the two conditions gradually decrease. However, the root mean
square error in the measurement using the adaptive waveform scheme is smaller than that
using the LFM.

(a)

(b)
Figure 22. Root mean square error curves for the constant waveform (LFM) and the adaptive
waveform. (a) Range filtering results. (b) Velocity filtering results.

The above experiments proved that by using the adaptive waveform scheme, we could
switch the type of waveform and update the corresponding parameters in real-time. Such an
operation minimizes the mean square error in the target measurement by embedding mean
square error in the Kalman filtering process and improving the measurement accuracy.
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Table 3. Tracking errors of the adaptive waveform and the constant waveform.

Waveform Type Root Mean Square Error in
Filtering Distance (m)

Root Mean Square Error in
Filtering Velocity (m/s)

Constant waveform (LFM) 3.24 0.574
Adaptive waveform 2.65 0.473

6. Conclusions

In this study, an X-band two-dimensional electronic scanning active phased array
radar was developed in a software-defined radar architecture. It has numerous potential
applications in LSS target detection under complex environments. To improve the detection
performance and suppress the strong ground clutter, the authors proposed a transmit beam
control algorithm based on the low peak-to-average ratio constraint. To further enhance the
real-time target tracking accuracy, the authors devised a flexible radar waveform generator
that adaptively generates various complex waveforms depending on the sensing of the
current environment. Validation experiments in the UAV-simulated scenario demonstrate
that the developed radar can obtain high detection and target tracking accuracy under
complex backgrounds. Ablation experiments also proved the effectiveness of the pro-
posed transmit beam control approach and the hierarchical waveform optimization and
generation scheme.

With the increasing demand for LSS target detection, we anticipate that our radar can
be applied to more fields due to its advantage of real-time performance and high accuracy
under complex environments.
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