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Abstract: Maritime search and rescue is a crucial component of the national emergency response 
system, which mainly relies on unmanned aerial vehicles (UAVs) to detect objects. Most traditional 
object detection methods focus on boosting the detection accuracy while neglecting the detection 
speed of the heavy model. However, improving the detection speed is essential, which can provide 
timely maritime search and rescue. To address the issues, we propose a lightweight object detector 
named Shuffle-GhostNet-based detector (SG-Det). First, we construct a lightweight backbone 
named Shuffle-GhostNet, which enhances the information flow between channel groups by rede-
signing the correlation group convolution and introducing the channel shuffle operation. Second, 
we propose an improved feature pyramid model, namely BiFPN-tiny, which has a lighter structure 
capable of reinforcing small object features. Furthermore, we incorporate the Atrous Spatial Pyra-
mid Pooling module (ASPP) into the network, which employs atrous convolution with different 
sampling rates to obtain multi-scale information. Finally, we generate three sets of bounding boxes 
at different scales—large, medium, and small—to detect objects of different sizes. Compared with 
other lightweight detectors, SG-Det achieves be er tradeoffs across performance metrics and ena-
bles real-time detection with an accuracy rate of over 90% for maritime objects, showing that it can 
be er meet the actual requirements of maritime search and rescue. 

Keywords: object detection; UAV images; lightweight network; maritime search and rescue 
 

1. Introduction 
In recent years, maritime accidents that have occurred globally have imposed a con-

siderable toll on human society. Since 2014, maritime accidents have gradually increased, 
with approximately 4000 fatalities estimated per year [1]. Maritime search and rescue, a 
vital part of the national emergency response system, faces the main challenge of locating 
and finding objects at sea quickly and accurately. With the development of UAV technol-
ogy, UAVs are highly effective in detecting objects for maritime SAR due to their ad-
vantages such as agility, portability, and air accessibility [2]. 

With the enhancement of computer hardware performance and the expansion of data 
volume, deep learning [3] has evolved into a powerful machine technique, which is ex-
tensively applied in domains such as video monitoring [4], self-driving [5], and facial 
recognition [6]. With the rapid development of deep learning, UAVs are increasingly in-
tegrated with object detection technology, making them more intelligent and efficient and 
widespread in fields such as disaster search and rescue [7], agricultural monitoring [8], 
and land surveying [9]. Deep learning-based object detection is a crucial task for computer 
vision and a vital technical enabler for the development of UAVs. 

Deep learning-based object detectors are commonly categorized into one-stage and 
two-stage object detectors. The standard two-stage object detectors include R-CNN [10], 
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SPP-Net [11], Fast R-CNN [12], and Faster R-CNN [13]. The R-CNN method employs the 
selective search algorithm to extract proposals from the original image, followed by fea-
ture extraction and support vector machine classification for each region proposal. SPP-
Net adds a spatial pyramid pooling layer to the end of the CNN network, enabling the 
network to accept images of arbitrary sizes and pool feature maps of different sizes into a 
pyramid structure, thus ensuring consistent input sizes for the fully connected layer. Fast 
R-CNN introduces a Region of Interest pooling layer based on the spatial pyramid pooling 
module for feature mapping and utilizes a multi-task loss function to train for classifica-
tion and localization tasks simultaneously. Faster R-CNN introduces an innovative ap-
proach by incorporating a region proposal network (RPN) into the network architecture, 
eliminating the need for the selective search algorithm to generate region proposals. This 
advancement enables end-to-end training, seamlessly and efficiently integrating the entire 
network. The standard one-stage object detectors include YOLO [14] and SSD [15]. YOLO 
utilizes the whole image as the input to the network and divides the image into several 
grid cells, followed by each grid cell predicting the position of the bounding box and the 
corresponding classification confidence. SSD uses a set of multi-scale feature maps to pre-
dict objects of different sizes, with shallow feature maps used for predicting smaller ob-
jects and deeper feature maps for larger ones. Additionally, it generates prior boxes for 
each pixel on the feature map to aid in the prediction process. 

Although these detectors generally perform well, it is difficult for them to effectively 
solve the challenge of marine object detection on UAV platforms. The poor performance 
of general target detectors on UAV platforms may be due to the scale difference of UAV 
images, the complex background of UAV images, and the hardware constraints of UAV 
platforms. Researchers have addressed this problem in recent years by proposing corre-
sponding object detection algorithms and models. Wang [16] et al. designed a UAV visual 
navigation and control system for maritime search and rescue, which provides stable and 
accurate position and target estimation based on the space Softmax layer and a specially 
designed convolutional layer. Zhao [17] et al. proposed YOLOV7-SEA for target detection 
of marine UAV images based on YOLOv7. Detection heads were added to detect small-
size targets and a ention mechanisms were used to emphasize important features. Tran 
[18] et al. proposed a method for detecting bo le marine waste based on machine learning 
and UAV and added a data enhancement method and image processing for background 
removal to optimize waste detection. Lu [19] et al. proposed the improved YOLOv5 algo-
rithm to enhance the effectiveness of UAV marine fishery law enforcement and effectively 
integrated features of different scales by changing the feature extraction scale and increas-
ing the path aggregation network. 

Due to UAVs’ hardware limitations and application scenarios, UAV image object de-
tectors must possess lightweight and real-time capabilities. Generally speaking, pursuing 
speed can lead to a loss of accuracy and vice versa. As for how to improve the efficiency 
of object detection in UAV images, this study mainly focuses on the following two aspects: 
(1) reducing the size of the detector through lightweight design; (2) improving the detec-
tion accuracy of small objects. Based on the above discussion, this paper introduces a novel 
one-stage lightweight object detector called SG-Det, specifically designed to detect objects 
in UAV images for maritime SAR. Firstly, we propose Shuffle-GhostNet as the backbone 
of the detector. Considering the impact of the model on detection speed, we choose a 
lightweight classification network as the detector’s backbone. We reconstruct the module 
based on GhostNet [20] with a stricter design concept and add a channel shuffle operation 
to form Shuffle-GhostNet. Secondly, we propose BiFPN-tiny and integrate it with the 
ASPP [21] module to form the neck of the detector. To extract small object features from 
UAV images and reduce model complexity, we propose BiFPN-tiny by modifying the 
original five feature extraction layers into three feature extraction layers and one feature 
enhancement layer. The feature enhancement layer only enhances small object scale fea-
tures and does not participate in prediction. To complement the feature extraction capa-
bility of the model, we replace the 1 × 1 convolutional adjustment module before the 
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Bidirectional Feature Pyramid Network (BiFPN) [22] with the ASPP module. Finally, in 
the head of the detector, we generate three sets of bounding boxes at different scales—
large, medium, and small—to detect objects of different sizes. 

The main contributions of this paper are as follows: 
(1) We propose a lightweight object detector named SG-Det, which meets the require-

ments of high precision and high-speed detection of UAV images in SAR. 
(2) We design a lightweight classification network named Shuffle-GhostNet, refactor the 

original GhostNet, and introduce the channel shuffle operation to enhance the flow 
between information groups and the robustness of the network model. 

(3) We design a lightweight feature fusion architecture named BiFPN-tiny, which en-
hances the corresponding features to capture the characteristics of small, dense ob-
jects in UAV images. 

(4) We validate the effectiveness of the proposed network on the aerial-drone floating 
objects (AFO) dataset, demonstrating its ability to achieve real-time detection with 
high accuracy. 

2. Related Work 
2.1. Lightweight Neural Network 

Although the one-stage detector reduces the model size, it still cannot achieve real-
time detection of UAV images due to many parameters. To address the issue of large-scale 
neural network models, many scholars have proposed their lightweight network architec-
tures. The lightweight neural network is a specialized neural network structure for effi-
cient computation and low-delay reasoning. It is particularly suitable for scenarios with 
limited computing resources like mobile devices. MobileNet [23] introduces the concept 
of depthwise separable convolution, which decomposes standard convolution into depth-
wise and pointwise convolution. This decomposition allows MobileNet to reduce compu-
tation and parameters while significantly maintaining high accuracy. SqueezeNet [24] uti-
lizes two t types of convolutional layers: squeeze and expand. The squeeze layers decrease 
the number of channels, while the expand layers increase the number of channels and 
augment the depth of the feature map. ShuffleNet [25] combines group convolution and 
channel shuffling operations to achieve high accuracy while maintaining low computa-
tional costs. Leveraging the parallel design principles of both MobileNet and Transformer, 
Mobile-Former [26] achieves a seamless fusion of local and global features, exhibiting re-
markable prowess in classification and various downstream tasks. ConvNext [27] har-
nesses the immense potential of multi-scale feature information by employing parallel 
combination, group convolution, and cross-path design, significantly enhancing efficiency 
and scalability. GhostNet introduces the Ghost module to extract redundant features from 
the original features using cost-effective operations, allowing the model to effectively uti-
lize and embrace these redundant features while minimizing computational cost. In this 
paper, we introduce a modified version of GhostNet as the backbone of our network. 

2.2. Feature Pyramid Network 
In object detection and semantic segmentation tasks, objects and backgrounds typi-

cally appear at varying scales, requiring the image to be processed at multiple scales for 
optimal detection and segmentation results. The Feature Pyramid Network was proposed 
to address this issue, which can extract rich feature information at different scales and fuse 
this information to achieve superior object detection and semantic segmentation perfor-
mance. The Feature Pyramid Network (FPN) [28] introduces a top-down approach for 
integrating high-level features with low-level features, combining low-resolution feature 
maps with rich semantic information and high-resolution feature maps with rich spatial 
information. The Path Aggregation Network (PANet) [29] builds upon the foundation of 
FPN. Furthermore, it optimizes the feature pyramid structure, introducing a novel feature 
aggregation strategy to achieve more accurate and efficient target detection. The Neural 
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Architecture Search Feature Pyramid Network (NAS-FPN) [30] employs a neural network 
automatic search method to discover the optimal feature pyramid structure by exploring 
various network structures, enabling the feature pyramid structure to exhibit superior 
performance in object detection and semantic segmentation tasks. The Bidirectional Fea-
ture Pyramid Network (Bi-FPN) improves the feature pyramid’s capability by enabling 
top-down and bo om-up information flow, resulting in more accurate and efficient object 
detection. The Channel Enhancement Feature Pyramid Network (CE-FPN) [31], inspired 
by subpixel convolution, proposes a sub-pixel skip fusion method that realizes both chan-
nel enhancement and upsampling. In this paper, we propose a lightweight BiFPN explic-
itly designed for UAV image detection, focusing on enhancing the features of small ob-
jects. 

2.3. Group Convolution 
Group convolution was initially used in AlexNet [32] to address the issue of insuffi-

cient video memory, and it is currently utilized in various lightweight modules to mini-
mize the number of operations and parameters, as shown in Figure 1. This method splits 
the input feature map evenly into multiple groups based on the number of channels, fol-
lowed by a conventional convolution on each group, supposing that the input feature map 
𝑋 ∈  𝑅 × × , 𝐶 denotes the number of channels of the input feature map and 𝐻 and 𝑊 
denote the height and width of the input feature map, respectively. At the same time, the 
input feature map 𝑌 ∈  𝑅 × × , 𝐶  denotes the number of channels of the output fea-
ture map and 𝐻  and 𝑊  denote the height and width of the output feature map, respec-
tively. The computation of conventional convolution is computed as: 

𝑁 = 𝐻 × 𝑊 × 𝐶 × 𝐶 × 𝑘 × 𝑘 (1) 

where 𝑘 denotes the height and width of the convolution kernel. 
The computation of group convolution is computed as: 

 𝑁 = 𝑔 × 𝐻 × 𝑊 ×
𝐶

𝑔
×

𝐶

𝑔
× 𝑘 × 𝑘 =

1

𝑔
× 𝐻 × 𝑊 × 𝐶 × 𝐶 × 𝑘 × 𝑘 (2) 

where 𝑔 denotes the number of groups the input feature map is divided into, 𝐶/𝑔 de-
notes the number of channels in each group of the input feature map, and 𝐶 /𝑔 denotes 
the number of channels in each group of the output feature map. The group convolution 
reduces the computation of the conventional convolution to 1/𝑔 and reduces the number 
of parameters to 1/𝑔. However, it is essential to note that each group’s convolution kernel 
only convolves with the input feature map of the same group, not with the input feature 
map of other groups. We leverage group convolution in several components of our object 
detector to reduce the number of parameters and computational complexity, resulting in 
faster training and inference. 

 
Figure 1. Group convolution. 
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2.4. Ghost Convolution 
GhostNet introduced Ghost convolution as a cost-effective linear operation to gener-

ate feature maps, effectively reducing model parameters and computational workload. 
Figure 2 illustrates the concept of Ghost convolution, which involves dividing the tradi-
tional convolution operation into the primary convolution and the cheap convolution. The 
primary convolution is essentially the same as conventional convolution, but it strictly 
limits the total number of convolution kernels to be much smaller than that of conven-
tional convolution. In contrast, cheap convolution utilizes the original feature map ob-
tained by primary convolution to perform group convolution, generating redundant fea-
ture maps known as Ghost feature maps. Group convolution involves less computation 
and operates faster than conventional convolution, significantly reducing the model’s 
complexity. The primary and Ghost feature maps are combined to obtain output feature 
maps sufficient for feature extraction. In this approach, the primary and Ghost feature 
maps are kept the same size. In order to prevent an excessive number of parameters from 
being generated in our object detector, we employed Ghost convolution multiple times 
throughout the network. 

 
Figure 2. Ghost convolution. 

3. Methods 
3.1. Overall Framework 

Figure 3 illustrates the architecture of our proposed SG-Det, which follows the one-
stage detection principle by dividing the network into three parts: the backbone, neck, and 
head. In the backbone network section, we introduced a novel lightweight classification 
network called Shuffle-GhostNet, which consists of multiple Shuffle-Ghost bo lenecks. 
The structure of the Shuffle-Ghost bo leneck resembles a residual network consisting of 
two stacked Shuffle-Ghost modules. Additionally, the channel shuffle operation is intro-
duced to improve information flow between different groups of features. In the neck net-
work section, we constructed a four-layer feature pyramid by combining the BiFPN-tiny 
and ASPP modules, with three layers used for feature extraction and one layer dedicated 
to enhancing features related to small objects. Low-level features capture intricate details, 
such as local features and textures, whereas high-level features focus on extracting global 
semantic information and abstract features. To harness both strengths, the neck network 
integrates low-level and high-level features, resulting in improved performance. In the 
head network section, we generated three sets of boundary boxes at different scales—
large, medium, and small—to enable the detection of objects of varying sizes. 
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Figure 3. Overall framework diagram. 

3.2. Backbone 
The backbone of a neural network often employs operations such as convolution and 

pooling to extract features of various levels from input images. To achieve a practical and 
efficient backbone, we propose a novel lightweight classification network called Shuffle-
GhostNet. Mainstream convolutional networks tend to generate a considerable amount of 
redundant intermediate feature maps during the calculation process. Figure 4 displays a 
visualization of some intermediate feature maps from Shuffle-GhostNet. Similar feature 
maps are marked with boxes of the same color, indicating that these pairs of feature maps 
are redundant. Feature map pairs that exhibit similarity are referred to as “ghosts”, and 
these redundant intermediate feature maps play an indispensable role in enhancing the 
feature extraction ability of the model during actual reasoning tasks. The core concept 
behind Shuffle-GhostNet is that, while redundant intermediate feature maps are neces-
sary and cannot be eliminated, the convolution operations required to generate these fea-
ture maps can be accomplished using lighter methods. 

In the original GhostNet, group convolution and depthwise convolution are utilized 
in several locations to significantly decrease the computational complexity of the model 
compared to traditional object detection methods. However, some modules lack coher-
ence and appear to be designed in isolation rather than as a cohesive whole. To address 
these issues, this paper introduces the Shuffle-GhostNet, which enhances GhostNet 
through a more meticulous design approach, fully exploiting the benefits of group convo-
lution to reinforce the exchange and circulation of information within each group. 
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Figure 4. Feature map visualization. 

The original GhostNet Module utilizes the 1 × 1 convolution as the primary convolu-
tion to adjust the channel dimension, effectively reducing the number of model parame-
ters compared to the 3 × 3 or 5 × 5 convolution. However, the design of the primary con-
volution and the cheap convolution needed to be be er correlated. To achieve more effi-
cient feature extraction modules, we propose the Shuffle-Ghost module, depicted in Fig-
ure 5. The primary convolution is optimized as a 1 × 1 group convolution, with two vari-
ations based on the number of channels in the network. Specifically, the group convolu-
tion is implemented in two cases: when the number of groups is 2 or 4. When the number 
of groups is limited to 2, the information within each group becomes too dense, making it 
challenging to leverage the advantages of group convolution. In this case, the benefits of 
the group convolution design may be obscure. However, by increasing the number of fea-
ture groups to 4, we can be er distribute the information and achieve more efficient and 
effective convolutions. By designing the Shuffle-Ghost module from the primary convo-
lution to the group convolution, we enhanced the information flow between the primary 
convolution and the cheap convolution while reducing the number of model parameters. 

 
Figure 5. Shuffle-Ghost module. 

As depicted in Figure 6, we designed the Shuffle-Ghost bo leneck based on the Shuf-
fle-Ghost module, similar to the basic residual block in ResNet. The bo leneck is primarily 
composed of two stacked Ghost modules, with the first one serving as an expansion layer 
that increases the channel dimension, and the second reduces the channel dimension to 
align with the residual connection. In the original Ghost bo leneck in GhostNet, when the 
stride is 2, depthwise convolution is added between two Ghost modules for the downsam-
pling function. Depthwise convolution is a standard means of lightweight models used in 
MobileNet and Xception [33] and requires less computation than the traditional 1 × 1 and 
3 × 3 convolutions. However, the depthwise convolution needs to be be er adapted to the 
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group convolution used in many parts of GhostNet, which can result in feature loss when 
downsampling the feature map. To address this issue, we propose the Shuffle-Ghost bot-
tleneck, which replaces depthwise convolution with group convolution and sets the num-
ber of groups to 4 to ensure consistency with the primary convolution. Furthermore, a 
channel shuffle module is incorporated after the group convolution to boost information 
flow and enhance model representation across different channel groups. 

 
Figure 6. Shuffle-Ghost bo leneck. 

When stacking multiple group convolutions, a problem arises where the output of a 
particular part of the channel is derived from only a part of the input channel. To address 
this issue, we incorporated the channel shuffle operation into the Shuffle-Ghost bo le-
neck, fully utilizing each channel’s features. Figure 7a shows the situation when the group 
convolution is stacked. Here, the group convolution with the number of groups is three; 
as an example, GroupConvN_M, where N indicates the number of group convolution, M 
indicates which group in the group convolution. For instance, GroupConv1_1 indicates 
the convolution operation of the first group in the first group convolution. The convolu-
tion result of the first output group is exclusively linked to the first input group, and like-
wise for the other groups, leading to a hindrance in information exchange across different 
groups. To enhance the flow between channel groups, the channel shuffle operation di-
vides each set of channels into multiple subgroups. Subsequently, it assigns different sub-
groups to each group in the next level. As depicted in Figure 7b, the first group is parti-
tioned into three subgroups and then allocated to the three groups in the subsequent layer, 
following the same procedure for the other groups. With this method, the output result of 
group convolution will then come from the input data of different groups, enabling infor-
mation flow between different groups. 

Then, to obtain Shuffle-GhostNet, we stacked the proposed Shuffle-Ghost bo leneck. 
It is worth noting that, in the original GhostNet, a 1 × 1 convolution was added after the 
final Ghost bo leneck to increase dimensionality. However, for the lightweight object de-
tector, simply increasing the channels to six times the original number has a significant 
impact. In the proposed Shuffle-GhostNet, we did not employ generating channels with 
excessively high dimensions. Instead, we connected the feature pyramid to the last four 
Shuffle-Ghost bo lenecks to reinforce the features and compensate for the absence of 
channel information. 
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Figure 7. Channel shuffle. 

3.3. Neck 
Functioning as a component linking the backbone and head, the neck plays a pivotal 

role in processing and merging the features extracted by the backbone to be er suit the 
object detection tasks. In this paper, we propose a lightweight feature pyramid named 
BiFPN-tiny and integrate it with the ASPP module to serve as the network’s neck section. 
Figure 8 shows the original BiFPN and the proposed BiFPN-tiny. While the original BiFPN 
employs five feature extraction layers for efficient feature extraction, the design could be 
somewhat redundant and overlooks the characteristics of UAV images. In our initial 
BiFPN-tiny design, we aimed to create a lightweight model by reducing the number of 
feature extraction layers to 3. However, this decision had a downside, as removing the 
shallow feature extraction layer made it challenging for the model to extract small object 
features effectively. To enable effective feature extraction at various scales, we have intro-
duced a shallow feature layer solely dedicated to fusing features of small objects. The layer 
is not involved in the final inference work but is an intermediate step to ensure optimal 
feature extraction. Furthermore, unlike the original BiFPN, which repeats the BiFPN mod-
ule several times based on different resource constraints, our model only uses the BiFPN-
tiny module once to meet the lightweight and inference time requirements. However, this 
has resulted in insufficient feature extraction ability, leading to a decline in accuracy. 

 
Figure 8. Structure of BiFPN and BiFPN-tiny. 

To enhance the feature extraction capability of the model, we have replaced the 1 × 1 
convolution adjustment module before BiFPN-tiny with the ASPP module, as depicted in 
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Figure 9. The ASPP module leverages atrous convolution with different sampling rates 
for input to obtain multi-scale features, thereby improving the model’s ability to extract 
features. Furthermore, to account for the varying heights and widths of input features at 
each layer of BiFPN-tiny, we have implemented a larger sampling rate (12, 24, 36) for shal-
low features with larger heights and widths and a smaller sampling rate (6, 12, 18) for 
deep features with smaller heights and widths. Using different receptive fields to extract 
different feature information for different scale feature layers, we can adjust the number 
of channels while fusing features to improve the model’s accuracy. Compared to the orig-
inal BiFPN, the feature pyramid obtained from the fusion of the proposed BiFPN-tiny and 
ASPP module exhibits a more robust feature extraction ability and faster reasoning speed. 

 
Figure 9. ASPP module. 

3.4. Head 
The head serves as the final layer of the object detection model, responsible for de-

tecting the object from the feature map. Typically, the head includes a classifier that iden-
tifies the object’s category and a regressor that predicts the object’s location and size in-
formation. In the head network section, we utilized three prediction heads to generate 
accurate predictions for features at various scales. For each prediction head, we generated 
three anchor boxes of different proportions and sizes to adapt to objects of different sizes 
to generate the most accurate object bounding box. Therefore, the tensor size of the pre-
diction head in this paper can be expressed as N × M × [3 × (4 + 1 + 6)), where N and M 
represent the length and width of the tensor, respectively, 3 represents the number of pre-
set anchor boxes, 4 represents bounding box offsets for location prediction, 1 represents 
object confidence for category prediction, and 6 represents the category of objects in the 
data set. Then, we decoded the position and size of the prediction bounding box according 
to the object information in the prediction header and finally carried out non-maximum 
suppression (NMS) with the true bounding box to filter out the inaccurate prediction re-
sults. 

4. Experiment and Discussion 
4.1. Model Training 

The hardware information of this experiment is as follows: the CPU of the computer 
is AMD R7-5800H, the processor benchmark frequency is 3.2 Ghz, the memory is 16 GB, 
the graphics card type is NVIDIA RTX 3060, and the video memory is 6 G. The operating 
system is 64-bit win11, the deep learning framework is Pytorch 1.8.2, and the parallel com-
puting architecture is CUDA11.1. When the model starts training, the training batch size 
is eight, and the initial learning rate is 0.001. 
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4.2. Dataset 
The dataset used in this experiment is the aerial-drone floating objects (AFO) dataset 

proposed by [34] precisely for the object detection work of floating objects, and the object 
category contains six categories: human, sur oard, boat, buoy, sailboat, and kayak. The 
dataset contains 3647 images and mostly large-size UAV images like 3840 × 2160, with 
more than 60,000 annotated objects. The original images used in this experiment are too 
large to use directly for network training. To address this issue, we cropped the original 
images into multiple 416 × 416 images to facilitate the training process. Additionally, we 
adopted the cropping method proposed in [35], which involves leaving a 30% overlap 
when an object is at the edge of the crop. This operation ensures the integrity of object 
information, as shown in Figure 10. After cropping, we obtained a total of 33,391 416 × 416 
images. These images were divided into the training set, validation set, and test set in the 
ratio of 8:1:1 for the training and testing of the model, respectively. 

 
Figure 10. Cropping overlap display. 

4.3. Comparison Experiment 
To validate the effectiveness of our proposed method, we compared SG-Det with a 

range of commonly used lightweight object detectors, including SqueezeNet, Mo-
bileNetv2 [36], MobileNetv3 [37], ShuffleNetv2 [38], GhostNet, YOLOv3-tiny [39], 
YOLOv4-tiny [40], YOLOv5-s [41], YOLOv7-tiny [42], and EfficientDet. The evaluation 
metrics used in this experiment include mean average precision (mAP), frames per second 
(FPS), giga floating-point operations per second (GFLOPs), and Param, which are used to 
assess the accuracy, inference speed, computational complexity, and parameter amount 
of the model, respectively. It is worth noting that SqueezeNet, MobileNetv2, MobileNetv3, 
ShuffleNetv2, and GhostNet are lightweight classification networks, not end-to-end object 
detectors. In our experiment, we removed their fully connected layer, following literature 
recommendations, and replaced the backbone network of Faster R-CNN to achieve object 
detection. We also conducted the same experiment on our proposed Shuffle-GhostNet to 
verify its effectiveness. The experimental results are shown in Table 1. 
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Table 1. Lightweight backbone detection results based on Faster R-CNN. 

Model 
Detection 

Framework 
mAP FPS GFLOPs Param 

SqueezeNet 

Faster R-CNN 

84.46% 24.99 33.29 G 29.91 M 
MobileNetv2 85.86% 26.31 61.23 G 82.38 M 
MobileNetv3 82.93% 27.03 21.34 G 33.94 M 
ShuffleNetv2 74.77% 25.64 52.14 G 62.32 M 

GhostNet 83.15% 28.57 58.37 G 60.49 M 
Shuffle-GhostNet 84.81% 30.30 21.16 G 14.17 M 

Due to the decay of the number of output channels and the use of group convolution 
in its design, Shuffle-GhostNet has significantly lower computational complexity and pa-
rameter count than other lightweight networks. The number of output channels in Shuf-
fle-GhostNet is only 1/6 of that in GhostNet, potentially leading to a decrease in model 
accuracy. However, our experimental results showed an increase of 1% in mAP. The result 
suggests that channel shuffling successfully enhances the information exchange between 
channel groups and that the set number of channels is sufficient to complete the detection 
task effectively. The high FPS achieved by Shuffle-GhostNet demonstrates that our pro-
posed method meets the timeliness requirements for maritime SAR. Although there is a 
slight accuracy gap compared to MobileNetv2, Shuffle-GhostNet achieves a balance be-
tween multiple performance parameters to meet the practical needs of a production im-
plementation. 

To validate the effectiveness of our proposed object detector, we compared it with 
other end-to-end lightweight object detectors such as YOLOv3-tiny, YOLOv4-tiny, Effi-
cientDet, YOLOv5-s, and YOLOv7-tiny. Additionally, to observe the contribution of each 
module, we included Shuffle-GhostNet based on Faster R-CNN for comparison. The ex-
perimental results are presented in Table 2. Compared to the original BiFPN in Effi-
cientDet, our proposed BiFPN-tiny combined with ASPP appears to be more focused and 
capable of fully utilizing the potential of multi-scale feature fusion, significantly improv-
ing accuracy and speed. Compared to the Faster R-CNN-based Shuffle-GhostNet detector, 
our approach not only achieves a slight improvement in accuracy and speed but also sig-
nificantly reduces the number of model parameters and computational effort required. 
The result highlights the robustness and versatility of our overall framework beyond just 
the effectiveness of Shuffle-GhostNet. Compared to other lightweight object detectors, our 
proposed approach has a slightly lower FPS than some models. However, it still provides 
real-time detection capabilities, making it a suitable option for various applications. 

Table 2. End-to-end lightweight object detector detection results. 

Model mAP FPS GFLOPs Param 
Shuffle-GhostNet + Faster R-CNN 84.81% 30.30 21.16 G 14.17 M 

YOLOv3-tiny 79.23% 29.78 5.71 G 9.09 M 
YOLOv4-tiny 81.80% 34.75 6.83 G 5.89 M 
EfficientDet 73.22% 27.92 4.62 G 3.83 M 
YOLOv5-s 84.47% 33.21 6.76 G 7.04 M 

YOLOv7-tiny 85.78% 37.54 5.59 G 6.03 M 
Our method 87.48% 31.90 2.34 G 3.32 M 

To assess the detection performance of our proposed method on targets of varying 
sizes in UAV images, we listed the AP , AP , and AP  scores for each model, which rep-
resent the average accuracy of detecting small, medium, and large targets, respectively. 
Table 3 illustrates that each model exhibits distinct detection capabilities for objects of var-
ying scales. The lightweight detector based on Faster R-CNN employs a deeper and wider 
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network layer, thereby achieving superior detection performance for medium and large-
scale objects. However, with increasing network depth, the detector’s ability to identify 
small objects weakens, which poses a challenge to ensuring the accurate detection of such 
objects. Our proposed method, leveraging the strengths of BiFPN-tiny and ASPP, pre-
serves small-scale features to a great extent, as supported by experimental results that 
demonstrate its effectiveness in detecting small objects in UAV images. 

Table 3. The model’s ability to detect objects at all scales. 

Model 𝐀𝐏𝐒 𝐀𝐏𝐌 𝐀𝐏𝐋 
SqueezeNet 21.1% 41.1% 52.9% 

MobileNetV2 19.8% 47.1% 58.6% 
MobileNetV3 12.0% 35.4% 53.7% 
ShuffleNetV2 13.6% 31.2% 45.4% 

GhostNet 17.8% 38.0% 53.0% 
Shuffle-GhostNet 18.3% 40.5% 54.9% 

YOLOv3-tiny 15.3% 34.9% 50.9% 
YOLOv4-tiny 19.1% 32.2% 41.3% 
EfficientDet 13.5% 30.3% 34.9% 
YOLOv5-s 27.0% 37.0% 51.1% 

YOLOv7-tiny 16.8% 37.4% 52.7% 
Our method 29.8% 37.2% 52.3% 

Then, we conducted a thorough analysis of the experimental results of our proposed 
method, as presented in Figure 11, which displays the number and detection accuracy of 
various targets. Notably, the three targets with the lowest detection accuracy are also the 
least represented in the dataset. Furthermore, due to their high frequency, humans are 
prone to occlude and overlap other targets in real-world images, which can result in 
missed detections and misjudgments. Nonetheless, our proposed method achieves a de-
tection accuracy of up to 91% for humans, the primary object of maritime SAR, which 
satisfies the requirements of practical applications. Our proposed method achieves a bet-
ter trade-off between performance index parameters, which is more advantageous for 
real-world marine SAR applications. 

 
Figure 11. AP and sample size of all categories of objects in the proposed method. 
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4.4. Ablation Experiment 
In order to verify the effectiveness of our proposed method and the contribution of 

each module, we conducted an ablation experiment. In this section, we added each mod-
ule to the model step-by-step, ensuring that the experimental environment and configu-
ration remained the same. The results of the ablation experiment are presented in Table 4.  

Our experimental results indicate that a single BiFPN-tiny has insufficient feature 
extraction capability, resulting in lower model accuracy. To address this limitation, we 
experimented with incorporating additional modules, such as ASPP and RFB [43], to en-
hance the feature extraction ability of the network. Among these, we found that the ASPP 
module, which combines the advantages of atrous convolution with different sampling 
rates, was more effective at achieving multi-scale feature fusion and extraction. We also 
a empted to improve the network’s feature extraction capabilities by incorporating a en-
tion mechanisms, such as CBAM [44], to highlight the essential parts of the data. However, 
our experimental results showed that the feature extraction capability of the network was 
already close to saturation, and adding the CBAM module just complicated the network 
structure without improving its performance. 

Then, we added group convolution for group 2 and group 4, respectively. The exper-
imental results showed that when the number of groups is 2, there is too much infor-
mation in a single feature group, so the advantage of group convolution is not apparent. 
On the other hand, when the number of groups is 4, the network can effectively utilize the 
features from different channels, resulting in be er performance. Therefore, we concluded 
that the model design with four groups is more reasonable. Lastly, we incorporated chan-
nel shuffling operations into the network architecture to optimize the exchange of infor-
mation between different groups of channels, resulting in a notable enhancement of the 
model’s overall performance. To date, we have validated the effectiveness of all proposed 
methods and models, ensuring the balance between accuracy and speed. 

Table 4. Results of ablation experiments. 

BiFPN-Tiny ASPP RFB CBAM 
GroupConv 
(Group = 4) 

GroupConv 
(Group = 2) 

Channel 
Shuffle mAP FPS GFLOPs Param 

       78.96% 27.48 1.65 G 2.65 M 
       84.20% 25.94 3.20 G 4.02 M 
       83.15% 21.14 1.92 G 2.89 M 
       77.98% 25.97 3.21 G 4.03 M 
       85.67% 25.54 2.68 G 3.35 M 
       85.02% 25.43 2.73 G 3.42 M 
       87.48% 31.90 2.34 G 3.32 M 

5. Conclusions 
In this paper, we proposed a lightweight detector named SG-Det to tackle the chal-

lenge of detecting objects in UAV images for maritime SAR. First, we developed a novel 
lightweight classification network called Shuffle-GhostNet which serves as the backbone 
of our detector. By redesigning the correlation group convolution and incorporating chan-
nel shuffle operation, Shuffle-GhostNet can significantly reduce the number of parameters 
and enhance information flow among different groups. Then, we introduced a lightweight 
feature pyramid called BiFPN-tiny and combined it with the ASPP module to create a 
four-layer feature pyramid. This architecture uses three layers for feature extraction and 
one layer to enhance small object features, resulting in an effective and efficient detection 
framework. Finally, we generated three sets of bounding boxes at different scales—large, 
medium, and small—to detect objects of different sizes. Extensive experimental results 
demonstrate that our proposed SG-Det achieves real-time object detection and surpasses 
a 90% accuracy rate for the primary task of SAR at sea. Moreover, our ablation 
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experiments validate the effectiveness and contribution of each module, providing further 
evidence of the robustness and reliability of our approach. Compared to other lightweight 
object detectors, our proposed detector achieves superior trade-offs between performance 
index parameters, particularly in specific small object tasks. This feature makes it more 
capable of meeting the actual working requirements of SAR at sea, highlighting the supe-
riority of our model. 
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