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Abstract: Hyperspectral anomaly detection aims to separate anomalies and backgrounds without
prior knowledge. The collaborative representation (CR)-based hyperspectral anomaly detection
methods have gained significant interest and development because of their interpretability and high
detection rate. However, the traditional CR presents a low utilization rate for deep latent features
in hyperspectral images, making the dictionary construction and the optimization of weight matrix
sub-optimal. Due to the excellent capacity of neural networks for generation, we formulate the
deep learning-based method into CR optimization in both global and local streams, and propose
a novel hyperspectral anomaly detection method based on collaborative representation neural
networks (CRNN) in this paper. In order to gain a complete background dictionary and avoid the
pollution of anomalies, the global dictionary is collected in the global stream by optimizing the
dictionary atom loss, while the local background dictionary is obtained by using a sliding dual
window. Based on the two dictionaries, our two-stream networks are trained to learn the global and
local representation of hyperspectral data by optimizing the objective function of CR. The detection
result is calculated by the fusion of residual maps of original and represented data in the two streams.
In addition, an autoencoder is introduced to obtain the hidden feature considered as the dense
expression of the original hyperspectral image, and a feature extraction network is concerned to
further learn the comprehensive features. Compared with the shallow learning CR, the proposed
CRNN learns the dictionary and the representation weight matrix in neural networks to increase the
detection performance, and the fixed network parameters instead of the complex matrix operations in
traditional CR bring a high inference efficiency. The experiments on six public hyperspectral datasets
prove that our proposed CRNN presents the state-of-the-art performance.

Keywords: collaborative representation; autoencoder; anomaly detection; hyperspectral image

1. Introduction

Hyperspectral remote sensing integrates two sensing technologies of panchromatic
imaging and spectrometry to fully exploit the spatial and spectral features [1]. Hyper-
spectral images record nearly continuous spectral bands and better reflect the physical
properties of the objects, which helps to identify subtle differences between various materi-
als. Therefore, they are widely employed in both civil and military fields, such as image
classification [2–4] and target detection [5–7]. As one of the vital research branches of target
detection, hyperspectral anomaly detection distinguishes anomalies from background in
unsupervised way for lack of prior knowledge [8]. Due to the challenges in establish-
ing a comprehensive and accurate spectrum database for targets, hyperspectral anomaly
detection has received a lot of interest and has great practical prospects [9].

In hyperspectral anomaly detection, the anomaly is typically considered as the target
with a notably different spectral features from the surrounding background pixels [1,10].
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In real hyperspectral images, it is difficult to consider all background clusters since the
background occupies most of the pixels and has a complex composition [11]. Moreover,
hyperspectral images are highly unbalanced, and the occurrence probability of anomalies
is low, which makes it impossible to extract the intrinsic features of anomalies. There-
fore, the main challenge in hyperspectral anomaly detection is to effectively suppress the
background while distinguishing the anomalies.

The existing anomaly detection methods exploit the property of anomalies with low
probability and high deviation from the surrounding background cluster to distinguish
anomalies from background [10,12]. The most widely known benchmark algorithm is the
Reed–Xiaoli (RX) detector [13]. RX utilizes the whole image to build background model
under the presumption that the background is distributed according to a multivariate Gaus-
sian distribution. The probability of anomalies is measured by the Mahalanobis distance
between the test pixel and the background. The statistical theory-based hyperspectral
anomaly detection methods use a simple mathematical model and have low computational
consumption. Subsequently, researchers have proposed many improved algorithms based
on RX, such as Kernel RX [14], Local RX [15], Dual-Window RX [16], and Weighted RX [17].
In addition to the generalized likelihood ratio test-based RX, Chang [9] developed dummy
variable trick (DVT) to convert hyperspectral target detection to anomaly detection, and
also introduced effective anomaly space (EAS) [18] to remove the background while retain
the anomaly. Cluster-based hyperspectral anomaly detectors [19,20], the support vector
data description (SVDD) [21], and graph-based methods [22,23] take the distance to mea-
sure the anomaly score. Ref. [24] introduced a fractional Fourier entropy (FrFE)-based
hyperspectral anomaly detection method to distinguish anomalies from background. To uti-
lize the spatial features in the hyperspectral data, an attribute and edge-preserving filtering
detector (AED) [25] and other filtering-based methods [26,27] were proposed. Tensor-based
methods treat the hyperspectral cube as a third-order tensor and utilize the spectral and
spatial information [28]. A prior-based tensor approximation (PTA) method for hyperspec-
tral anomaly detection is proposed in [29], which decomposed the hyperspectral data into
a background tensor and an anomaly tensor under a low-rank and a piecewise-smooth
prior. Iterative spectral–spatial hyperspectral anomaly detector (ISSHAD) [30] extracted
spectral–spatial information via anomaly detection maps and gave feedback to create a
new expanded data cube in iteration.

The representation-based methods, including sparse representation (SR) [31–33], col-
laborative representation (CR) [34–40], and low-rank representation (LRR) [41–45], try to
use a linear combination of atoms in the constructed background dictionary to represent
the hyperspectral images, and assume that the background pixels will be represented better
than anomalous pixels since the clusters of anomalies are far different from the background
clusters. Therefore, representation-based methods usually use the residual map of the
represented image and the original image to detect the anomaly.

The SR-based approaches assume that only a small subset of atoms in the given
over-complete dictionary contribute to the representation under the sparsity constraint.
Li et al. [32] adopted principal component analysis (PCA) [46] to learn a robust background
dictionary and proposed a SR model based on the re-weighted Laplace prior. The CR-based
methods utilize all of the background dictionary atoms to represent each pixel with the
l2-norm [47] to constrain the representation coefficients for better background modeling
capability [34]. The CR-based methods have received many developments due to their
computational simplicity and good performance, but the pollution of anomalous atom
caused by the sliding dual window limits the performance of the method. To solve this
issue, researchers have devised lots of methods. Vafadar and Ghassemian [35] removed
anomalous pixels that deviate noticeably from the distribution of most pixels when con-
structing the background dictionary. Other methods were also tried in [36–39] to exclude
potential anomalous pixels and obtain a pure background. In contrast to the popular dual
window strategy, Wu et al. [40] introduced a practical non-global dictionary and proposed
a new relaxed CR hyperspectral anomaly detector. The LRR-based approaches divide the
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hyperspectral images into background and anomalies with the assumption that the back-
ground pixels are low rank because they are widely dispersed and homogeneous, while the
anomalies are few and sparse. The LRR theory determines the lowest rank representation
of the background based on the background dictionary, and constrains the anomaly with
sparsity [41]. Xu et al. [42] combined low-rank and sparse representation (LRASR) and
constructed a stable and discriminative dictionary. Zhang et al. [43] implemented low-
rank and sparse decomposition (LRaSMD) through the Go Decomposition (GoDec) [48]
approach and adopted the RX detector to detect anomalies. Cheng et al, [44] proposed
a graph and total variation regularized LRR-based model (GTVLRR) to retain the local
geometrical and spatial structure. LRR-based methods are still widely used due to their
high detection performance [11,45,49].

With the development of artificial intelligence, researchers have introduced deep learn-
ing into hyperspectral anomaly detection [50]. Due to the small proportion of anomalies in
hyperspectral data that limits their contribution to model training, and the absence of prior
spectral knowledge, most current deep learning-based hyperspectral anomaly detection
methods chose unsupervised learning [49,51–57].

The deep neural networks are introduced to learn the intrinsic expression in the hy-
perspectral data to take advantage of their capacity on complex data modeling and feature
extraction. The traditional method is then performed on the extracted features to detect
anomalies. Lei et al. [51] utilized a deep brief network (DBN) [58] to automatically learn
discriminative features and high-level representations in the spectral domain and fed them
into an RX detector. Based on the generative models of autoencoder (AE) [59] and Genera-
tive Adversarial Networks (GAN) [60], the original hyperspectral data are reconstructed
and the residuals of the original and the reconstructed data are used for anomaly detection.
The AE-based methods have received a lot of attention recently. In [52], manifold learning
is introduced to an AE network for hyperspectral anomaly detection. Jiang et al. [49] pro-
posed a low-rank embedded network (LREN) to learn spectral features via an AE, and the
LRR-based anomaly detector is used in the deep feature space. Xiang et al. [61] proposed a
guided AE (GAE) which introduced a guided image to suppress the feature learning of
anomalies and used the reconstruction error as the metric. GAN-based methods introduce
adversarial learning [53] into background reconstruction. Jiang et al. [54] proposed GAN
for hyperspectral anomaly detection (HADGAN) and reconstructed the hyperspectral
data via an adversarial autoencoder (AAE) [62]. The morphological filter and RX were
implemented on the residual image. Xie et al. [55] also used the AAE for reconstruction,
but chose to use the morphological method on the hidden layer features.

Since the above methods usually detect anomalies in two stages, and deep features are
not extracted specially for the hyperspectral anomaly detection tasks, the separate training
of the feature extractor and the anomaly detector hinders deep neural networks from
attaining their full potential. Therefore, an autonomous hyperspectral anomaly detection
network (Auto-AD) is proposed in [56] to avoid the pre-processing and post-processing
in other two-stage networks. Xie et al. [57] proposed an end-to-end Spectral Distribution-
Aware Estimation network (SDEN) to directly estimate anomalies, which jointly learned
the two parts of the feature extraction network and the anomaly detector. Meanwhile, in
addition to the above unsupervised methods, weakly supervised methods are gradually
becoming an attractive option. Most of the current weakly supervised methods firstly
filtered out background pseudo-samples for training based on the estimated background
distribution [10,11,63,64].

The traditional hyperspectral anomaly detection methods have a reasonable mathe-
matical foundation and interpretability, but the shallow learning method somehow limits
their detection performance. While the deep learning-based methods have a high rate in
feature utilization and strong generalization ability, their interpretability is weaker than
that of traditional algorithms. Therefore, a new hyperspectral anomaly detection method
based on Collaborative Representation Neural Networks (CRNN) is proposed in this paper.
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Our motivation is to implement traditional representation theory of hyperspectral anomaly
detection into the framework of deep neural networks.

To be specific, the fairly complete background dictionaries of global and local streams
are constructed, and the representation weight matrices are learned by optimizing the
objective function of CR in the two-stream networks. The global background dictionary
is a generalization of the global background, which is constructed based on all pixels of
the entire image. To avoid the pollution of the anomalous pixels, the global CR networks
is trained to obtain the most representative dictionary atoms under the constraint of
the dictionary atom loss function. The local background dictionary focuses on the local
information surrounding the test pixel, which is obtained by a sliding dual window. The
global and local representation images of the test pixel are calculated through the linear
combination of atoms in the two dictionaries, respectively. In traditional CR-based methods,
the optimal solution of weight coefficients usually involves matrix inversion and other
complex operations, which would bring large computational load and time consumption.
While, in our proposed method, the two-stream networks learn the weight matrix via
iterative optimization during training and the fixed parameters in inference, which leads
to a high calculation efficiency. Finally, the anomaly score of each pixel can be measured
by the residual input data and its representation through networks based on the jointly
considered global and local background dictionary.

In addition, CRNN firstly introduces an AE to reconstruct the original input hyperspec-
tral data to obtain the dimensionality reduction and dense expression of the original image.
The global and local CR is then operated on the hidden feature map of the AE. Moreover,
we design a feature extraction network to further learn the comprehensive spectral–spatial
features in the hidden feature map.

The main contributions of this paper are as follows:

1. We propose a new collaborative representation neural network for hyperspectral
anomaly detection that combines the mathematical foundation of CR theory with
the effective feature learning capacity of deep neural networks. CRNN optimizes
the objective function of CR through iterative training, and improves the detection
performance with faster inference speed.

2. We perform both global and local streams of CR, and fuse the detection maps to
obtain the final result comprehensively. The global dictionary is collected in the
networks by optimizing the dictionary atom loss to refine the background without the
pollution of anomalies. While the local dictionary by a sliding dual window reflects
the background neighboring the test pixel.

3. We utilize a feature extraction network to generate the comprehensive feature map,
including spectral–spatial features from both global and local perspectives. The deep
latent feature space helps to learn the representation weigh matrices more effectively.

The remainder of our article is organized as follows. Section 2 reviews some related
works. Section 3 introduces the proposed method. Section 4 provides the experiments in
detail. Section 5 makes the discussion. Finally, the conclusion is presented in Section 6.

2. Related Works

We briefly review major works on CR-based detector [34] and AE [59] in this section.

2.1. Collaborative Representation-Based Detector

For a given hyperspectral dataset, X = [x1, x2, · · · , xN ], where xi ∈ Rd is the i-th pixel
in the data, the CR theory believes that the approximate representation ŷ can be calculated
via the linear combination of background pixels in the surrounding area of the test pixel y,

ŷ = Xsα (1)

where ŷ is the collaborative representation of the test pixel. Xs is the collection of back-
ground pixels around the test pixel through a dual window. α ∈ Rs×1 is the weight vector.
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The Euclidean distance r between y and ŷ is usually introduced to measure the
probability of anomaly

r = ‖y− ŷ‖2 = ‖y− Xsα‖2 (2)

where ‖ · ‖2 is the l2-norm.
Collaboration means that the constraint on the weight vector α is that ‖y− Xsα‖2

2 is
the smallest, while ‖α‖2

2 is the smallest, so the objective function is

min
α
‖y− Xsα‖2

2 + λ‖α‖2
2 (3)

where λ is the Lagrange multiplier. l2-norm provides each element in α a tiny value and
guarantees that all atoms take part in the representation.

The formula (3) is equal to:

min
α

[
αT
(

XT
s Xs + λI

)
α− 2αTXT

s y
]

(4)

The above formula (4) belongs to the convex function optimization problem and exists
as a closed-form solution for α. Setting the derivative to 0 gains the optimal solution for α,

α =
(

XT
s Xs + λI

)−1
XT

s y (5)

2.2. Autoencoder

AE is an unsupervised deep learning-based neural network model and consists of the
encoder and the decoder. The encoder firstly maps the input vector x from input layer to
hidden layer, while the decoder is a structure where the vector z in hidden layer is mapped
to the output vector x̂,

z = f (x; θ)

x̂ = f̂ (z; θ̂)
(6)

where f (·; θ) and f̂ (·; θ̂) are the mapping functions of the encoder and the decoder.
In order to accurately reconstruct the input vector x, the divergence between x and x̂

is as small as possible during training, so that the hidden z can well reflect the feature of x.
The loss function LR is as follows:

LR = ‖x− x̂‖2 (7)

3. Proposed Method

In this section, a hyperspectral anomaly detection method named CRNN is proposed.
The flow chart is presented in Figure 1. Firstly, an AE reconstructs the original input
hyperspectral data X. The hidden feature Z during the reconstruction process serves
as the basis for subsequent anomaly detection. Secondly, the comprehensive feature
extraction network further learns the global and local spectral–spatial feature in Z to obtain
comprehensive feature map Zc. The CR learning network includes global stream and local
stream. The global background dictionary Dg and the local background dictionary Dl are
both obtained from Z, while the global representation weight αg and local representation
weight αl are learned based on Zc. Finally, the anomaly score map A is calculated in the
detection fusion module.
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Figure 1. An overview of the proposed CRNN. It consists of four parts: AE, comprehensive feature
extraction, two-stream CR learning network, and detection fusion.

3.1. Hidden Feature Map Generation

High spectral resolution and continuous spectral bands in hyperspectral data produce
the issue of highly correlated and redundant bands. Therefore, the original hyperspectral
data are densely expressed before anomaly detection to improve computational efficiency,
specifically through the encoding process in an AE [59].

Supposing the original hyperspectral data as X ∈ RH×W×K, where K is the number of
bands of the original data, and N is the total amount of pixels in the image that N = H×W
(H and W are the height and width, respectively). As shown in Figure 1, the reshaped
X = [x1, x2, · · · , xN ] ∈ RK×N is firstly input into an AE, and the output reconstructed image
is X̂ = [x̂1, x̂2, · · · , x̂N ] ∈ RK×N . In the encoder E, the original hyperspectral data X are
firstly encoded into a lower-dimensional and denser hidden variable Z = [z1, z2, · · · , zN ] ∈
Rk×N , where k is the number of bands of the hidden feature map. This hidden variable Z is
mapped back to the original hyperspectral space in the decoder De for the reconstruction
X̂. Huber loss Lδ [65] is chosen as the loss function,

Lδ(x, x̂) =
{ 1

2 (x− x̂)2 for |x− x̂| ≤ δ

δ|x− x̂| − 1
2 δ2 otherwise

(8)

where δ is the hyperparameters.
The structures of E and De are similar as both are composed of la numbers of 1 × 1

two-dimensional convolutional layers. The hidden feature map Z is obtained from the
output of the la-th layer in E,

X i+1 = σ
(

GN
(

f E
i

(
X i; ΘE

i

)))
, i = 1, . . . , la − 1

Z = f E
la

(
X la ; ΘE

la

) (9)

where X i is the input datum of the i-th layer, f E
i
(
·; ΘE

i
)

denotes the two-dimensional convo-
lution with parameters ΘE

i of the i-th layer in encoder E, GN(·) is the group normalization
operation [66], and σ is a leakly rectified linear unit (Leakly ReLU) activation function [67].

3.2. Comprehensive Feature Extraction

Since the AE only considers the spectral dimension of each pixel during the reconstruc-
tion without the global and local structural information, it is necessary to further extract
the features of Z to mine its deep potential features.
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3.2.1. Non-Local Module

A non-local network [68] is introduced to learn global correlation features.

Z = [z1, z2, · · · , zN ] ∈ Rk×N is the input of the module, and Y g =
[
yg

1 , yg
2 , · · · , yg

N

]T
∈

RN×k is the global feature calculated by the module,

yg
i =

1
Ci

∑
∀j

f
(
zi, zj

)
g
(
zj
)

(10)

where i and j are the indices of the pixel position; the function f (·) calculates the similarity
between the two pixels, and Gaussian function is chosen in our model, f

(
zi, zj

)
= ezT

i zj ;
the function g(·) denotes the feature representation, which is implemented by a 1 × 1
convolutional layer; Ci is the normalization factor, Ci = ∑∀j f

(
zi, zj

)
.

Therefore, the non-local module is equivalent to the self-attention mechanism [69], nor-
malized in the form of softmax [70]. The global correlation feature Y g can be expressed as:

Y g = softmax
(

ZTZ
)

g(Z) (11)

Finally, the output feature map Znl ∈ RN×k of the non-local module with the residual
connection is

Znl = WY g + ZT (12)

where W denotes the weight matrix learned by the network.

3.2.2. Local Feature Learning Module

The local feature learning module consists of two convolutional layers, a two-dimensional
one and a three-dimensional one, as shown in Figure 1. In the 1 × 1 two-dimensional
convolution layer, the spectral features for each pixel are learned as V ∈ RH×W×k. In
the 3 × 3 × 3 three-dimensional convolutional layer, the local spectral–spatial features
are extracted on the expanded data V e ∈ RH×W×1×k with an additional dimension. The
three-dimensional convolution not only fuses the spatial neighboring pixels to learn the
local spatial features, like the 3 × 3 two-dimensional convolution, but also extracts the local
spectral features via the convolution on the adjacent spectral bands, since some anomalies
typically occur in the local spectral bands.

For the reshaped input feature Znl ∈ RH×W×k, the comprehensive feature map Zc ∈
RH×W×nk is obtained as followed

V = σ
(

GN
(

fconv2

(
Znl ; Θconv2

)))
Zc = σ(GN( fconv3 (V e; Θconv3 )))

(13)

where fconv2(·; Θconv2) denotes the two-dimensional convolution and parameters Θconv2
and fconv3(·; Θconv3) denote the three-dimensional convolution with parameters Θconv3.

3.3. Two-stream Collaborative Representation Learning Networks

Based on the hidden layer features Z ∈ Rk×N , we design a two-stream CR learning
network for global and local streams.

3.3.1. Global Collaborative Representation Learning

The calculation of the global collaborative representation image Ẑg ∈ Rk×N is

Ẑg
= Dgαg (14)

where Dg ∈ Rk×C is the global background dictionary; αg ∈ RC×N is the global representa-
tion weight matrix; and C is the amount of dictionary atoms.
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The global representation weight matrix αg is obtained through the global CR learning
networks based on the comprehensive feature map Zc, by lb layers of 1 × 1 convolu-
tional layer,

Zg
i+1 = σ

(
GN

(
f GC
i

(
Zg

i ; ΘGC
i

)))
, i = 1, . . . , lb − 1

αg = f GC
lb

(
Zg

lb
; ΘGC

lb

) (15)

where Zg
i is the input datum of the i-th layer in the global CR learning networks, and

Zg
1 = Zc.

In order to make the error between the global representation Ẑg of the network and
the hidden feature map Z as small as possible, the loss function LGlobal of the global CR
learning network is designed according to the CR objective function in formula (3)

LGlobal =
N

∑
i=1

∥∥∥zi − ẑg
i

∥∥∥2

2
+ λ‖αg‖2

2 (16)

where zi is the i-th pixel in Z, and ẑg
i is the i-th pixel in Ẑg.

Moreover, we design a loss function LDic to constrain the dictionary atoms and make
them more representative in Dg

LDic =
C

∑
j=1

N

∑
i=1

∥∥∥dg
j − zi

∥∥∥2

2
(17)

where dg
j is the j-th atom in Dg. The purpose of this constraint is to minimize the distance

from each dictionary atom to the hidden feature Z.

3.3.2. Local Collaborative Representation Learning

Different from the global CR learning networks, the local background dictionary
is obtained via a sliding dual window on the hidden feature Z, with the sizes of inner
and outer windows as winin and winout, respectively. For the i-th pixel in Z, the local
collaborative representation Ẑl

=
{

ẑl
1, ẑl

2, . . . , ẑl
N

}
∈ Rk×N is calculated as

ẑl
i = Dl

i α
l
i i = 1, 2, 3 · · ·N (18)

where ẑl
i is the i-th pixel of Ẑl ; Dl

i ∈ Rk×S denotes the local background dictionary of the
i-th pixel, which is a collection of the feature vectors between the inner and outer windows
centered on the i-th pixel in Z; αl

i ∈ RS×1 is the weight coefficient of the i-th pixel in matrix
αl ∈ RS×N ; and S represents the number of background pixels between the inner and outer
windows that S = winout × winout − winin × winin.

Since the weight matrix αl depends on the background pixels in the dual window,
the convolutional kernel size in local CR learning networks is set to winout × winout. The
number of layers is still lb the same as the global CR learning networks, and the calculation
of αl is similar with αg in Equation (15).

The loss function of local collaborative representation Ẑl is also designed according to
the objective function (3):

LLocal =
N

∑
i=1

∥∥∥zi − ẑl
i

∥∥∥2

2
+ λ

∥∥∥αl
∥∥∥2

2
(19)

Therefore, combining the two streams of global and local, the objective function of CR
learning networks is obtained as follows

LCR = LDic + λ1LGlobal + λ2LLocal (20)

where λ1 and λ2 are the factors of the trade-off between the global and local streams.
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Due to the introduction of learning layers in the neural network, the convex opti-
mization problem in Formula (3) is transformed into a non-convex loss function in (20).
The deep learning-based algorithm seeks multiple possible local optimal solutions during
network iteration, instead of being restricted to a unique closed-form solution. In this way,
the generalization performance of the detector would be enhanced and noise interference
would be more difficult.

3.4. Detection Fusion

The Euclidean distance between the hidden feature Z and the global representation
Ẑg or the local representation Ẑl is calculated, respectively, to obtain the global detection
result Ag ∈ RH×W and the local detection result Al ∈ RH×W

Ag
i =

∥∥∥zi − ẑg
i

∥∥∥
2

i = 1, 2, 3 · · ·N (21)

Al
i =

∥∥∥zi − ẑl
i

∥∥∥
2

i = 1, 2, 3 · · ·N (22)

where Ag
i is the i-th pixel in Ag, and Al

i is the i-th pixel in Al .
The final anomaly score map A ∈ RH×W will be obtained by element-wise multiplying

of Ag and Al to achieve a higher detection accuracy:

A = Ag � Al (23)

The proposed CRNN method is described in Algorithm 1. CFL-Net stands for the
comprehensive feature extraction networks and CRL-Net stands for the two-stream CR
learning networks. AE_pre_num is epochs that the AE is trained individually during the
pre-training phase to strengthen the stability of network training. AE_pre_num = 10.

Algorithm 1: Algorithm flow diagram of CRNN

Input: original Hyperspectral data X = [x1, x2, · · · , xH×W ] ∈ RH×W×K.
Output: Anomaly score map A = [a1, a2, · · · , aH×W ] ∈ RH×W .

1 Initialize the network with random weight;
2 foreach epoch do
3 AE update: E, De by Lδ

4 if epoch > AE_pre_num then
5 CRNN update: CFL-Net, CRL-Net by LCR
6 end
7 Back-propagate Lδ, LCR
8 To change E, De, CFL-Net, CRL-Net.
9 end

4. Experiments

To validate the detection performance of our proposed CRNN, we perform experi-
ments on six real hyperspectral images and compare with eight previous algorithms.

4.1. Experimental Settings
4.1.1. Datasets Description

Six datasets are employed in the experiment, including Beach [25], Urban [25], Xion-
gAn [71], HYDICE [72], Gulfport [25], and SanDiego [42]. Table 1 lists the details of each
dataset. The targets in the images of Beach, Urban, XiongAn, and HYDICE are small.
While the anomalies in the datasets of Gulfport and SanDiego are relatively large and have
specific shape features, which are planar targets.



Remote Sens. 2023, 15, 3357 10 of 25

Table 1. Details of the six hyperspectral datasets in the experiment.

Dataset Sensor Resolution Spatial Size Bands Anomaly
Type

Anomaly
Proportion

Anomaly
Size

Beach AVIRIS 1 4.4 m 100 × 100 188 boat 0.61% 11
Urban AVIRIS 1 17.2 m 100 × 100 204 buildings 0.67% 2–14

HYDICE HYDICE 2 1 m 80 × 100 162 vehicles 0.24% 1–4
XiongAn Gaofeng 3 0.5 m 100 × 100 250 vehicle 0.10% 10
Gulfport AVIRIS 1 3.4 m 100 × 100 188 3 airplanes 0.60% 10–40
SanDiego AVIRIS 1 3.5 m 100 × 100 188 3 airplanes 0.34% 30–50

1 Airborne Visible Infrared Imaging Spectrometer. 2 Hyperspectral Digital Imagery Collection Experiment.
3 Gaofeng Full Spectrum Multi-modal Imaging Spectrometer.

4.1.2. Evaluation Criteria

To quantitatively evaluate the detection performance, the three-dimensional receiver
operating characteristic (3D ROC) curves and the area under the ROC curve (AUC) [73]
are introduced. The 3D ROC curves depict the trade-off among the three parameters of
the true positive rate Pd, the false positive rate Pf , and the detection threshold τ. Three
types of two-dimensional ROC (2D ROC) curves decomposed from the 3D ROC curve are
also applied in the experiment, including (Pd, Pf ), (Pd, τ), and (Pf , τ). Correspondingly,
three types of AUC values are applied, and their values range in [0, 1]. The AUC(D,F) (AUC
of curve (Pd, Pf )) value approaching to 1 indicates a perfect effectiveness, the AUC(D,τ)
(AUC of curve (Pd, τ)) value closer to 1 evaluates the better detection probability, and the
AUC(F,τ) (AUC of curve (Pf , τ)) value approaching 0 indicates an outstanding performance
on background suppression. In addition, another five AUC values [74] are introduced
to further evaluate the detector of joint anomaly detection (JAD), joint background sup-
pression (JBS), anomaly detection with background suppression (ADBS), overall anomaly
detection probability (OADP), and signal-to-noise probability ratio (SNPR). They are de-
noted as AUCJAD, AUCJBS, AUCADBS, AUCOADP, and AUCSNPR, respectively. The five
AUC values are calculated in the following equation, and larger AUC values indicate a
better performance. The values of AUCJAD, AUCJBS, and AUCADBS range in [0, 2], while
AUCOADP value is between [0, 3].

AUCJAD = AUC(D,F) + AUC(D,τ)

AUCJBS = AUC(D,F) +
(

1−AUC(F,τ)

)
AUCADBS = AUC(D,τ) +

(
1−AUC(F,τ)

)
AUCOADP = AUC(D,F) + AUC(D,τ) +

(
1−AUC(F,τ)

)
AUCSNPR =

AUC(D,τ)

AUC(F,τ)

(24)

4.1.3. Compared Method

The comparison methods include traditional anomaly detection methods of the bench-
mark algorithm such as global RX (GRX) [13], and four representation-based methods,
such as the original CRD [34], CRD in EAS (EAS_CR) [18], relaxed CRD (RCRD) [40],
and the local summation unsupervised nearest regularized subspace anomaly detector
(LSUNRS) [38]. We also experimented with recent deep learning-based anomaly detection
methods, such as LREN [49], HADGAN [54], and GAE [61]. The comparison algorithms
used in this paper are all verified based on the source code released by the original author.
In order to assure the equitable results for the comparison experiment, the parameters of
the CRD,EAS_CR, RCRD, LSUNRS, LREN, HADGAN, and GAE in the experiment were
all optimal.
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4.1.4. Implementation Details

Our approach is implemented in Pytorch 1.8, and all the experiments were tested on
a workstation with an Nvidia GeForce GTX 1080-Ti GPU and an Intel i9 CPU. According
to the network structure described in Section 3, the specific experiment settings are as
follows. Both the encoder and the decoder use the structure of a 4-layer convolutional
network, i.e., la = 4. The channel dimension of each layer is configured as E{K, 100, 50, 20,
k} and De{k, 20, 50, 100, K}, where K is the number of input hyperspectral channels, and
k is the feature dimension of Z as k = 10. The comprehensive feature Zc ∈ RH×W×nk is
obtained in the feature extraction networks, where n = 5. In CR learning networks, both
the global and local streams adopt the 3-layer convolutional network, i.e., lb = 3. The
channel number configuration is GC{nk, k, k, C} and LC{nk, k, k, S}. δ in the Huber loss Lδ in
Equation (8) is set as 1. λ1 and λ2 in the loss function LCR in Equation (20) are set to 0.1 and
0.1. During training, the number of epochs is set as 500 to balance the detection accuracy
and the calculation load, and the Adam algorithm is chosen to optimize the parameters of
networks. The network learning rate is initially set to 10−4 and an exponential decay would
be performed after 100 epochs. The above parameters are the default in the experiment
and can be adjusted in other versions of this experiment.

4.2. Detection Performance

The anomaly detection maps of the proposed CRNN and the other eight algorithms
of the six datasets are displayed in Figure 2. For a further and more intuitive analysis of
the quantitative performance of each algorithm, the 3D ROC curves and the three types
of 2D ROC curves, including (Pd, Pf ), (Pd, τ), and (Pf , τ), are shown in Figure 3. The 2D
ROC curves of (Pd, Pf ) are set in a logarithmic scale for better visualization. The eight AUC
performance comparisons for each dataset are shown in Table 2, and the average values of
the AUC metrics over six datasets are listed in Table 3.

LSUNRS RCRD CRD GRXCRNN LREN

(a)

Pseudo-color Reference

(b)

(c)

(d)

(e)

(f)

HADGANGAE EAS_CR

Figure 2. Pseudo-color images, references, and detection maps of the proposed CRNN and compared
algorithms on six datasets. (a) Beach. (b) Urban. (c) XiongAn. (d) HYDICE. (e) Gulfport. (f) SanDiego.
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(a)

(b)

(d)

(e)

(f)

(c)

3D ROC curves 2D ROC curves of (Pd, Pf) 2D ROC curves of (Pd, τ) 2D ROC curves of (Pf, τ)

Figure 3. 3D ROC curves and the generated three 2D ROC curves of the proposed CRNN and
compared algorithms on six datasets. (a) Beach. (b) Urban. (c) XiongAn. (d) HYDICE. (e) Gulfport.
(f) SanDiego.
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Table 2. AUC values of the proposed CRNN and compared algorithms on six datasets. (The best of
each dataset is in bold).

Dataset Method AUC(D,F)
↑

AUC(D,τ)
↑

AUC(F,τ)
↓

AUCJAD
↑

AUCJBS
↑

AUCADBS
↑

AUCOADP
↑

AUCSNPR
↑

Beach

CRNN 1.0000 0.2803 7.75× 10−9 1.2803 2.0000 1.2803 2.2803 3.62× 107

CRNN_t 1 1.0000 0.7747 0.0014 1.7747 1.9986 1.7733 2.7733 553.6985
GAE [61] 0.9773 0.3542 0.0176 1.3315 1.9596 1.3366 2.3139 20.0874
HADGAN [54] 1.0000 0.6598 0.0448 1.6597 1.9552 1.6150 2.6150 14.7397
LREN [49] 0.8451 0.4071 0.1662 1.2521 1.6788 1.2408 2.0859 2.4489
LSUNRS [38] 0.9998 0.4414 0.0092 1.4413 1.9907 1.4323 2.4321 48.1575
RCRD [40] 0.9996 0.4036 0.0114 1.4032 1.9882 1.3922 2.3918 35.3348
EAS_CR [18] 0.9986 0.5020 0.0149 1.5005 1.9837 1.4871 2.4857 33.7063
CRD [34] 0.9944 0.5351 0.0469 1.5295 1.9474 1.4882 2.4825 11.4035
GRX [13] 0.9998 0.5314 0.0259 1.5313 1.9739 1.5055 2.5053 20.4912

Urban

CRNN 0.9973 0.0899 2.45× 105 1.0872 1.9973 1.0899 2.0872 3.66× 103

CRNN_t 1 0.9973 0.6896 0.0277 1.6869 1.9696 1.6619 2.6592 24.8633
GAE [61] 0.9622 0.3695 0.0666 1.3317 1.8956 1.3029 2.2651 5.5496
HADGAN [54] 0.9584 0.2483 0.0763 1.2067 1.8822 1.1720 2.1304 3.2555
LREN [49] 0.9399 0.4838 0.1406 1.4237 1.7993 1.3432 2.2831 3.4411
LSUNRS [38] 0.9963 0.1352 0.0105 1.1315 1.9858 1.1247 2.1210 12.8765
RCRD [40] 0.9937 0.3162 0.0160 1.3099 1.9777 1.3003 2.2939 19.8251
EAS_CR [18] 0.9911 0.3082 0.0496 1.2993 1.9414 1.2586 2.2496 6.2098
CRD [34] 0.9655 0.0848 0.0127 1.0503 1.9528 1.0721 2.0376 6.6565
GRX [13] 0.9907 0.3143 0.0556 1.3049 1.9351 1.2587 2.2494 5.6570

XiongAn

CRNN 1.0000 0.2718 7.48× 10−6 1.2718 2.0000 1.2718 2.2718 3.63× 104

CRNN_t 1 1.0000 0.8708 0.2460 1.8708 1.7540 1.6247 2.6247 3.5392
GAE [61] 0.9999 0.4014 0.0079 1.4013 1.9920 1.3935 2.3934 50.6621
HADGAN [54] 1.0000 0.4634 0.0718 1.4634 1.9282 1.3917 2.3916 6.4562
LREN [49] 1.0000 0.7751 0.1641 1.7751 1.8359 1.6109 2.6109 4.7220
LSUNRS [38] 0.9996 0.4296 0.0499 1.4292 1.9497 1.3797 2.3793 8.6172
RCRD [40] 0.9999 0.5710 0.0209 1.5709 1.9791 1.5501 2.5501 27.3467
EAS_CR [18] 0.9881 0.1909 0.0105 1.1790 1.9776 1.1804 2.1685 18.1455
CRD [34] 0.9783 0.4413 0.1315 1.4196 1.8469 1.3098 2.2881 3.3569
GRX [13] 0.9765 0.4222 0.1000 1.3986 1.8765 1.3222 2.2987 4.2235

HYDICE

CRNN 0.9999 0.1570 9.75× 10−7 1.1570 1.9999 1.1570 2.1570 1.61× 105

CRNN_t 1 0.9999 0.8132 0.0210 1.8131 1.9790 1.7923 2.7922 38.8089
GAE [61] 0.9982 0.3973 0.0099 1.3955 1.9883 1.3874 2.3856 40.1662
HADGAN [54] 0.9903 0.5024 0.0571 1.4927 1.9332 1.4453 2.4356 8.7944
LREN [49] 0.9784 0.4271 0.0093 1.4055 1.9691 1.4179 2.3963 46.1746
LSUNRS [38] 0.9929 0.3449 0.0166 1.3378 1.9763 1.3283 2.3212 20.7202
RCRD [40] 0.9962 0.3380 0.0059 1.3342 1.9903 1.3322 2.3284 57.7771
EAS_CR [18] 0.9233 0.0554 0.0037 0.9787 1.9196 1.0517 1.9751 15.0686
CRD [34] 0.9868 0.4117 0.0351 1.3985 1.9517 1.3765 2.3634 11.7149
GRX [13] 0.9763 0.2184 0.0380 1.1947 1.9382 1.1803 2.1566 5.7406

Gulfport

CRNN 0.9955 0.0843 3.32× 109 1.0799 1.9955 1.0843 2.0799 2.54× 107

CRNN_t 1 0.9955 0.4825 0.0105 1.4780 1.9851 1.4720 2.4676 46.1582
GAE [61] 0.9690 0.2675 0.0314 1.2364 1.9376 1.2361 2.2051 8.5239
HADGAN [54] 0.9602 0.3380 0.1496 1.2982 1.8106 1.1884 2.1486 2.2588
LREN [49] 0.7521 0.3104 0.1739 1.0626 1.5782 1.1365 1.8887 1.7851
LSUNRS [38] 0.9589 0.0455 0.0139 1.0044 1.9450 1.0316 1.9905 3.2769
RCRD [40] 0.9899 0.2552 0.0160 1.2451 1.9739 1.2392 2.2291 15.9448
EAS_CR [18] 0.5714 0.0059 0.0015 0.5773 1.5698 1.0044 1.5758 3.8782
CRD [34] 0.7762 0.0112 0.0069 0.7874 1.7693 1.0043 1.7805 1.6246
GRX [13] 0.9526 0.0736 0.0248 1.0262 1.9278 1.0489 2.0015 2.9743
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Table 2. Cont.

Dataset Method AUC(D,F)
↑

AUC(D,τ)
↑

AUC(F,τ)
↓

AUCJAD
↑

AUCJBS
↑

AUCADBS
↑

AUCOADP
↑

AUCSNPR
↑

SanDiego

CRNN 0.9965 0.0368 1.18× 10−5 1.0333 1.9965 1.0368 2.0333 3.11× 103

CRNN_t 1 0.9965 0.5481 0.0178 1.5446 1.9787 1.5303 2.5268 30.7612
GAE [61] 0.9910 0.2380 0.0079 1.2290 1.9831 1.2301 2.2211 30.1127
HADGAN [54] 0.9644 0.2898 0.0653 1.2542 1.8991 1.2244 2.1888 4.4353
LREN [49] 0.4387 0.1041 0.0346 0.5428 1.4041 1.0695 1.5082 3.0098
LSUNRS [38] 0.9796 0.2756 0.0789 1.2552 1.9007 1.1967 2.1763 3.4914
RCRD [40] 0.9825 0.1575 0.0084 1.1399 1.9740 1.1490 2.1315 18.6983
EAS_CR [18] 0.7515 0.0464 0.0149 0.7979 1.7366 1.0316 1.7831 3.1202
CRD [34] 0.9071 0.1993 0.1272 1.1064 1.7799 1.0721 1.9792 1.5671
GRX [13] 0.9403 0.1778 0.0589 1.1181 1.8814 1.1189 2.0592 3.0176

1 A logarithmic transformation was performed on the result maps of CRNN, and this method is only used as a
supplementary illustration and does not participate in the comparison of other methods.

Table 3. Average AUC values of the proposed CRNN and compared algorithms over six datasets.
(The best is in bold).

AUC(D,F)
↑

AUC(D,τ)
↑

AUC(F,τ)
↓

AUCJAD
↑

AUCJBS
↑

AUCADBS
↑

AUCOADP
↑

AUCSNPR
↑

CRNN 0.9982 0.1534 7.47× 10−6 1.1516 1.9982 1.1534 2.1516 1.03× 107

CRNN_t 1 0.9982 0.6965 0.0541 1.6947 1.9441 1.6424 2.6406 116.3049
GAE [61] 0.9829 0.3380 0.0236 1.3209 1.9594 1.3144 2.2974 25.8503
HADGAN [54] 0.9789 0.4169 0.0775 1.3958 1.9014 1.3395 2.3183 6.6567
LREN [49] 0.8257 0.4179 0.1148 1.2436 1.7109 1.3032 2.1289 10.2636
LSUNRS [38] 0.9879 0.2787 0.0298 1.2666 1.9580 1.2489 2.2367 16.1900
RCRD [40] 0.9936 0.3403 0.0131 1.3339 1.9805 1.3272 2.3208 29.1545
EAS_CR [18] 0.8706 0.1848 0.0159 1.0555 1.8548 1.1690 2.0396 13.3548
CRD [34] 0.9347 0.2806 0.0601 1.2153 1.8747 1.2205 2.1552 6.0539
GRX [13] 0.9727 0.2896 0.0505 1.2623 1.9222 1.2391 2.2118 7.0174

1 A logarithmic transformation was performed on the result maps of CRNN, and this method is only used as a
supplementary illustration and does not participate in the comparison of other methods.

4.2.1. Detection Performance for Small Targets

The detection maps of the Beach dataset are shown in Figure 2a; the target in the
detection map of CRNN is prominent, and the suppression of the background is the best
since CRNN can effectively suppress the false alarms in the background of this dataset. In
the detection maps of other methods, the beach at the bottom left is a more obvious false
alarm, especially in LREN. Figure 2b shows the detection maps of the Urban dataset and the
result is that CRNN presents outstanding targets and better background suppression. The
results of GAE, HADGAN, LREN, RCRD, EAS_CR, and GRX present obvious background
texture and banding noise; in particular, the result of LREN presents obvious false detection.
The background and targets are both at a low brightness level in the result maps of CRD
and LSUNRS. However, the ROC curves (Pd, Pf ) of CRNN and LSUNRS are quite close
when Pd is reaching 1. It may be due to the disparity in the brightness of different targets
in the detection result of CRNN, which means only some anomalous pixels are visually
obvious. The detection maps of the XiongAn dataset are shown in Figure 2c; the background
suppression is not so effective in the results of the eight compared methods, especially in
LREN, and the detection maps of HADGAN, LSUNRS, CRD, and GRX present evident
banding noise. Compared with CRD, the two CR-based methods of RCRD and EAS_CR
improve the background suppression, but still present some false alarms in detection maps.
While the result of CRNN not only presents a perfect suppression on the background but
also has a strong anti-interference ability against noise. The detection maps of the HYDICE
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image are shown in Figure 2d. The detection results of CRNN and LREN are best when
dealing with prominent targets and good background suppression, while LREN has some
instances of missed detection and the detection score of some anomalous pixels is low. The
background suppression in other methods is poor; in addition, the background texture
is clear in HADGAN, CRD, and GRX, while some points of false alarm present higher
brightness in RCRD and EAS_CR.

For small anomalous targets, the proposed CRNN produces visual results closest to
the reference compared with other seven state-of-the-art methods. In Figure 3, the ROC
curves of (Pd, Pf ) are all the first to reach 1, and the ROC curves of (Pf , τ) are all the closest
to the lower left corner. It is clear from the study above that the proposed CRNN can clearly
highlight the small anomalous targets in the detection maps while effectively suppressing
the background, since it utilizes neural networks to learn features that are more conducive
to anomaly detection.

4.2.2. Detection Performance for Planar Targets

As the detection maps of the Gulfport dataset show in Figure 2e, it can be seen that only
the larger aircraft is significant in the detection results of CRNN, and the other two smaller
ones are difficult to observe directly but still present higher values than the background.
However, in the result maps of traditional detectors of GRX, CRD, EAS_CR, and LSUNRS,
the saliency of targets is poor, and obvious false alarm points occur. However, in GAE,
HADGAN, and LREN, the networks only learn the texture features of the hyperspectral
image, causing a poor detection result. Targets in the detection maps of RCRD are obvious,
and the ROC curves (Pd, Pf ) of CRNN and RCRD are close, but CRNN is better at back-
ground suppression. The detection results of the SanDiego dataset are shown in Figure 2f.
The detection map of CRNN presents clear targets and perfect background suppression,
but the anomaly scores vary greatly between the three airplanes. In the detection results of
GRX, CRD, EAS_CR, LSUNRS, and HADGAN, the targets are lost in the background and
obvious noise, causing some false alarms. Although some pixels of the three anomalies
have higher brightness in the result of GAE, LREN, and RCRD, the background suppression
is not so good that the roof on the lower right turns to be a false alarm target.

For planar targets on the Gulfport and SanDiego datasets, the ROC curves of (Pd, Pf ),
and (Pf , τ) are all the closest to the upper left corner and the lower left corner, respectively.
It can be concluded that CRNN also presents a perfect detection accuracy with the lowest
false alarm rate for planar targets such as airplanes. Although the target texture is not
obvious in the detection maps of CRNN, the outline of the aircraft can be clearly seen
after performing the logarithmic transformation on the detection maps as show in Figure 4,
which proves that the anomalies and the background are still separable. The logarithmic
transformation is as follows

R = logv+1(1 + v · I) (25)

where (v + 1) is the base of the logarithm. I and R denote the input and output images,
respectively, and the values are all in the range of [0, 1].

4.2.3. AUC Performance

According to the comparison of the average AUC values in Table 3, CRNN has the
highest AUC(D,F) value of 0.9982, which is 6.79% higher than that of the traditional CRD,
indicating that CRNN has perfect detection efficiency and finds the balance between
improving the detection rate and reducing the false alarm rate. At the same time, CRNN
also shows the smallest AUC(F,τ) score, and the largest AUCJBS and AUCSNPR, which are
7.47× 10−6, 1.9982, 1.03× 107, respectively. It indicates that CRNN has a strong ability
to suppress the background. However, the performance of CRNN in AUC(D,τ), AUCJAD,
AUCADBS, and AUCOADP needs to be improved, and the values of the latter three are
mainly related to the former. This may be because the high efficiency of background
suppression in CRNN also has an impact on some anomalous pixels, and the detection rate
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needs to rely on a lower threshold, causing the poor performance on (Pd, τ) curves and
AUC(D,τ). However, it does not mean that the background and anomalies are inseparable.
The average AUCSNPR of the detection maps reaches seven orders of magnitude, and the
anomaly scores of background pixels is concentrated around 10−11 to 10−7. The order
of magnitude of the potential anomalous pixels spans a large range that the anomaly
scores of some pixels are quite close to 1, while other pixels may reach about 10−4. As a
supplementary illustration, since the orders of magnitude of the background and partial
anomalies are small, we tried logarithmic transformation on the result maps of CRNN as
the image enhancement strategy to re-evaluate the AUC performance. The logarithmic
transformation is in shown in Equation (25) and v is set to 102 in all datasets. This version
is not included in the comparison of other methods in Table 3 because it is only used as
the post-processing method. According to the results of AUC, logarithmic transformation
searches a balance between AUC(D,τ) and AUC(F,τ), and improves the target detectability.

(a) (b)

Figure 4. Detection maps after the logarithmic transformation. The red boxes are manually added to
mark the targets. (a) Gulfport (v = 107). (b) SanDiego (v = 104).

In addition, we repeated 10 experiments for each dataset to measure the uncertainty of
network training. The mean and variance of the three AUC values of AUC(D,F), AUC(D,τ),
and AUC(F,τ) are shown in Table 4, which verifies the credibility of the experimental results
for our proposed model.

Table 4. AUC(D,F) AUC(D,τ) and AUC(F,τ) values of CRNN in repeated experiments for each dataset.

AUC(D,F) AUC(D,τ) AUC(F,τ)
Mean Variance(%) Mean Variance(%) Mean Variance(%)

Beach 0.99950 0.04849 0.22151 4.75515 4.25× 10−5 0.00432
Urban 0.99642 0.10841 0.07129 1.24275 1.51× 10−5 0.00110
XiongAn 0.99994 0.00611 0.2561 4.02692 1.90× 10−5 0.00242
HYDICE 0.99988 0.00953 0.18799 3.54861 4.80× 10−6 0.00070
Gulfport 0.98564 1.36994 0.08248 2.59059 2.52× 10−4 0.02073
SanDiego 0.98954 0.43000 0.02573 1.11803 2.70× 10−4 0.01517

4.3. Computing Time

In addition to the accuracy of anomaly detection, computing time is also an important
part of algorithm efficiency. The computing time of the proposed CRNN and the compared
eight algorithms is listed Table 5. For deep learning-based methods, the training epochs
of CRNN, GAE, and HADGAN are all set to 500. We counted their training time on GPU
and inference time tested on CPU. While LREN has no module for testing, so we only
recorded the entire computing time including network training on GPU. The training
epochs of LREN are 1000 according to [49]. For non-deep learning methods, LSUNRS,
RCRD, EAS_CR, CRD, and RX, were implemented on MATLAB R2019b.
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Table 5. Computing time in second of the proposed CRNN and compared algorithms. (The content
in brackets in columns 2–4 represents the inference time of the network at test).

CRNN GAE [61] HADGAN [54] LREN
[49]

LSUNRS
[38]

RCRD
[40]

EAS_CR
[18] CRD [34] GRX [13]

Beach
49.8535
(0.0279)

47.7064
(6.4304)

674.0821
(1.8471) 100.2248 18.7829 38.2593 2.5918 1.5395 0.0854

Urban
60.6503
(0.0259)

48.6605
(6.4776)

677.5559
(2.0005) 109.0844 19.3547 40.2936 3.1943 1.6119 0.0896

XiongAn
21.0506
(0.0558)

56.7479
(7.9990)

673.0219
(2.6153) 102.5597 30.9906 51.7006 3.3039 8.8312 0.1826

HYDICE
19.2016
(0.0189)

26.0721
(5.2584)

693.5843
(1.6805) 73.0596 14.5599 25.5156 1.6684 1.2025 0.0669

Gulfport
70.5033
(0.0488)

47.8685
(6.4286)

676.432
(1.8710) 100.8034 18.8575 39.4005 2.6521 1.5377 0.0807

SanDiego
31.5995
(0.0229)

48.6626
(6.7521)

676.4849
(1.8861) 101.3657 19.0317 36.6709 2.1232 1.5573 0.0840

The comparison of computing times in Table 5 are just for reference due to the differ-
ences in the implementation of these methods, but it still shows the high efficiency of our
proposed CRNN. Compared with the three deep learning-based method, the inference time
of CRNN is the shortest, mainly because of the simple linear computation of matrices in a
few network layers. GAE calculates the guided images through a spectral similarity method
that takes most of the computation time. HADGAN directly used the traditional detector
on the residual image and still retains the computational cost of traditional algorithms.
LREN needs to consume part of computing time in solving the optimization of LRR.

5. Discussion

In this section, discussions of the ablation study and parameter analysis are made.

5.1. Ablation Study

To verify the effectiveness of the two-stream CR learning networks, including the
fusion strategy and the joint training strategy in the proposed CRNN, we set a series of abla-
tion experiments for research. In this experiment, the following scenarios were compared.

• CRNN: the proposed CRNN model, whose detection result is A = Ag � Al ;
• CRNN+: the CRNN model in additive fusion version, whose detection result is

A+ = Ag + Al ;
• LCRNN: the local stream of CR networks in CRNN, whose detection result is Al ;
• GCRNN: the global stream of CR networks in CRNN, whose detection result is Ag;
• CRNN_se: the local stream and global stream are separately trained and fused to

obtain the detection result. It is a separate training version for CRNN;
• LCRNN_se: the local stream of CR networks in CRNN_se;
• GCRNN_se: the global stream of CR networks in CRNN_se.

Table 6 lists the average of the eight AUC values for the ablation study. In addition, the
detailed eight AUC values on each dataset are presented in the Appendix A. It is suggested
that either the local CR networks or the global CR networks have outstanding detection
performance. Their average AUC(D,F) values are all above 0.9940, which are obviously
better than the other eight comparison algorithms. Compared with other six scenarios of
CRNN+, LCRNN, GCRNN, CRNN_se, LCRNN_se, and GCRNN_se, the average AUC(D,F)
scores of CRNN are, respectively, improved by 0.06%, 0.08%, 0.13%, 0.03%, 0.40%, and
0.10%.
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Table 6. Average AUC values over six datasets for the ablation study. (The best is in bold).

AUC(D,F)
↑

AUC(D,τ)
↑

AUC(F,τ)
↓

AUCJAD
↑

AUCJBS
↑

AUCADBS
↑

AUCOADP
↑

AUCSNPR
↑

CRNN 0.9982 0.1534 7.47× 10−6 1.1516 1.9982 1.1534 2.1516 1.03× 107

CRNN+ 0.9976 0.2880 1.29× 10−3 1.2856 1.9963 1.2867 2.2843 1.01× 104

LCRNN 0.9973 0.2503 1.61× 10−3 1.2475 1.9956 1.2487 2.2459 1.04× 104

GCRNN 0.9968 0.1921 2.51× 10−4 1.1889 1.9965 1.1919 2.1887 1.03× 104

CRNN_se 0.9978 0.1400 3.77× 10−5 1.1377 1.9977 1.1399 2.1377 1.24× 106

LCRNN_se 0.9942 0.2770 3.61× 10−3 1.2712 1.9906 1.2734 2.2676 1.25× 102

GCRNN_se 0.9972 0.1912 6.45× 10−4 1.1884 1.9966 1.1906 2.1878 2.13× 104

(1) Global CR and Local CR

The anomaly detection maps for six datasets of LCRNN and GCRNN are shown in
Figure 5. Compared with the global CR networks, the detection results of the local CR
networks present more false alarm targets and worse suppression on the background. This
may be, mainly, because the local CR networks are composed of the local background
dictionary, which is more likely to highlight specific areas in the background, such as the
white area in HYDICE, the runway in Gulfport, and the roof in SanDiego. In addition,
the anomaly scores of different targets in the results of local CR networks are relatively
close, while the anomaly scores of different targets vary greatly in the results of global
CR networks.

LC
R

N
N

G
C

R
N

N

(a) (b) (c) (d) (e) (f)

Figure 5. Detection maps of LCRNN and GCRNN. (a) Beach. (b) Urban. (c) XiongAn. (d) HYDICE.
(e) Gulfport. (f) SanDiego.

(2) Detection Fusion of Global CR and Local CR

From the quantitative perspective, CRNN obtained the best AUC(D,F) values when
compared to LCRNN and GCRNN. The results of separate training versions also presents
the similar findings that the average AUC(D,F) values of CRNN_se have, respectively, im-
proved by 0.36% and 0.06% compared with LCRNN_se and GCRNN_se. This demonstrates
that the detection results fused with the local and global ones is better than that of the two
alone. Similar to the random forest theory [75], it is possible to create a stronger and better
detector by comprehensively analyzing the results of several detectors with good detec-
tion performance. In addition, the multiplicative fusion strategy used in proposed CRNN is
better than additive fusion in CRNN+. As shown in Figure 5, the background suppression
in the result maps of LCRNN is not as good as that of GCRNN, so multiplicative fusion can
offer the advantages of global result maps and better background suppression compared
with additive fusion.

(3) Joint Training and Separate Training

According to the average AUC(D,F) value, GCRNN is 0.04% smaller compared with
GCRNNse, while the score of LCRNN is 0.3% higher than LCRNNse. For the final fusion
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result, the AUC(D,F) score of CRNN is improved by 0.03% compared with the separate
training version. Therefore, the joint training of the local and global streams of the networks
is better than separate training in general. In our opinion, this may be because of the
comprehensive usage of the global and local streams with a better balance in joint training.
It optimizes each part in the networks through the objective function of LCR, and extracts
features more conducive to detection performance.

5.2. Parameter Analysis

Under the hyperparameters configured in Section 4.1.4, the performance of CRNN is
mainly related to two key parameters, C as the amount of the global background dictionary
atoms and S as the amount of the local background dictionary atoms, where S is mainly
determined by the scale of the dual windows.

Since the size of C affects the ability of the global dictionary to generalize the back-
ground of the entire image to a certain extent, it is vital to set C at the appropriate value
to ensure the comprehensiveness of the background and avoid anomalous pollution. The
parameter C is analyzed in the range of {5, 10, 15, 20}. In Figure 6, it is shown by multiple
experiments that the anomaly detection performance reaches the optimum when C is 15. In
addition, the analysis of parameter C on the eight types of AUC values for the six datasets
are listed in the Appendix B.

Figure 6. Analysis of parameter C on AUC(D,F) value.

The detection performance of the local CR networks is mainly affected by the scale of
inner and outer windows, which is generally correlated with the targets size. The larger the
size of the windows presents a higher computational cost and a slower inference speed for
the networks. In the experiments, the range of the inner window size is set in [3, 9], and the
range of the outer window size is in [2 + winin, 8 + winin] relatively. As shown in Figure 7,
for the Beach, Urban, XiongAn and HYDICE datasets that only contain small targets, the
detection results are not sensitive to the scale of the inner and outer windows, and the
AUC(D,F) values are all above 0.99. For the Gulfport and SanDiego datasets with planar
targets, the AUC(D,F) values remain at a suboptimal level when the scale of inner windows
is much smaller than the size of anomalies, and they are significantly reduced when the
inner window size is excessively wider than the anomaly. However, the selection of the
optimal window size still involves a certain dynamic range. According to the experimental
results, it is suggested that the range of the inner window is set in [5, 7], and the range of
outer window is [9, 11] for the planar target.
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Figure 7. Analysis of parameters winin and winout over AUC(D,F) value on six datasets.

6. Conclusions

In this paper, we proposed a deep learning-based hyperspectral anomaly detection
method named CRNN, which implements CR theory into neural networks. CRNN mines
the deep features that are helpful for the background construction and representation
weight optimization in CR, which enhances the detection performance and efficiency.
Firstly, an autoencoder is introduced to reconstruct the original hyperspectral data and
obtain a dense expression. Based on the hidden feature map in the AE, the feature extraction
network is used to further extract its comprehensive feature. Then, the two-stream global
and local CR learning networks are ideally designed to learn the representation data of the
hidden features under the objective function of CR. Finally, the anomaly detection result
is contributed by fusing the residual maps of original and representation data in the two
streams. Compared with state-of-the-art methods, experiments on six real hyperspectral
images show that CRNN presents a perfect balance on detection accuracy and false alarm
rate with a faster inference speed. In the future, we may try a more reasonable structure for
CR learning networks instead of only applying convolutional networks to learn features,
and also study a better fusion strategy to balance the global and local detection results.
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Appendix A

Table A1. AUC values for the ablation study on Beach dataset. (The best is in bold).

AUC(D,F)
↑

AUC(D,τ)
↑

AUC(F,τ)
↓

AUCJAD
↑

AUCJBS
↑

AUCADBS
↑

AUCOADP
↑

AUCSNPR
↑

CRNN 1.0000 0.2803 7.75× 10−9 1.2803 2.0000 1.2803 2.2803 3.62× 107

CRNN+ 1.0000 0.4354 8.35× 10−6 1.4354 2.0000 1.4354 2.4354 5.21× 104

LCRNN 0.9999 0.2663 5.00× 10−6 1.2662 1.9999 1.2663 2.2662 5.32× 104

GCRNN 1.0000 0.4141 7.97× 10−6 1.4141 2.0000 1.4141 2.4141 5.20× 104

CRNN_se 1.0000 0.1791 2.66× 10−8 1.1791 2.0000 1.1791 2.1791 6.74× 106

LCRNN_se 0.9984 0.2710 6.83× 10−4 1.2694 1.9978 1.2703 2.2688 3.97× 102

GCRNN_se 1.0000 0.2968 2.72× 10−6 1.2968 2.0000 1.2968 2.2968 1.09× 105

Table A2. AUC values for the ablation study on Urban dataset. (The best is in bold).

AUC(D,F)
↑

AUC(D,τ)
↑

AUC(F,τ)
↓

AUCJAD
↑

AUCJBS
↑

AUCADBS
↑

AUCOADP
↑

AUCSNPR
↑

CRNN 0.9973 0.0899 2.45× 10−5 1.0872 1.9973 1.0899 2.0872 3.66× 103

CRNN+ 0.9964 0.1604 1.06× 10−4 1.1567 1.9963 1.1603 2.1566 1.51× 103

LCRNN 0.9960 0.2255 1.22× 10−4 1.2215 1.9958 1.2254 2.2214 1.85× 103

GCRNN 0.9961 0.0640 7.01× 10−5 1.0602 1.9961 1.0640 2.0601 9.14× 102

CRNN_se 0.9979 0.0504 1.30× 10−6 1.0483 1.9979 1.0504 2.0483 3.88× 104

LCRNN_se 0.9935 0.2495 2.09× 10−3 1.2430 1.9914 1.2474 2.2410 1.20× 102

GCRNN_se 0.9964 0.0828 1.87× 10−5 1.0792 1.9964 1.0827 2.0791 4.43× 103

Table A3. AUC values for the ablation study on XiongAn dataset. (The best is in bold).

AUC(D,F)
↑

AUC(D,τ)
↑

AUC(F,τ)
↓

AUCJAD
↑

AUCJBS
↑

AUCADBS
↑

AUCOADP
↑

AUCSNPR
↑

CRNN 1.0000 0.2718 7.48× 10−6 1.2718 2.0000 1.2718 2.2718 3.63× 104

CRNN+ 1.0000 0.5173 5.70× 10−3 1.5173 1.9943 1.5116 2.5116 90.7
LCRNN 0.9999 0.4930 8.02× 10−3 1.4929 1.9919 1.4850 2.4849 61.5
GCRNN 0.9998 0.2706 1.38× 10−4 1.2704 1.9997 1.2704 2.2703 1.96× 103

CRNN_se 1.0000 0.3773 4.89× 10−5 1.3773 2.0000 1.3773 2.3773 7.71× 103

LCRNN_se 0.9999 0.5628 6.30× 10−3 1.5627 1.9936 1.5565 2.5565 89.4
GCRNN_se 1.0000 0.4389 3.07× 10−3 1.4389 1.9969 1.4359 2.4359 1.43× 102

Table A4. AUC values for the ablation study on HYDICE dataset. (The best is in bold).

AUC(D,F)
↑

AUC(D,τ)
↑

AUC(F,τ)
↓

AUCJAD
↑

AUCJBS
↑

AUCADBS
↑

AUCOADP
↑

AUCSNPR
↑

CRNN 0.9999 0.1570 9.75× 10−7 1.1570 1.9999 1.1570 2.1570 1.61× 105

CRNN+ 0.9990 0.3518 1.05× 10−3 1.3508 1.9979 1.3508 2.3498 3.36× 102

LCRNN 0.9998 0.3038 4.51× 10−4 1.3037 1.9994 1.3034 2.3032 6.74× 102

GCRNN 0.9981 0.2572 1.19× 10−3 1.2553 1.9969 1.2560 2.2541 2.15× 102

CRNN_se 0.9997 0.1562 1.62× 10−6 1.1559 1.9997 1.1562 2.1558 9.63× 104

LCRNN_se 0.9948 0.3070 2.94× 10−3 1.3018 1.9918 1.3041 2.2989 1.04× 102

GCRNN_se 0.9990 0.2150 2.41× 10−4 1.2140 1.9988 1.2147 2.2138 8.92× 102
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Table A5. AUC values for the ablation study on Gulfport dataset. (The best is in bold).

AUC(D,F)
↑

AUC(D,τ)
↑

AUC(F,τ)
↓

AUCJAD
↑

AUCJBS
↑

AUCADBS
↑

AUCOADP
↑

AUCSNPR
↑

CRNN 0.9955 0.0843 3.32× 10−9 1.0799 1.9955 1.0843 2.0799 2.54× 107

CRNN+ 0.9961 0.1347 2.18× 10−5 1.1308 1.9961 1.1347 2.1308 6.19× 103

LCRNN 0.9953 0.0934 1.45× 10−5 1.0887 1.9953 1.0933 2.0887 6.42× 103

GCRNN 0.9904 0.0956 1.64× 10−5 1.0861 1.9904 1.0956 2.0861 5.81× 103

CRNN_se 0.9977 0.0445 7.68× 10−8 1.0422 1.9977 1.0445 2.0422 5.79× 105

LCRNN_se 0.9930 0.2548 7.33× 10−3 1.2478 1.9856 1.2475 2.2404 34.7
GCRNN_se 0.9963 0.0504 3.90× 10−6 1.0468 1.9963 1.0504 2.0467 1.29× 104

Table A6. AUC values for the ablation study on SanDiego dataset. (The best is in bold).

AUC(D,F)
↑

AUC(D,τ)
↑

AUC(F,τ)
↓

AUCJAD
↑

AUCJBS
↑

AUCADBS
↑

AUCOADP
↑

AUCSNPR
↑

CRNN 0.9965 0.0368 1.18× 10−5 1.0333 1.9965 1.0368 2.0333 3.11× 103

CRNN+ 0.9940 0.1284 8.51× 10−4 1.1224 1.9932 1.1275 2.1216 1.51× 102

LCRNN 0.9926 0.1197 1.05× 10−3 1.1123 1.9916 1.1186 2.1112 1.14× 102

GCRNN 0.9960 0.0513 7.98× 10−5 1.0473 1.9959 1.0512 2.0472 6.43× 102

CRNN_se 0.9915 0.0322 1.74× 10−4 1.0237 1.9913 1.0321 2.0236 1.85× 102

LCRNN_se 0.9855 0.0167 2.31× 10−3 1.0022 1.9832 1.0144 1.9999 7.22
GCRNN_se 0.9915 0.0634 5.38× 10−4 1.0549 1.9909 1.0629 2.0544 1.18× 102

Appendix B

Table A7. Analysis of parameter C on the eight AUC values. (The best of each dataset is in bold).

Dataset C AUC(D,F)
↑

AUC(D,τ)
↑

AUC(F,τ)
↓

AUCJAD
↑

AUCJBS
↑

AUCADBS
↑

AUCOADP
↑

AUCSNPR
↑

Beach

5 0.9999 0.1939 2.70× 10−5 1.1938 1.9998 1.1939 2.1937 7.17× 103

10 0.9999 0.2776 5.54× 10−5 1.2775 1.9998 1.2776 2.2775 5.01× 103

15 1.0000 0.2803 7.75× 10−9 1.2803 2.0000 1.2803 2.2803 3.62× 107

20 0.9998 0.2025 3.58× 10−5 1.2023 1.9998 1.2025 2.2023 5.66× 103

Urban

5 0.9956 0.0668 7.81× 10−6 1.0624 1.9956 1.0668 2.0624 8.55× 103

10 0.9961 0.0479 2.03× 10−5 1.0439 1.9960 1.0479 2.0439 2.36× 103

15 0.9973 0.0899 2.45× 10−5 1.0872 1.9973 1.0899 2.0872 3.66× 103

20 0.9974 0.0879 7.96× 10−6 1.0853 1.9974 1.0879 2.0853 1.10× 104

XiongAn

5 1.0000 0.2931 5.53× 10−6 1.2931 2.0000 1.2931 2.2931 5.30× 104

10 0.9999 0.3401 1.77× 10−6 1.3401 1.9999 1.3401 2.3400 1.92× 105

15 1.0000 0.2718 7.48× 10−6 1.2718 2.0000 1.2718 2.2718 3.63× 104

20 1.0000 0.2789 5.50× 106 1.2789 2.0000 1.2789 2.2788 5.07× 104

HYDICE

5 0.9999 0.1788 3.61× 10−7 1.1788 2.0000 1.1788 2.1788 4.95× 105

10 0.9999 0.1873 2.22× 10−6 1.1872 1.9999 1.1873 2.1872 8.43× 104

15 0.9999 0.1570 9.75× 10−7 1.1570 1.9999 1.1570 2.1570 1.61× 105

20 0.9999 0.2152 1.34× 10−6 1.2151 1.9999 1.2152 2.2151 1.60× 105

Gulfport

5 0.9521 0.0098 2.54× 10−4 0.9619 1.9519 1.0095 1.9616 38.4
10 0.9919 0.0883 2.99× 10−5 1.0802 1.9918 1.0883 2.0802 2.95× 103

15 0.9955 0.0843 3.32× 10−9 1.0799 1.9955 1.0843 2.0799 2.54× 107

20 0.9534 0.0077 7.88× 10−4 0.9611 1.9526 1.0069 1.9604 9.79

SanDiego

5 0.9928 0.0249 4.76× 10−4 1.0176 1.9923 1.0244 2.0172 52.3
10 0.9866 0.0012 3.81× 10−4 0.9878 1.9862 1.0008 1.9874 3.12
15 0.9965 0.0368 1.18× 10−5 1.0333 1.9965 1.0368 2.0333 3.11× 103

20 0.9906 0.0143 2.85× 10−4 1.0049 1.9903 1.0140 2.0046 50.2
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