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Abstract: The tremendous advancement of cities has caused changes to the urban subsurface. Urban
climate problems have become increasingly prominent, especially with regard to the intensification
of the urban heat island (UHI) effect. The local climate zone (LCZ) is a new quantitative method for
analyzing urban climate that is based on the kind of urban surface and can effectively deal with the
problem of the hazy distinction between urban and rural areas in UHI effect research. LCZs are widely
used in regional climate modeling, urban planning, and thermal comfort surveys. Existing large-scale
LCZ classification methods usually use visual features of optical images, such as spectral and textural
features. There are many problems with hyperspectral LCZ extraction over large areas. LCZ is an
integrated concept that includes features of the geography, society, and economy. Consequently, it
makes sense to consider the characteristics of human activity and the visual features of the images to
interpret them accurately. ALOS_DEM data can depict the city’s physical characteristics; however,
images of nighttime lights are crucial indicators of human activity. These three datasets can be used
in combination to portray the urban environment. Therefore, this study proposes a method for
fusing daytime and nighttime data for LCZ mapping, i.e., fusing daytime Zhuhai-1 hyperspectral
images and their derived feature indices, ALOS_DEM data, and nighttime light data from Luojia-1.
By combining daytime and nighttime information, the proposed approach captures the temporal
dynamics of urban areas, providing a more complete representation of their characteristics. The
integration of the data allows for a more refined identification and characterization of urban land
cover. It comprehensively integrates daytime and nighttime data, exploits synergistic information
from multiple sources, and provides higher accuracy and resolution for LCZ mapping. First, we
extracted various features, namely spectral, red-edge, and textural features, from the Zhuhai-1 images,
ALOS_DEM data, and nighttime light data from Luojia-1. Random forest (RF) and XGBoost classifiers
were used, and the average impurity reduction method was employed to assess the significance of
the variables. All the input variables were optimized to select the best combination of variables. The
results from a study of the 5th ring road area of Beijing, China, revealed that the technique achieved
LCZ mapping with good precision, with a total accuracy of 87.34%. In addition, to examine and
contrast the effects of various feature indices on the LCZ classification accuracy, feature combination
methods were used. The results of the study showed that the accuracies of LCZ classification in terms
of spectral and textural were improved by 2.33% and 2.19% using the RF classifier, respectively. The
radiation brightness value (RBV) (GI value = 0.0212) attained the classification’s highest variable
importance value; the DEM also produced a high GI value (0.0159), indicating that night lighting and
landform features strongly influence LCZ classification.

Keywords: hyperspectral remote sensing; local climate zones; multi-classifier; Zhuhai-1 images;
nighttime light
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1. Introduction

Cities are spatial collections of human activities acting on the natural environment
and are vital to the advancement of human society. The advancement of urbanization
has led to changes in the urban substratum. The local climate of cities has significantly
changed, especially the urban heat island (UHI) effect, which has progressively gotten
worse [1,2]. One of the most serious environmental issues brought on by urbanization is
the UHI effect [3–5]. Statistics show that China’s UHI has grown during the past 50 years
by 0.11 ◦C on average [6]. One of the most used metrics for illustrating the size of an urban
heat island is its intensity. It is calculated by comparing the temperatures in urban and
suburban areas [7,8]. A current challenge is to objectively select representative temperatures
for urban and suburban areas and to establish a universal quantitative evaluation system
for heat islands.

On the basis of the urban climate zone classification system, Stewart and Oke [9]
created the local climate zone (LCZ). The LCZ system allows the division of the regional
climate into local climates according to the substratum type in the city and surrounding
areas. It is used to characterize temperature differences between different land surfaces in
order to improve the understanding of the impact of surface characteristics, urban design,
and human activity on heat distribution and urban thermal environment variability [10–12].
Local climate zones have the same ground cover areas, similar urban structure and building
materials, and similar human activities on a horizontal scale of a few hundred to a few
kilometers [9]. A crucial foundation for the understanding of UHI effects and normative
global temperature observations is provided by the LCZ classification.

Compared to traditional urban heat island research methods, the LCZ provides a new
and relatively more scientific calculation method for quantitatively studying the urban
heat island. In addition, the LCZ approach allows for a good correlation between the
urban environmental and climatic elements, facilitating urban wind and thermal envi-
ronment improvement from an urban planning perspective. The LCZ maps can be used
to extract comprehensive data on habitations, which can help with monitoring, evaluat-
ing, and providing relevant data for the Sustainable Development Goals (SDGs), notably
SDG 11 in particular (sustainable cities and communities) [13]. Using the LCZ paradigm,
Danylo et al. [14] analyzed the availability of suitable and secure housing and the practice
of sustainable urbanization.

The system for classifying LCZs consists of two main types, namely building types
and land cover types. There are ten basic zoning types for the building types, subdivided
according to high, medium, and low building heights, materials for construction, and
human activity. The nature type consists of seven main zoning types [9].

Traditional studies based on the UHI effect have blurred the dichotomy between urban
and suburban areas, which vary considerably by location; these studies fail to provide
information about the surface morphology, physical structure, and local thermal climate.
This problem has been solved by introducing LCZ, which can be used as a common
standard for describing cities worldwide [15]. The World Urban Database and Portal Tool
(WUDAPT) project [8,16] proposes a method for global LCZ mapping using open-source
software and Landsat data based on this background [17,18]. Ren et al. [19] generated LCZ
maps based on site-specific operations adhering to the typical WUDAPT processing flow
for 20 cities and 3 key economic areas in China. WUDAPT is a pixel-based categorization
approach that mostly ignores spatial information and has a low level of accuracy.

In addition to the WUDAPT project’s standard output, optical remote sensing data
have been the primary focus of LCZ classification research [20–22]. Xu et al. [23] proposed
using Landsat and ASTER to generate excellent LCZ classification outcomes. The proposed
method, which combines spectral and textural information, achieved superior outcomes
compared to the conventional LCZ mapping technique, which relied solely on the spectrum
information of Landsat data, according to experimental findings in two high-density cities
in China. Hu et al. [24] first attempted to map local climate zone classifications globally
using the freely accessible Sentinel-1 dual-Pol dataset. Feature importance analyses revealed
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that the features linked to VH polarization data were the most influential in producing the
final classification results. He et al. [25] proposed a coupling method to combine the Landsat
remote sensing data-based WUDAPT method with a road network classification method
based on parcel delineation; the proposed method was validated with actual land use and
construction survey data from Xi’an city, and the outcomes demonstrated the method’s
respectable accuracy. Sentinel-2 and Landsat-8 pictures, as well as nighttime light (NTL)
data from the Visible Infrared Imager Radiometer Suite (VIIRS), were used by Qiu et al. [26]
to categorize LCZs. They discovered that NTL could improve the classification precision of
LCZs with only a small number of samples.

The classification of LCZs plays a crucial role in understanding and analyzing urban
climate and has important implications for urban planning, environmental management,
and human well-being. The existing studies have mainly used satellite images, such
as Sentinel-2 multispectral images, to classify LCZs using machine learning techniques.
These approaches have provided valuable insights into urban climatology. However,
they often face challenges in accurately distinguishing between urban and rural areas,
especially in areas with hazy atmospheric conditions. To address this limitation, we
explored the potential of using Zhuhai-1 hyperspectral imagery, which provides higher
spectral resolution than conventional multispectral imagery. The finer spectral bands
provided by Zhuhai-1 can capture more detailed information about the urban surface,
allowing us to extract relevant features for LCZ classification. By using the feature indices
derived from the hyperspectral data, we aimed to improve the classification accuracy and
the distinction between urban and rural areas [27]. In addition to the hyperspectral images,
we also incorporated ALOS_DEM data. Elevation data can provide valuable insights into
the topographic features of an area that influence local climate patterns. Incorporating
ALOS_DEM data into our classification approach allowed us to consider topographic
variations and their effects on the formation of different LCZs [24,28]. In addition, we
incorporated nighttime light data from Luojia-1 into our approach. Nighttime light data
provide information on the intensity and distribution of artificial lighting, which is closely
related to urbanization and land use patterns. By incorporating nighttime light data, we
aimed to capture the spatial patterns in urban areas and their impact on local climatic
conditions. This additional data source enhances the distinction between different LCZ
classes, especially in areas with hazy atmospheric conditions where it may be difficult to
distinguish effectively between urban and rural areas with traditional daytime images [26].

Our approach surpasses the limitations of existing models and achieves excellent
quantitative results in terms of accuracy, precision, and other relevant metrics. By fusing
multiple data sources, including daytime Zhuhai-1 hyperspectral images, derived feature
indices, ALOS_DEM data, and nighttime light data from Luojia-1, our model significantly
improves the classification and characterization of urban LCZs. Unlike traditional meth-
ods that rely on single-source data or ignore temporal variations, our approach includes
both daytime and nighttime information. This integration captures the diurnal dynamics
of urban areas, resulting in a more accurate and comprehensive understanding of LCZ
patterns. By considering a broader range of factors, our model achieves a higher level of
accuracy and provides greater reliability for urban LCZ classification. In direct comparison
with state-of-the-art models, our approach shows significant quantitative improvements.
Our model outperforms the existing methods through meticulous data fusion and ad-
vanced modeling techniques and demonstrates its ability to produce more accurate and
detailed LCZ maps. These improvements advance the LCZ mapping field and open new
possibilities for urban planning, environmental monitoring, and related applications.

This study proposes a method for fusing daytime hyperspectral imagery and nighttime
light data for LCZ mapping, i.e., fusing daytime Zhuhai-1 images and their derived feature
indices, ALOS_DEM data, and the nighttime lighting data of Luojia-1, to construct 16 LCZ
classifications for Beijing’s fifth ring road area; these classifications can support urban
climate planning and design. The study’s goals are as follows:
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• To incorporate many machine learning techniques and features extracted from satellite
observation, including spectral, red-edge, textural, and landform features and NTL,
for LCZ mapping;

• To explore the potential of using hyperspectral images and their derived feature
indices, DEM data, and nighttime lighting data in LCZ classification;

• To assess the variable importance of multiple features on LCZ classifications.

2. Study Area and Datasets
2.1. Study Area

Figure 1a presents a description of the research field in the central part of Beijing,
China, within the 5th ring road area (116◦10′–116◦40′ E and 39◦40′–40◦10′ N), covering
approximately 850 km2. Beijing is recognized as the economic, political, and cultural center
of China. Beijing’s urban area is encircled by ring roads that go around the forbidden
city. The area’s western, northern, and northeastern sides encompass mountains, while the
southeastern side slopes gently toward the Bohai Sea.
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Figure 1. (a) The location of research area in Beijing; (b) RGB composition of the hyperspectral images
(656 nm, 566 nm, and 480 nm); and (c) Luojia-1 image.

The LCZ classification system categorizes the study area with 2 primary categories
and 17 sub-categories. While LCZs A to G are sparsely populated areas that are generally
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defined based on the type of ground cover, LCZs 1 to 10 are built-up areas that are mostly
categorized based on their spatial morphological characteristics. The 17 LCZs meet the
minimum categories for the global urban–rural study environment. It is possible to add or
subtract from the LCZ classification when considering the local characteristics and to adjust
the parameter ranges of some of these categories based on the local spatial morphology of
the city. With regard to the urbanization process and characteristics of the study area, the
16 LCZ types employed in this investigation are listed in Table 1 below [9].

Table 1. Table of LCZ classification systems.

LCZ Type Schematic LCZ Type Schematic

LCZ-1
compact high-rise
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2.2. Datasets

The Zhuhai-1 and Luojia-1 satellites collected, respectively, the day hyperspectral and
night light pictures used in this investigation. Table 2 displays the main parameters of the
Zhuhai-1 image and the Luojia-1 image.

The Zhuhai-1 image has 32 bands with coverage from 400 to 1000 nm and a resolu-
tion of 10 m. They provide rich spectral information for LCZ classification and help to
distinguish ground features better. The cloud-free Zhuhai-1 images were acquired on 9
September and 1 November 2020, as shown in Figure 1b.
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Table 2. Zhuhai-1 and Luojia-1 satellite parameters.

Zhuhai-1 ALOS Luojia-1

Spatial resolution (m) 10 12.5 130
Orbital altitude (km) 500 691.65 634

Weight (kg) 67 4000 20
Imaging range (km2) 150 × 2500 35 × 35 260 × 260

Number of spectral bands 32 4 1
Spectral range (nm) 400–1000 520–770 480–800
Operational orbit (◦) 98 98.16 /

The DEM data source was made using a resampled 12.5 m resolution DEM that was
formed based on ALOS satellite data.

The Luojia-1 satellite carries a high-sensitivity nighttime light camera with a 130 m
ground resolution accuracy and a 260 km wide light imaging capability for the precise
identification of roads and neighborhoods [29]. The Luojia-1 imagery used was collected in
2018, as shown in Figure 1c.

The road network was acquired in 2021 from the Open Street Map (OSM). We repre-
sented block boundaries using the network, with blocks considered the basic unit of the
LCZ mapping [30,31]. As LCZs in parcels directly delineated by the OSM can be heteroge-
neous and mixed, we further divided the mixed zones into purer sub-blocks in order to
label the attributes of the blocks. Finally, 7070 sub-districts were generated based on the
road network. In order to manually interpret the ground reference of the LCZs based on
the field survey, open-source geographic data sources such as sites of interest and street
view pictures were used [32].

3. Methodology

Figure 2 depicts the six essential processes that make up the research workflow.
(1) multi-feature extraction, including spectral, red-edge, textural, and landform features
and nighttime lighting; (2) sample selection, categorized as training and validation datasets;
(3) feature optimization, the optimal combination of variables for LCZ classification was
selected using an average impurity reduction approach; (4) classifier use, in which the best
combination of variables for LCZ classification was selected from two machine learning
methods, namely random forest (RF) and XGBoost algorithms, in order to select the best
classifier for LCZ classification; (5) experimental design, in which seven scenarios using
different input features were designed; and (6) accuracy evaluation and the results of
the analysis.

3.1. Multi-Feature Extraction

Feature extraction enables the full use of the Zhuhai-1 images’ rich spectral and spatial
information. Table 3 lists the features employed in this investigation, including spectral,
red-edge, textural, and landform features and nighttime lighting, for the subsequent LCZ
classification. As shown in the table, the original bands were the Zhuhai-1 data original
bands (OBs) 1–32; the spectral features included NDVI, NDWI, RVI, DVI, EVI, and GCI. The
red-edge features included NDVIre, CIre, and MSRre. The health of the plants is frequently
evaluated using NDVIre, while the amount of chlorophyll in the canopy is determined
using CIre. The distinct indicators of the gray-level co-occurrence matrix (GLCM) reflect
distinct textural properties. On the Zhuhai-1 images, we ran a principal component analysis.
To obtain the eigenvalues of the 32 principal components, we next used the covariance
matrix approach. The first principal component was selected to calculate the GLCM, namely
the mean, variance, homogeneity, contrast, dissimilarity, entropy, angular second moment,
and correlation [23,33]. In particular, the landform feature DEM data source was made
using a resampled 12.5m resolution DEM, formed based on ALOS satellite data. Finally,
we extracted the nighttime lighting features, i.e., the radiometric brightness values (RBV)
of Luojia-1 [34].
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Table 3. Detailed characterization of the indicators for this study.

Category Feature Input Band Output Number of Features Reference

Original band Spectral information B1, B2 . . . . . . B32 32 [23]

Spectral features

Normalized Difference Vegetation
Index

(NDVI)

NIR: B23-B29
R: B11-B14 28 [35]

Normalized Difference Water Index
(NDWI)

NIR: B23-B29
G: B3-B7 35 [36]

Ratio Vegetation Index (RVI) NIR: B23-B29
R: B11-B14 28 [37]

Difference Vegetation Index (DVI) NIR: B23-B29
R: B11-B14 28 [38]

Enhanced Vegetation Index (EVI)
NIR: B23-B29

R: B11-B14
B: B1, B2

56 [39]

Green Chlorophyll Vegetation Index
(GCI)

NIR: B23-B29
G: B3-B7 35 [40]

Red-edge features

Red-edge
Normalized
Difference
Vegetation

Index (NDVIre)

NIR: B23-B29
RE: B15-B20 42

[41]

Red-edge
Chlorophyll
Index (CIre)

NIR: B23-B29
RE: B15-B20 42

Modified Red-edge Simple Ratio
Index (MSRre)

NIR: B23-B29
RE: B15-B20 42

Textural features
Gray-level

Co-occurrence
Matrix (GLCM)

The first principal
component of the
Zhuhai-1 images

8 [23]

Landform features Digital Elevation Model (DEM) ALOS data resampling 1 /

Nighttime lighting Radiation Brightness Value (RBV) Luojia-1 Image 1 [32]
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3.2. Sample Collection

We identified sixteen LCZ categories based on the spectral data from the Zhuhai-1
images and the field assessment of the research area. By using the high-resolution Zhuhai-1
images and Google Earth images with comparable imaging times, we classified the sample
classes. The eigenvalues were obtained according to their properties from the respective
sample blocks. Finally, the samples were split into 80% training and 20% validation using
random sampling. Table 4 shows the number of samples selected for the sixteen LCZ types.

Table 4. Number of samples selected from the 16 local climate zones.

Type Number of Training Samples Number of Validation Samples

LCZ-1
compact high-rise 104 22

LCZ-2
compact mid-rise 172 44

LCZ-3
compact low-rise 229 63

LCZ-4
open high-rise 760 196

LCZ-5
open mid-rise 806 196

LCZ-6
open low-rise 474 106

LCZ-7
lightweight low-rise 35 19

LCZ-8
large low-rise 301 63

LCZ-9
sparsely built 370 76

LCZ-A
dense trees 242 58

LCZ-B
scattered trees 55 11

LCZ-C
bush or scrub 48 12

LCZ-D
low plants 394 108

LCZ-E
bare rock or paved 852 230

LCZ-F
bare soil or sand 599 159

LCZ-G
water 215 51

3.3. Feature Optimization

Feature optimization makes it possible to better comprehend the significance of the
features and is essential to the avoidance of computational inefficiencies and to the im-
provement of the classification accuracy of high-dimensional data. We use the Gini index
(GI) (i.e., the average reduction in impurities) to evaluate each variable’s significance [42].
The average error reduction for each feature is represented by the GI, which is calculated
using the RF classifier’s structural data [43].

GI(P) = ∑K
k=1 Pk(1− Pk) = 1−∑K

k=1 P2
k (1)

where Pk is the likelihood that the sample belongs to class k, k stands for the kth class,
and GI(P) represents the GI value. Generally, a higher GI value denotes that the relevant
variable has a significant influence on the classification. All the sample variable values were
first extracted via the feature optimization stages. Secondly, the RF classifier was trained
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using the samples. Thirdly, the variable with the least importance was determined by
ranking all the variables according to their GI values. Fourthly, the variables with the least
importance were eliminated from the input parameters. The feature values of the newly
combined variables for the sample were then retrieved and re-input into the RF classifier
for training. The procedure was repeated until there were no more input variables. The
variable terms and classification accuracies for each RF training were recorded during the
iterative process. Finally, all the recorded accuracies were ranked to discover the optimal
classification results and their corresponding variable terms, and the optimal variable
combinations were output.

3.4. Classifiers

Two classifiers label LCZs, including Random Forest [44] and XGBoost [45].

(1) Random forests have been extensively employed for categorization [46–48] and regres-
sion [49–51] in remote sensing. The recursive bifurcation method is used by the RF
algorithm, which is based on categorical regression trees, to reach the tree structure’s
final node [44]. Different decision trees can be used to train samples and forecast re-
sults in the RF classifier, which comprises many decision trees. Every tree generates its
own prediction. The RF then integrates its votes to anticipate the result by computing
the votes in each decision tree [52]. As a result, as compared to individual decision
trees, the RF model can greatly enhance the classification results. Furthermore, the RF
does well with outliers and noise, successfully avoiding overfitting [12]. Numerous
fields have successfully used this technique with positive outcomes. The RF method
is superior to many other methods in that it records full data with high accuracy,
minimal grading, and no parameters [53].

(2) The XGBoost (extreme gradient boosting) classifier is a tree-integration-based machine
learning algorithm for binary or multiclassification problems. It is a gradient boosting
framework that trains multiple weak classifiers and combines them into a single strong
classifier to improve prediction accuracy. XGBoost uses an optimization algorithm that
continuously adds new weak classifiers during training and optimizes the predictive
power of each weak classifier using gradient boosting methods to minimize the
loss function [45]. It can carry out multiple weak assessments of data collecting by
condensing the modeling outcomes of the weak assessments. In addition, the XGBoost
approach effectively handles classification and regression issues to produce more
data than individual methods [54,55]. XGBoost also has an adaptive regularization
capability to prevent overfitting and improve generalization ability [56]. Due to its
efficiency and accuracy, one of the most widely used machine learning algorithms
is XGBoost.

3.5. Experimental Design

We used the GI approach to optimize the features and then chose the top features for
LCZ mapping. To further investigate how certain features affect LCZ classification, based on
the outcomes of the feature optimization, we created seven alternative variable combination
tests. The seven feature combination schemes were created to examine how different input
feature variables performed in LCZ mapping. The feature combination schemes are detailed
in Table 5. As shown in Table 5, Experiment 1 only used the original band as an input
feature to assess how it affected LCZ mapping. Experiments 2 to 6 combined spectral,
red-edge, textural, and landform features and nighttime lighting with the original bands to
analyze and compare the roles of the added features in improving LCZ mapping accuracy.
Exp. 7 included optimal variables for all feature classes, i.e., the original bands, spectral,
red-edge, textural, and landform features and nighttime lighting, to explore the impact of
multi-feature combinations on LCZ mapping.
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Table 5. Seven feature combination schemes for LCZ classification.

Experiment Original
Band

Spectral
Features

Red-Edge
Features

Textural
Features

Landform
Features

Nighttime
Lighting

1
√

2
√ √

3
√ √

4
√ √

5
√ √

6
√ √

7 Optimal variables combination

3.6. Accuracy Evaluation

In order to properly analyze remote sensing image classification, accuracy evaluation is
a crucial step which provides an important basis for analyzing the classification results [57].
To assess the precision of the LCZ classification, we used the confusion matrix [58]. A
common method for evaluating accuracy, the confusion matrix primarily compares the
level of misunderstanding between categorization results and actual measurements [59].
It has been widely used in studies on the classification of remote sensing images [60,61].
The confusion matrix displays the overall sample count for each category as well as the
number of ordered and unreturned samples. The producer accuracy (PA), user accuracy
(UA), overall accuracy (OA), and kappa coefficient, which show categorization accuracy
from various perspectives, are the evaluation metrics of the confusion matrix. The overall
classification accuracy is represented by the OA and kappa. The OA measures how many
samples have been correctly identified out of all the samples. The kappa coefficient consid-
ers every component of the confusion matrix. With the UA commission error assessment
and the PA omission error measurement, higher UA and PA indicate the categorization
accuracy of specific categories [62].

4. Results
4.1. Results of Feature Optimization

We tested the varied OA values linked to various input variables, and Figure 3 shows
the trend of OA with the input variables. The highest classification accuracy (OA = 87.34%)
was achieved when the number of input variables was 73. OA increased rapidly as the
input variables increased from 0 to 16. This indicates that with fewer input variables, the
correlation between variables was negligible and that there was less redundancy when the
classifier had higher classification efficiency and accuracy. As the number of input variables
increased from 17 to 73, a slowly growing trend of OA was observed. The increase in the
number of input variables from 74 to 378 caused the OA to stabilize. Due to increased data
redundancy and correlation between factors, the performance of the classifier declined with
an increase in the quantity of input variables. The efficiency and accuracy of classification
also declined.

Table 6 reveals the distribution of the 73 ideal variables, which included 4 original
bands, 56 spectral features, 3 red-edge features, 8 texture features, 1 landform feature, and
1 nighttime light. Therefore, 73 variables were selected for the subsequent LCZ mapping.

4.2. Results of LCZ Classification

Table 7 displays the LCZ classification accuracy using the RF and XGBoost classifiers.
The table shows that with an OA value of 87.34% and a kappa coefficient of 0.86 the RF
classifier produced the highest level of accuracy. The XGBoost classifier had slightly lower
classification accuracy (OA value of 86.07% and a kappa coefficient of 0.85). In conclusion,
the RF classifier outperformed the XGBoost classifier in terms of accuracy and had a clear
advantage in recognizing LCZs.



Remote Sens. 2023, 15, 3351 11 of 23

Remote Sens. 2023, 15, x FOR PEER REVIEW 11 of 24 
 

 

[57]. To assess the precision of the LCZ classification, we used the confusion matrix [58]. 
A common method for evaluating accuracy, the confusion matrix primarily compares the 
level of misunderstanding between categorization results and actual measurements [59]. 
It has been widely used in studies on the classification of remote sensing images [60,61]. 
The confusion matrix displays the overall sample count for each category as well as the 
number of ordered and unreturned samples. The producer accuracy (PA), user accuracy 
(UA), overall accuracy (OA), and kappa coefficient, which show categorization accuracy 
from various perspectives, are the evaluation metrics of the confusion matrix. The overall 
classification accuracy is represented by the OA and kappa. The OA measures how many 
samples have been correctly identified out of all the samples. The kappa coefficient con-
siders every component of the confusion matrix. With the UA commission error assess-
ment and the PA omission error measurement, higher UA and PA indicate the categori-
zation accuracy of specific categories [62]. 

4. Results 
4.1. Results of Feature Optimization 

We tested the varied OA values linked to various input variables, and Figure 3 shows 
the trend of OA with the input variables. The highest classification accuracy (OA = 87.34%) 
was achieved when the number of input variables was 73. OA increased rapidly as the 
input variables increased from 0 to 16. This indicates that with fewer input variables, the 
correlation between variables was negligible and that there was less redundancy when the 
classifier had higher classification efficiency and accuracy. As the number of input varia-
bles increased from 17 to 73, a slowly growing trend of OA was observed. The increase in 
the number of input variables from 74 to 378 caused the OA to stabilize. Due to increased 
data redundancy and correlation between factors, the performance of the classifier de-
clined with an increase in the quantity of input variables. The efficiency and accuracy of 
classification also declined. 

 
Figure 3. Trend of OA with the quantity of input variables. The red circle indicates the number of 
variables that reach the highest accuracy. 

Figure 3. Trend of OA with the quantity of input variables. The red circle indicates the number of
variables that reach the highest accuracy.

Table 6. Distribution of 73 optimal variables.

Feature Optimal Variable Selection Number

Original band B2, B16, B30, B31 4

Spectral features

NDWI23_5, DVI23_13, EVI23_11_1, EVI23_11_2,
EVI23_12_1, EVI23_12_2, EVI23_13_1, EVI23_13_2,
EVI23_14_2, EVI24_11_1, EVI24_11_2, EVI24_12_1,
EVI24_12_2, EVI24_13_1, EVI24_13_2, EVI24_14_1,
EVI24_14_2, EVI25_11_1, EVI25_11_2, EVI25_12_1,
EVI25_12_2, EVI25_13_1, EVI25_13_2, EVI25_14_1,
EVI25_14_2, EVI26_11_1, EVI26_11_2, EVI26_12_2,
EVI26_13_1, EVI26_13_2, EVI26_14_1, EVI26_14_2,
EVI27_11_1, EVI27_11_2, EVI27_12_1, EVI27_12_2,
EVI27_13_1, EVI27_13_2, EVI27_14_1, EVI27_14_2,
EVI28_11_1, EVI28_11_2, EVI28_12_1, EVI28_12_2,
EVI28_13_1, EVI28_13_2, EVI28_14_2, EVI29_11_2,
EVI29_12_2, EVI29_13_1, EVI29_13_2, EVI29_14_1,

EVI29_14_2, GCI23_5, GCI23_7, GCI28_4

56

Red-edge features NDVIre24_19, CIre24_20, MSRre24_19 3

Textural features Mean, Variance, Homogeneity, Contrast,
Dissimilarity, Entropy, Second moment, Correlation 8

Landform features DEM 1
Nighttime light RBV 1
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Table 7. Results of LCZ classification accuracy of RF and XGBoost algorithm.

Type RF XGBoost
PA (%) UA (%) PA (%) UA (%)

1 72.73 100.00 84.21 88.89
2 81.82 100.00 74.47 100.00
3 77.78 100.00 78.46 100.00
4 89.29 81.02 87.98 80.90
5 83.67 83.67 89.83 85.95
6 84.91 90.91 81.82 86.09
7 100.00 100.00 100.00 100.00
8 88.89 93.33 83.33 87.30
9 89.47 85.00 89.80 84.62
A 89.66 89.66 76.79 82.69
B 100.00 100.00 100.00 100.00
C 100.00 100.00 100.00 100.00
D 87.96 95.96 82.80 82.80
E 92.17 84.13 88.99 82.55
F 83.65 81.10 86.67 89.14
G 92.16 100.00 84.31 87.76

OA (%) 87.34 86.07
Kappa 0.86 0.85

Figure 4a,b display the results of the LCZ categorization utilizing the ideal combination
of the RF and XGBoost classifier variables. Two sub-regions were chosen in order to show
their differences in spatial classification detail (Figure 4c,d). The red rectangle shown
in Figure 4c is LCZ-A (dense trees), and the black rectangle gives an example of LCZ-8
(large low-rise). We found that the two blocks were well identified using the RF classifier;
however, the XGBoost classifier misclassified them as LCZ-5 (open mid-rise). Similarly,
the red circle in Figure 4c gives an example of LCZ-2 (compact mid-rise) and shows that
the RF classifier could accurately classify that location; however, the XGBoost classifier
incorrectly classified it as LCZ-4 (open high-rise). In addition, the red rectangle in Figure 4d
shows LCZ-D (low plants). The RF classifier identified the block well but used the XGBoost
classifier to incorrectly classify it as LCZ-4. In Figure 4d, the red circle shows LCZ-6
(open low-rise), which the RF classifier identified correctly. Still, the XGBoost classification
incorrectly identified the block as LCZ-5 and LCZ-8. An example of an LCZ-5 is given in
the black rectangle in Figure 4d, showing that the XGBoost classifier could identify the
block well. Still, the RF classification incorrectly misclassified it as LCZ-8. Therefore, based
on the above analysis, the RF classifier is better suited to LCZ classification.

4.3. Classification Results for Multi-Feature Combinations

In this study, Zhuhai-1 images, a fresh supply of high spectral resolution data, and
the feature indices that were produced from them, i.e., spectral features, red-edge features,
and textural features, fused with ALOS_DEM images and Luojia-1 nighttime light data,
were used for the LCZ classification study. To examine the impact of various the feature
indices on the precision of the LCZ classification, six unoptimized schemes were developed
(Table 6). Figure 5 shows the OA of seven feature combinations using both RF and XGBoost
classifiers. Exp1 used only the original bands as input features, and the RF and XGBoost
algorithms achieved OAs of 82.96% and 80.83%, respectively. Exps 2 to 6 combined spectral,
red-edge, textural, and landform features and nighttime lights with the original bands,
respectively. The OA improved for both classifiers when the original bands were combined
with the additional features. Compared to the original bands alone, the OAs of the RF
algorithm increased by 2.33%, 1.34%, 2.19%, 1.91%, and 1.91%, respectively, and the OAs of
XGBoost increased by 4.60%, 4.17%, 4.38%, 1.98%, and 2.26%, accordingly. These findings
demonstrate how the accuracy of LCZ classification was considerably increased by the
spectral and textural data. Landform features and nighttime lighting were effective in
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enhancing the LCZ classification accuracy. These results are consistent with those of earlier
research [27,32,63]. Exp7 included optimal variables for all feature classes, i.e., original
band; spectral, red-edge, textural, and landform feature DEM; and NTL. Both classifiers
achieved the highest accuracies of 87.34% and 86.07%, respectively. It can be concluded
that multi-feature fusion improves LCZ mapping accuracy.
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Combining OBs and spectral features produced the most accurate results out of the
six unoptimized techniques (Figure 5). Spectral features are an important indicator for
vegetation monitoring as they identify vegetation and non-vegetation and capture different
vegetation types. Furthermore, combining optimized variables solved the data redundancy
problem and significantly improved the classification accuracy of the LCZ (Figure 5). The
classification accuracy was highest with a kappa coefficient of 0.86 and an OA of 87.34%.
Figure 6 shows a zoomed-in view of the LCZ results for the seven scenarios using RF
classifiers. Among the six unoptimized schemes, the LCZ mapping of Exp2 performed well
(Figure 6b), while Exp7 outperformed the others (Figure 6g).
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The classification outcomes for the six studies utilizing the RF classifier are displayed
in Figure 7. The classification accuracy results for the six systems are illustrated in detail in
Figure 8. Figure 5 shows the extent of the OA from 82.96% to 85.29%, indicating that the
input features influence the accuracy of LCZ classification.
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(1) Exp1, which used only the original bands as an input feature, showed the lowest
classification accuracy (Exp1: OA = 82.96%, kappa coefficient = 0.81). Most LCZs had
PA values above 80%, except for LCZ-1 (compact high-rise), LCZ-3 (compact low-rise),
and LCZ-F (bare soil and sand). The UA of LCZ-2 (compact mid-rise) and LCZ-G
(water) exceeded 90%.

(2) With regard to the six scenarios, Exp2’s original bands and spectral properties had the
best classification accuracy (Exp2: OA = 85.29%, kappa coefficient = 0.84). Aside from
that, LCZ-5 (open mid-rise) had the highest PA compared to the other experiments.
The UA of Exp2 reached 100% in LCZ-1, LCZ-2, LCZ-7 (lightweight low-rise), LCZ-B
(scattered trees), LCZ-C (bush or scrub), and LCZ-G. Similarly, the accuracy of the
original bands combined with the textural features as input features in Exp4 was
second only to Exp2 (Exp4: OA = 85.15%, kappa coefficient = 0.83). The GLCM helped
to improve the PA of LCZ-A (dense trees) and LCZ-E (bare rock or paved). The UA of
Exp4 reached 100% in LCZ-7, LCZ-B, and LCZ-G. In conclusion, the accuracy of the
LCZ classification was greatly increased by spectral and textural features.

(3) Exp5 used a combination of original bands and landform feature DEMs as input
features for classification (Exp5: OA = 84.87%, kappa coefficient = 0.83). The DEM
in Exp5 helped to improve the PA of LCZ-1, LCZ-6 (open low-rise), LCZ-A, LCZ-F,
and LCZ-G. The UA of Exp5 reached 100% in LCZ-1 and LCZ-B. Similarly, Exp6 used
original bands combined with nighttime lights as input features; only Exp5 had the
same accuracy. However, the RBV in Exp6 helped to improve the PA of LCZ-4 (open
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high-rise), LCZ-9 (sparsely built), LCZ-D (low plants), and LCZ-G. The UA of Exp6
reached 100% in LCZ-2, LCZ-B, and LCZ-C.

(4) Exp3 combined the original bands and red-edge features as input features with slightly
lower classification accuracy (Exp5: OA = 84.30%, kappa coefficient = 0.83). The UA
of Exp3 reached 100% for LCZ-2, LCZ-B, and LCZ-C.Remote Sens. 2023, 15, x FOR PEER REVIEW 17 of 24 
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5. Discussion
5.1. Variable Importance Analysis

It was necessary to investigate the significance of factors for the LCZ classification
due to the high spectral resolution of the Zhuhai-1 images. In order to analyze the variable
relevance of each feature class, we used the Gini index approach. Figure 9a–e illustrate the
top five significant variables for the original bands, spectral features, red-edge features,
textural features, and all input variables. Of the original bands, the NIR bands B30, B31, B32,
and B23 and the blue band B1 were the most crucial factors in LCZ classification, indicating
that the NIR bands played a crucial role in LCZ classification. GCI23_7, calculated from the
green band B7 and the NIR band B23, was the key factor affecting the spectral characteristics.
The key variables in the red-edge features were MSRre23_15, CIre24_19, and NDVIre23_20.
In addition, the GLCM was ranked in order of importance as mean > correlation > variance
> entropy > second moments. The first five input variables are shown in Figure 9e. The
variation in textural features, the three EVIs, and RBV were the three most crucial variables.
Each classification scheme had a different set of correlations between its variables since
two or more feature variables made up the input variables. The relative importance of
the variables was ranked in this manner in this study. The mean, for instance, is the most
crucial variable in Figure 9d’s texture feature, whereas Figure 9f’s variance is the variable
that performs the best overall.
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Figure 10 shows the importance ranking of the 73 optimal variables in the LCZ
classification. First, RBV (GI value = 0.0212) attained the classification’s highest variable
importance value, indicating that night lighting strongly influences LCZ classification.
GCI23_7 had a GI value of 0.0211, and DVI23_13 also produced a high GI value (0.0198),
demonstrating the importance of vegetation indices for LCZ mapping. The DEM also
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produced a high GI value (0.0159), indicating that landform features strongly influence
LCZ classification. The original bands had better classification performance (they all had
GI values above 0.016); the textural features had relatively low GI values (most of them
had GI values below 0.015). In summary, the variables in descending order of importance
are nighttime lighting > original bands > landform feature > red-edge features > spectral
features > textural features.
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5.2. Comparison with Existing Methods

LCZ classification using remotely sensed data has been the subject of numerous prior
studies, and many researchers have concentrated on introducing new data sources or
classification techniques [23,24,26,64–66]. Furthermore, the accuracy of LCZ classification
can be greatly improved by using the specific measurements that the derived features offer
to identify features. Because of this, it is essential to investigate the potential and worth
of novel remote sensing data sources and their derivation features in LCZ classification
applications. This study combined a new multi-source remote sensing data combination
approach; Zhuhai-1 images, ALOS_DEM data, and Luojia-1 images with their derived
feature indices, i.e., spectral features, red-edge features, textural features, landform features,
and nighttime lights, were used in the LCZ classification studies. While previous studies
have only enabled features such as spectral and textural features for LCZ classification, our
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approach considered the potential of red-edge features, landform features, and nighttime
lights, i.e., NDVIre, CIre, MSRre, DEM, and RBV for LCZ classification, as different LCZs
essentially produce heterogeneity. Our results confirm that adding new features can
significantly improve the OA value of the LCZ.

We compared the proposed strategy with the data sources and evaluation results
(i.e., OA values), using current state-of-the art models to demonstrate the benefits of our
approach more clearly (Table 8). Our approach produced more respectable evaluation
results (OA value = 87.34%) compared to those of most strategies. Second, the major
goal of LCZ categorization is to make the most of the variations in spectral properties,
spatial patterns of objects, and textural features among the different LCZs, bearing in mind
that other tactics and metrics could cost more. Our method requires Zhuhai-1 images,
ALOS-DEM images, and Luojia-1 images to be freely available. Based on the foregoing
description, our method, with its higher accuracy and cheaper cost, is ideal for accurate
LCZ classification.

Table 8. Comparison of existing LCZ classification methods.

Methodology Data Source Study Area Overall
Accuracy References

Machine learning random
forest algorithm Landsat and ASTER data and their GLCM Guangzhou and

Wuhan, China 66%, 84% [23]

An ensemble classifier Data products for Sentinel-1
Level-1 Dual-Pol Global scale, 29 cities 61.8% [24]

Residual convolutional neural
network (ResNet)

Sentinel-2 and Landsat-8 images and the
VIIRS-based NTL data Nine cities in Europe 78% [26]

The semi-automatic algorithm Building information, land use data, and
remote sensing images from Landsat 8 Chenzhou, China 69.54% [64]

Supervised convolutional
neural networks (CNNs) Multi-temporal Sentinel-2 composites Eight German cities 86.5% [65]

WUDAPT (level 0) method Landsat 5 satellite images Hong Kong, China 58% [66]

Our method Zhuhai-1 images, ALOS_DEM data,
Luojia-1 nighttime lighting data Beijing, China 87.34% /

As previously stated, by considering different feature combinations, this study used
an accurate technique for LCZ classification. There are, however, several drawbacks to be
aware of. The importance of additional features in LCZ mapping is first highlighted in this
study. However, more variables are needed to obtain good LCZ classification findings in
cities with complex and varied environments. Second, different activities are often carried
out in diverse LCZs and are connected to socio-economic events. For LCZ mapping, open
social data about human activities are useful. To enable more precise LCZ mapping, future
research must investigate other features that are already available and that include open
social data.

Although spectral, red-edge, and texture features from Zhuhai-1 imagery, ALOS_DEM
data, and nighttime light data from Luojia-1 were incorporated in this study, other relevant
variables may improve the model’s performance. Exploring the inclusion of additional
variables, such as meteorological data, topographic features, or surface temperature, could
provide valuable information to capture local climate features better and improve LCZ
mapping accuracy. The success of the method relies on the availability and quality of
the input data. In some regions or countries, obtaining high-resolution hyperspectral
imagery, accurate DEMs, and reliable nighttime light data may pose challenges. Future
work could focus on addressing data limitations by exploring alternative data sources,
such as open satellite imagery or aerial surveys, and improving data quality through pre-
processing techniques and data fusion methods. Although the method has shown good
accuracy in the central Beijing area, its generalizability to other regions, especially those
with unique climatic and environmental conditions, needs further investigation. Future
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studies should aim to assess the performance of the method in different urban contexts,
considering variations in land cover types, urban forms, and climate patterns. This may
involve conducting case studies in different regions and assessing the transferability of the
method to ensure its broader applicability.

6. Conclusions

In this research, we suggested a brand-new LCZ mapping technique for merging
diurnal data from many remote sensing sources, i.e., fusing daytime Zhuhai-1 hyperspectral
images and their derived feature indices, ALOS_DEM data, and Luojia-1 nighttime lighting
data; we validated the method in Beijing, China and explored the potential of each feature
in LCZ mapping. We considered all possible combinations of bands to obtain features and
enhance LCZ classification to evaluate the full range of useful information from the Zhuhai-
1 images. We devised feature optimization methods to reduce redundancy and improve
LCZ classification accuracy. In addition, to examine and contrast the impacts of various
input features on the LCZ classification accuracy, we created six classification schemes and
used RF and XGBoost classifiers. The following are the study’s principal conclusions.

(1) Our findings demonstrate the method’s superb LCZ mapping accuracy. The RF classi-
fier had a kappa coefficient of 0.86 and the greatest OA (87.34%). The classification
accuracy of the XGBoost classifier was marginally lower (OA value of 86.07% and
kappa coefficient of 0.85). In a word, the RF classifier outperformed the XGBoost
classifier in terms of accuracy and had a clear advantage in recognizing LCZs.

(2) Using only the original bands as input features, the RF and XGBoost algorithms
achieved OAs of 82.96% and 80.83%, respectively. The results of the study showed
that the accuracies of LCZ classification in terms of spectral and textural features were
improved by 2.33% and 2.19% using the RF classifier, respectively.

(3) With a GI value of 0.0212, the variable importance analysis revealed that RBV was
the variable that had the greatest impact on LCZ classification. The DEM also yielded
a high GI value (0.0159). The feature indices were ranked in order of importance as
nighttime lights > original bands > landform features > red-edge features > spectral
features > textural features.

Our study offers a fresh viewpoint on LCZ mapping and emphasizes that NTL and
landform feature DEMs should be considered in future LCZ mapping studies.

Author Contributions: Conceptualization, S.C. and M.D.; methodology, S.C. and Y.L.; software,
Y.L.; validation, S.C. and W.S.; formal analysis, Y.L.; investigation, Y.L. and W.S.; resources, S.C. and
M.D.; data curation, S.C.; writing—original draft preparation, Y.L. and S.C.; writing—review and
editing, S.C.; visualization, Y.L. and W.S.; supervision, S.C. and M.D.; project administration, S.C.;
funding acquisition, S.C. and M.D. All authors have read and agreed to the published version of
the manuscript.

Funding: This study was supported by the National Natural Science Foundation (NSFC) of China
(Key Project #41930650) and by the Scientific Research Project of Beijing Municipal Education Com-
mission (No. KM202110016004) and by the Beijing Key Laboratory of Urban Spatial Information
Engineering (No. 20220111) and was funded by the State Key Laboratory of Geo-Information En-
gineering and the Key Laboratory of Surveying and Mapping Science and Geospatial Information
Technology of MNR, CASM (No. 20020405).

Data Availability Statement: Data sharing is not applicable to this article.

Acknowledgments: The author appreciates the editors and reviewers’ comments, suggestions, and
valuable time and effort in reviewing this manuscript.

Conflicts of Interest: There are no conflict of interest to declare.



Remote Sens. 2023, 15, 3351 21 of 23

References
1. Cao, S.; Cai, Y.; Du, M.; Weng, Q.; Lu, L. Seasonal and diurnal surface urban heat islands in China: An investigation of driving

factors with three-dimensional urban morphological parameters. GIScience Remote Sens. 2022, 59, 1121–1142. [CrossRef]
2. Kamali Maskooni, E.; Hashemi, H.; Berndtsson, R.; Daneshkar Arasteh, P.; Kazemi, M. Impact of spatiotemporal land-use and

land-cover changes on surface urban heat islands in a semiarid region using Landsat data. Int. J. Digit. Earth 2021, 14, 250–270.
[CrossRef]

3. Lee, Y.Y.; Din, M.F.M.; Ponraj, M.; Noor, Z.Z.; Iwao, K.; Chelliapan, S. Overview of Urban Heat Island (UHI) phenomenon towards
human thermal comfort. Environ. Eng. Manag. J. 2017, 16, 2097–2112. [CrossRef]

4. Stewart, I.D. A systematic review and scientific critique of methodology in modern urban heat island literature. Int. J. Climatol.
2011, 31, 200–217. [CrossRef]

5. Voogt, J.A.; Oke, T.R. Thermal remote sensing of urban climates. Remote Sens. Environ. 2003, 86, 370–384. [CrossRef]
6. Li, G.; Zhang, J.; Cheng, H.; Zhao, L.; Tian, H. Urban Heat Island Effect against the Background of Global Warming and

Urbanization. Prog. Meteorol. Sci. Technol. 2012, 6, 45–49.
7. Manley, G. On the frequency of snowfall in metropolitan England. Q. J. R. Meteorolog. Soc. 1958, 84, 70–72. [CrossRef]
8. Mills, G.; Bechtel, B.; Ching, J.; See, L.; Feddema, J.; Foley, M.; Alexander, P.; O’Connor, M. An Introduction to the WUDAPT

project. In Proceedings of the 9th International Conference on Urban Climate (ICUC9), Toulouse, France, 20–24 July 2015; p. 6.
9. Stewart, I.D.; Oke, T.R. Local climate zones for urban temperature studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [CrossRef]
10. Alberti, M.; Weeks, R.; Coe, S. Urban land-cover change analysis in Central Puget Sound. Photogramm. Eng. Remote Sens. 2004, 70,

1043–1052. [CrossRef]
11. Kane, K.; Tuccillo, J.; York, A.M.; Gentile, L.; Ouyang, Y. A spatio-temporal view of historical growth in Phoenix, Arizona, USA.

Landsc. Urban Plann. 2014, 121, 70–80. [CrossRef]
12. Yao, Y.; Li, X.; Liu, X.; Liu, P.; Liang, Z.; Zhang, J.; Mai, K. Sensing spatial distribution of urban land use by integrating

points-of-interest and Google Word2Vec model. Int. J. Geog. Inf. Sci. 2017, 31, 825–848. [CrossRef]
13. Johnston, R.B. Arsenic and the 2030 Agenda for sustainable development. In Arsenic Research and Global Sustainability—Proceedings

of the 6th International Congress on Arsenic in the Environment, AS 2016, Stockholm, Sweden, 19–23 June 2016; CRC Press: Boca Raton,
FL, USA, 2016; pp. 12–14. [CrossRef]

14. Danylo, O.; See, L.; Gomez, A.; Schnabel, G.; Fritz, S. Using the LCZ framework for change detection and urban growth
monitoring. EGU Gen. Assem. Conf. Abstr. 2017, 19, 18043.

15. Bechtel, B.; Conrad, O.; Tamminga, M.; Verdonck, M.L.; Van Coillie, F.; Tuia, D.; Demuzere, M.; See, L.; Lopes, P.; Fonte, C.C.; et al.
Beyond the urban mask: Local climate zones as a generic descriptor of urban areas—Potential and recent developments. In
Proceedings of the 2017 Joint Urban Remote Sensing Event (JURSE), Dubai, United Arab Emirates, 6–8 March 2017; pp. 1–4.

16. Ching, J.; Mills, G.; See, L.; Bechtel, B.; Feddema, J.; Stewart, I.; Wang, X.; Ng, E.; Ren, C.; Brousse, O.; et al. Wudapt (World Urban
Database and Access Portal Tools): An International Collaborative Project for Climate Relevant Physical Geography Data for
the World‘s Cities. In Proceedings of the 96th Amercian Meteorological Society Annual Meeting, New Orleans, LA, USA, 10–14
January 2016; pp. 1–7.

17. Feddema, J.; Mills, G.; Ching, J. Demonstrating the Added Value of WUDAPT for Urban Climate Modelling. In Proceedings of
the ICUC9, Toulouse, France, 20–24 July 2015; Volume 19, p. 15889.

18. Bechtel, B.; Alexander, P.J.; Böhner, J.; Ching, J.; Conrad, O.; Feddema, J.; Mills, G.; See, L.; Stewart, I. Mapping local climate zones
for a worldwide database of the form and function of cities. ISPRS Int. J. Geo-Inf. 2015, 4, 199–219. [CrossRef]

19. Ren, C.; Cai, M.; Li, X.; Zhang, L.; Wang, R.; Xu, Y.; Ng, E. Assessment of Local Climate Zone Classification Maps of Cities in
China and Feasible Refinements. Sci. Rep. 2019, 9, 18848. [CrossRef] [PubMed]

20. Bechtel, B.; Daneke, C. Classification of local climate zones based on multiple earth observation data. IEEE J. Sel. Top. Appl. Earth
Obs. Remote Sens. 2012, 5, 1191–1202. [CrossRef]

21. Gál, T.; Bechtel, B.; Unger, J. Comparison of two different local climate zone mapping methods. In Proceedings of the ICUC9-9th
International Conference on Urban Climates, Toulouse, France, 20–24 July 2015; pp. 1–6.

22. Liu, S.; Shi, Q. Local climate zone mapping as remote sensing scene classification using deep learning: A case study of metropolitan
China. ISPRS J. Photogramm. Remote Sens. 2020, 164, 229–242. [CrossRef]

23. Xu, Y.; Ren, C.; Cai, M.; Edward, N.Y.Y.; Wu, T. Classification of Local Climate Zones Using ASTER and Landsat Data for
High-Density Cities. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3397–3405. [CrossRef]

24. Hu, J.; Ghamisi, P.; Zhu, X.X. Feature Extraction and Selection of Sentinel-1 Dual-Pol Data for Global-Scale Local Climate Zone
Classification. ISPRS Int. J. Geo-Inf. 2018, 7, 379. [CrossRef]

25. He, S.; Zhang, Y.; Gu, Z.; Su, J. Local climate zone classification with different source data in Xi’an, China. Indoor Built Environ.
2019, 28, 1190–1199. [CrossRef]

26. Qiu, C.; Schmitt, M.; Mou, L.; Ghamisi, P.; Zhu, X.X. Feature importance analysis for local climate zone classification using a
residual convolutional neural network with multi-source datasets. Remote Sens. 2018, 10, 1572. [CrossRef]

27. Mo, Y.; Zhong, R.; Cao, S. Orbita hyperspectral satellite image for land cover classification using random forest classifier. J. Appl.
Remote Sens. 2021, 15, 014519. [CrossRef]

28. Chen, C.; Bagan, H.; Xie, X.; La, Y.; Yamagata, Y. Combination of sentinel-2 and palsar-2 for local climate zone classification: A
case study of nanchang, China. Remote Sens. 2021, 13, 1902. [CrossRef]

https://doi.org/10.1080/15481603.2022.2100100
https://doi.org/10.1080/17538947.2020.1813210
https://doi.org/10.30638/eemj.2017.217
https://doi.org/10.1002/joc.2141
https://doi.org/10.1016/S0034-4257(03)00079-8
https://doi.org/10.1002/qj.49708435910
https://doi.org/10.1175/BAMS-D-11-00019.1
https://doi.org/10.14358/PERS.70.9.1043
https://doi.org/10.1016/j.landurbplan.2013.08.011
https://doi.org/10.1080/13658816.2016.1244608
https://doi.org/10.1201/b20466-7
https://doi.org/10.3390/ijgi4010199
https://doi.org/10.1038/s41598-019-55444-9
https://www.ncbi.nlm.nih.gov/pubmed/31827216
https://doi.org/10.1109/JSTARS.2012.2189873
https://doi.org/10.1016/j.isprsjprs.2020.04.008
https://doi.org/10.1109/JSTARS.2017.2683484
https://doi.org/10.3390/ijgi7090379
https://doi.org/10.1177/1420326X18796545
https://doi.org/10.3390/rs10101572
https://doi.org/10.1117/1.JRS.15.014519
https://doi.org/10.3390/rs13101902


Remote Sens. 2023, 15, 3351 22 of 23

29. Ou, J.; Liu, X.; Liu, P.; Liu, X. Evaluation of Luojia 1-01 nighttime light imagery for impervious surface detection: A comparison
with NPP-VIIRS nighttime light data. Int. J. Appl. Earth Obs. Geoinf. 2019, 81, 1–12. [CrossRef]

30. Shin, H.B. Residential redevelopment and the entrepreneurial local state: The implications of Beijing’s shifting emphasis on urban
redevelopment policies. Urban Stud. 2009, 46, 2815–2839. [CrossRef]

31. Zhao, P.; Lü, B. Transportation implications of metropolitan spatial planning in mega-city Beijing. Int. Dev. Plan. Rev. 2009, 31,
235–261. [CrossRef]

32. Huang, X.; Yang, J.; Li, J.; Wen, D. Urban functional zone mapping by integrating high spatial resolution nighttime light and
daytime multi-view imagery. ISPRS J. Photogramm. Remote Sens. 2021, 175, 403–415. [CrossRef]

33. Haralick, R.M.; Dinstein, I.H.; Shanmugam, K. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973,
SMC-3, 610–621. [CrossRef]

34. Zhang, R.; Huang, C.; Zhan, X.; Jin, H.; Song, X.P. Development of S-NPP VIIRS global surface type classification map using
support vector machines. Int. J. Digit. Earth 2018, 11, 212–232. [CrossRef]

35. Jiang, Z.; Huete, A.R.; Chen, J.; Chen, Y.; Li, J.; Yan, G.; Zhang, X. Analysis of NDVI and scaled difference vegetation index
retrievals of vegetation fraction. Remote Sens. Environ. 2006, 101, 366–378. [CrossRef]

36. McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J.
Remote Sens. 1996, 17, 1425–1432. [CrossRef]

37. Priebe, S.; Huxley, P.; Knight, S.; Summary, S.E. Application and Results of the Manchester Short Assessment of Quality of Life
(Mansa). Int. J. Soc. Psychiatry 1999, 45, 7–12. [CrossRef] [PubMed]

38. Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150.
[CrossRef]

39. Stewart, I.D.; Oke, T.R.; Bechtel, B.; Foley, M.M.; Mills, G.; Ching, J.; See, L.; Alexander, P.J.; O’Connor, M.; Albuquerque, T.; et al.
Generating WUDAPT’s Specific Scale -dependent Urban Modeling and Activity Parameters: Collection of Level 1 and Level 2
Data. In Proceedings of the ICUC9, Toulouse, France, 20–24 July 2015; Volume 5, pp. 1–4.

40. Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms
for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 2003, 160, 271–282. [CrossRef] [PubMed]

41. Thenkabail, P.S.; Smith, R.B.; De Pauw, E. Wiegand and Richardson, † International Center for Agricultural Research in the Dry
Areas 1990), natural vegetation (Friedl et al., 1994), and in (ICARDA). Environ 1995, 71, 158–182.

42. Strobl, C.; Boulesteix, A.L.; Augustin, T. Unbiased split selection for classification trees based on the Gini Index. Comput. Stat.
Data Anal. 2007, 52, 483–501. [CrossRef]

43. Zhang, F.; Yang, X. Improving land cover classification in an urbanized coastal area by random forests: The role of variable
selection. Remote Sens. Environ. 2020, 251, 112105. [CrossRef]

44. Breiman, L. Statistical modeling: The two cultures. Stat. Sci. 2001, 16, 199–215. [CrossRef]
45. Thongsuwan, S.; Jaiyen, S.; Padcharoen, A.; Agarwal, P. ConvXGB: A new deep learning model for classification problems based

on CNN and XGBoost. Nucl. Eng. Technol. 2021, 53, 522–531. [CrossRef]
46. Li, M.; Im, J.; Beier, C. Machine learning approaches for forest classification and change analysis using multi-temporal Landsat

TM images over Huntington Wildlife Forest. GIScience Remote Sens. 2013, 50, 361–384. [CrossRef]
47. Park, S.; Im, J.; Park, S.; Yoo, C.; Han, H.; Rhee, J. Classification and mapping of paddy rice by combining Landsat and SAR time

series data. Remote Sens. 2018, 10, 447. [CrossRef]
48. Sim, S.; Im, J.; Park, S.; Park, H.; Ahn, M.H.; Chan, P.W. Icing detection over East Asia from geostationary satellite data using

machine learning approaches. Remote Sens. 2018, 10, 631. [CrossRef]
49. Lee, J.; Im, J.; Kim, K.; Quackenbush, L.J. Machine learning approaches for estimating forest stand height using plot-based

observations and Airborne LiDAR data. Forests 2018, 9, 268. [CrossRef]
50. Richardson, H.J.; Hill, D.J.; Denesiuk, D.R.; Fraser, L.H. A comparison of geographic datasets and field measurements to model

soil carbon using random forests and stepwise regressions (British Columbia, Canada). GIScience Remote Sens. 2017, 54, 573–591.
[CrossRef]

51. Yoo, C.; Im, J.; Park, S.; Quackenbush, L.J. Estimation of daily maximum and minimum air temperatures in urban landscapes
using MODIS time series satellite data. ISPRS J. Photogramm. Remote Sens. 2018, 137, 149–162. [CrossRef]

52. Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217–222. [CrossRef]
53. Shi, X.; Yu, X.; Esmaeili-Falak, M. Improved arithmetic optimization algorithm and its application to carbon fiber reinforced

polymer-steel bond strength estimation. Compos. Struct. 2023, 306, 116599. [CrossRef]
54. Esmaeili-Falak, M.; BenemaranReza, S. Ensemble deep learning-based models to predict the resilient modulus of modified base

materials subjected to wet-dry cycles. Geomech. Eng. 2023, 32, 583–600. [CrossRef]
55. Benemaran, R.S.; Esmaeili-Falak, M.; Javadi, A. Predicting resilient modulus of flexible pavement foundation using extreme

gradient boosting based optimised models. Int. J. Pavement Eng. 2022. [CrossRef]
56. Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, Washington, DC, USA, 13–17 August 2016; pp. 785–794. [CrossRef]
57. Stuckens, J.; Coppin, P.R.; Bauer, M.E. Integrating contextual information with per-pixel classification for improved land cover

classification. Remote Sens. Environ. 2000, 71, 282–296. [CrossRef]

https://doi.org/10.1016/j.jag.2019.04.017
https://doi.org/10.1177/0042098009345540
https://doi.org/10.3828/idpr.31.3.2
https://doi.org/10.1016/j.isprsjprs.2021.03.019
https://doi.org/10.1109/TSMC.1973.4309314
https://doi.org/10.1080/17538947.2017.1315462
https://doi.org/10.1016/j.rse.2006.01.003
https://doi.org/10.1080/01431169608948714
https://doi.org/10.1177/002076409904500102
https://www.ncbi.nlm.nih.gov/pubmed/10443245
https://doi.org/10.1016/0034-4257(79)90013-0
https://doi.org/10.1078/0176-1617-00887
https://www.ncbi.nlm.nih.gov/pubmed/12749084
https://doi.org/10.1016/j.csda.2006.12.030
https://doi.org/10.1016/j.rse.2020.112105
https://doi.org/10.1214/ss/1009213726
https://doi.org/10.1016/j.net.2020.04.008
https://doi.org/10.1080/15481603.2013.819161
https://doi.org/10.3390/rs10030447
https://doi.org/10.3390/rs10040631
https://doi.org/10.3390/f9050268
https://doi.org/10.1080/15481603.2017.1302181
https://doi.org/10.1016/j.isprsjprs.2018.01.018
https://doi.org/10.1080/01431160412331269698
https://doi.org/10.1016/j.compstruct.2022.116599
https://doi.org/10.12989/gae.2023.32.6.583
https://doi.org/10.1080/10298436.2022.2095385
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1016/S0034-4257(99)00083-8


Remote Sens. 2023, 15, 3351 23 of 23

58. Lewis, H.G.; Brown, M. A generalized confusion matrix for assessing area estimates from remotely sensed data. Int. J. Remote
Sens. 2001, 22, 3223–3235. [CrossRef]

59. Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37,
35–46. [CrossRef]

60. Onojeghuo, A.O.; Onojeghuo, A.R. Object-based habitat mapping using very high spatial resolution multispectral and hyperspec-
tral imagery with LiDAR data. Int. J. Appl. Earth Obs. Geoinf. 2017, 59, 79–91. [CrossRef]

61. Ucar, Z.; Bettinger, P.; Merry, K.; Akbulut, R.; Siry, J. Estimation of urban woody vegetation cover using multispectral imagery
and LiDAR. Urban For. Urban Green. 2018, 29, 248–260. [CrossRef]

62. Clevers, J.G.P.W.; Gitelson, A.A. Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on
sentinel-2 and-3. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 344–351. [CrossRef]

63. Sanlang, S.; Cao, S.; Du, M.; Mo, Y.; Chen, Q.; He, W. Integrating aerial lidar and very-high-resolution images for urban functional
zone mapping. Remote Sens. 2021, 13, 2573. [CrossRef]

64. Chen, Y.; Zheng, B.; Hu, Y. Mapping local climate zones using arcGIS-based method and exploring land surface temperature
characteristics in Chenzhou, China. Sustainability 2020, 12, 2974. [CrossRef]

65. Rosentreter, J.; Hagensieker, R.; Waske, B. Towards large-scale mapping of local climate zones using multitemporal Sentinel 2
data and convolutional neural networks. Remote Sens. Environ. 2020, 237, 111472. [CrossRef]

66. Wang, R.; Ren, C.; Xu, Y.; Lau, K.K.L.; Shi, Y. Mapping the local climate zones of urban areas by GIS-based and WUDAPT
methods: A case study of Hong Kong. Urban Clim. 2018, 24, 567–576. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1080/01431160152558332
https://doi.org/10.1016/0034-4257(91)90048-B
https://doi.org/10.1016/j.jag.2017.03.007
https://doi.org/10.1016/j.ufug.2017.12.001
https://doi.org/10.1016/j.jag.2012.10.008
https://doi.org/10.3390/rs13132573
https://doi.org/10.3390/su12072974
https://doi.org/10.1016/j.rse.2019.111472
https://doi.org/10.1016/j.uclim.2017.10.001

	Introduction 
	Study Area and Datasets 
	Study Area 
	Datasets 

	Methodology 
	Multi-Feature Extraction 
	Sample Collection 
	Feature Optimization 
	Classifiers 
	Experimental Design 
	Accuracy Evaluation 

	Results 
	Results of Feature Optimization 
	Results of LCZ Classification 
	Classification Results for Multi-Feature Combinations 

	Discussion 
	Variable Importance Analysis 
	Comparison with Existing Methods 

	Conclusions 
	References

