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Abstract: In recent years, convolutional neural networks (CNNs) have been widely used in the field of
hyperspectral image (HSI) classification and achieved good classification results due to their excellent
spectral–spatial feature extraction ability. However, most methods use the deep semantic features at
the end of the network for classification, ignoring the spatial details contained in the shallow features.
To solve the above problems, this article proposes a hyperspectral image classification method based
on a Feature Embedding Network with Multiscale Attention (MAFEN). Firstly, a Multiscale Attention
Module (MAM) is designed, which is able to not only learn multiscale information about features
at different depths, but also extract effective information from them. Secondly, the deep semantic
features can be embedded into the low-level features through the top-down channel, so that the
features at all levels have rich semantic information. Finally, an Adaptive Spatial Feature Fusion
(ASFF) strategy is introduced to adaptively fuse features from different levels. The experimental
results show that the classification accuracies of MAFEN on four HSI datasets are better than those of
the compared methods.

Keywords: hyperspectral image classification; attention mechanism; convolutional neural network;
feature embedding

1. Introduction

Hyperspectral Image (HSI) is a three-dimensional data cube composed of hundreds of
continuous spectral bands, which contains rich spectral–spatial information and is very
helpful for ground object recognition. Therefore, HSI classification has been widely applied
in environmental monitoring [1,2], mineral exploration [3], precision agriculture [4,5] and
other fields.

In the early stages of HSI classification research, most methods mainly focused on
the utilization of spectral features, such as kernel-based support vector machines [6],
polynomial logistic regression [7,8] and random subspaces [9,10]. However, these methods
only consider spectral information and ignore spatial features, so it is difficult to obtain
good classification performance.

As deep-learning-based methods became widely applied and achieved excellent results
in image classification [11,12], semantic segmentation [13] and natural language process-
ing [14], researchers began to introduce them into HSI classification [15–17], and proposed
many classification methods based on Convolutional Neural Networks (CNNs) [18–20].
Hu et al. [21] proposed Deep Convolutional Neural Networks (DCNNs), which used mul-
tiple 1D-CNNs to extract spectral features and improve the classification performance.
Li et al. [22] adopted 3D-CNNs to effectively extract spectral–spatial features, thereby
improving the classification performance. Since then, more deep learning methods based
on spectral–spatial feature extraction have been used for HSI classification. Zhong et al. [23]
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designed an end-to-end Spectral–Spatial Residual Network (SSRN), which used continu-
ous residual blocks to learn spectral and spatial features separately, so as to extract more
discriminative features. Roy et al. [24] proposed Hybrid Spectral CNN (HybridSN) by
combining the characteristics of 3D-CNN and 2D-CNN, which reduced the model’s com-
plexity and obtained satisfactory performance. Mu et al. [25] designed a U-shaped deep
network model with principal component features as the model input and edge features
of space as the model label, which realized the adaptive fusion of these two features. The
fusion features were combined with the spectral features extracted by the Long Short-
Term Memory (LSTM) model for spectral–spatial feature classification. To fully exploit
the spectral–spatial features of HSIs, Huang et al. [26] proposed a Dual-Branch Attention-
Assisted CNN (DBAA-CNN). This network could extract sufficient diverse information,
achieving higher classification accuracy. Lu et al. [27] proposed a new dual-branch network
structure, where each branch learned pixel-level spectral features and patch-level spectral–
spatial features, respectively. The features from the two branches were then combined to
further enhance classification performance.

In order to obtain more abundant local spatial information, various classification meth-
ods based on multiscale feature extraction have been proposed. Yu et al. [28] proposed a
Dual-Channel Convolution Network (DCCN) to maximize the use of global and multiscale
information from HSIs. Zhang et al. [29] proposed a Multiscale Dense Network (MSDN),
which made full use of different scales of information in the network to realize deep feature
extraction and multiscale feature fusion. To utilize the correlation information between
different levels, Song et al. [30] proposed a Deep Feature Fusion Network (DFFN), which
introduced residual learning to alleviate the overfitting problem and fused the features of
different levels to improve the classification accuracy.

Recently, a large number of studies have shown [31–33] that different spectral bands
and spatial pixels have different contributions to HSI classification tasks, and highlight-
ing bands and pixels rich in effective information through the attention mechanism can
significantly improve HSI classification performance. Sun et al. [34] proposed a Spectral–
Spatial Attention Network (SSAN). Firstly, a simple Spectral–Spatial Network (SSN) was
constructed to extract spectral–spatial features. Then, the attention module was embed-
ded into the SSN to suppress the interfering pixels, which achieved good results on three
classical datasets, but the low computational efficiency of the attention module made it
time consuming to train the SSAN. Lei et al. [35] proposed a Local Attention Network
(LANet) to improve the semantic segmentation of HSIs by enhancing the scene-related
representation in the encoding and decoding stages, which greatly improved the semantic
representation of low-level features and further improved the segmentation performance.
In addition, Transformers have also begun to be used in HSI classification due to their
ability to model global features of images. Hong et al. [36] used Transformers to rethink
the HSI classification process from a sequence perspective and proposed a new backbone
network, SpectralFormer, to achieve high performance for the HSI classification task. Sun
et al. [37] proposed a Spectral–Spatial Feature Tokenization Transformer (SSFTT) to capture
spectral–spatial features and high-level semantic features. The encoder module of the Trans-
former was introduced into the network for feature representation and learning, which
achieved good classification results and greatly improved the computational efficiency.

HSI classification is a kind of pixel-level classification, and the detail information of
edges and shapes is crucial to improving the classification accuracy. However, the general
HSI classification model based on deep learning usually only focuses on the use of deep
semantic features for classification, and ignores the shallow features, which is not conducive
to further improvement of classification performance. The Feature Pyramid Network
(FPN) [38] embedded high-level features rich in semantic information into shallow features
rich in detail information through a top-down path, so that all levels of features had rich
semantic information. It achieved good results in the application of object detection [39,40],
instance segmentation [41] and other computer vision fields. Based on FPN, Wang et al. [42]
proposed an FPN with dual-filter feature fusion for HSI classification. The enhanced



Remote Sens. 2023, 15, 3338 3 of 21

multiscale features were obtained by embedding dual-filter feature fusion modules in
each horizontal branch of an FPN, and then the final feature representation obtained by
fusing features of each level from top to bottom was used for classification, which achieved
good performance. Fang et al. [43] used a convolutional attention module in bottom-up
feature extraction to extract effective information, and then used a bidirectional pyramid
for instance segmentation of HSI. Chen et al. [44] introduced coordinate attention in each
horizontal branch to obtain more HSI features, and then added and fused the features of
each level of FPN to achieve effective HSI classification of small samples.

Inspired by the idea of the FPN, this article proposes a Feature Embedding Network
with Multiscale Attention (MAFEN) to make full use of both deep and shallow features
through bottom-up feature extraction and top-down feature embedding. Firstly, a Mul-
tiscale Attention Module (MAM) is designed to express rich information for different
levels of features. MAM first uses convolutional kernels with different receptive field
sizes to extract multiscale information, and then uses spectral–spatial attention to sup-
press redundant information at each scale, so as to highlight the bands and pixels rich
in effective information. Secondly, the deep semantic information is embedded into the
shallow features through the top-down channel to enhance the representation ability of the
features at different levels. Finally, an Adaptive Spatial Feature Fusion (ASFF) [45] strategy
is introduced to automatically learn the fusion weight of each feature map through the
network, so as to realize the adaptive fusion of features at different levels.

The main contributions of this article are as follows:

1. The MAM is designed to enhance the representation ability of features at different
levels. Firstly, multiscale convolution is used to obtain rich information representation,
and then the attention mechanism is used to highlight important information.

2. The ASFF strategy is introduced for feature fusion in HSIs to adaptively fuse features
of different levels and improve classification performance.

3. The MAFEN is proposed, where the deep features are embedded into the shallow
features through the top-down channel to enrich their semantic information, and the
shallow features are adaptively fused with features at other levels.

The rest of this article is organized as follows: The MAFEN method is described in
detail in Section 2. Section 3 presents the experiments and analysis. Section 4 concludes the
article.

2. The Proposed Method

In this section, our proposed MAFEN for HSI classification is described in detail, and
its overall framework is shown in Figure 1. Firstly, the MAFEN backbone network uses
3D-CNN and 2D-CNN to extract the features of different depths from the dimensionality-
reduced hyperspectral images. Secondly, MAM was designed to enhance the representation
ability of different levels of features through multiscale convolution, and the spectral–spatial
attention mechanism was used to highlight important information and suppress redundant
information. Then, the high-level semantic information was embedded into the low-level
local spatial information through the top-down channel to make the features at different
levels have rich semantics. Finally, ASFF was introduced to adaptively fuse the features of
different levels to obtain the final feature representation for classification.
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tral–spatial attention module in MAM. Firstly, MAM convolves the features iF  of different levels 

with three convolutional kernels of different sizes to obtain multi-scale information. Then, cascaded 

Figure 1. The overall framework of the MAFEN for hyperspectral image classification. F0 represents
the cube corresponding to the HSI input data, F1, F2 and F3 are three feature maps with different levels
of information obtained using 3D-2D convolution, representing low-level features, mid-level features
and high-level features, respectively. F1

′, F2
′ and F3

′ represent the final features of each branch.

2.1. Multiscale Attention Module

CNNs are limited by fixed-size receptive fields, which may result in insufficient
local spatial features. To obtain richer local information of features at different levels,
a multiscale approach can be used to control the sizes of convolutional kernels, thus
obtaining different receptive fields. Moreover, the feature maps may contain redundant
information that could degrade the representation performance, thereby affecting the
final classification results. Therefore, we utilized spectral–spatial attention to extract
crucial information from the features obtained using multiscale convolutions to enhance
classification performance. We designed an MAM that utilized multiscale convolutions
and spectral–spatial attention to obtain more rich and effective feature representations.
Figure 2a,b illustrates the overall framework of the MAM and the structure of the spectral–
spatial attention module, respectively, as described below.
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Figure 2. The structure of MAM. (a) The overall framework of MAM. (b) The structure of the
spectral–spatial attention module in MAM. Firstly, MAM convolves the features Fi of different levels
with three convolutional kernels of different sizes to obtain multi-scale information. Then, cascaded
spectral attention and spatial attention are employed to extract effective information from the feature
F extracted by each convolution kernel.
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As shown in Figure 2, firstly, the MAM convolved the features Fi(i = 1, 2, 3) of different
levels with three convolutional kernels of different sizes to obtain multi-scale information,
where the sizes of the convolutional kernels were 1× 1, 3× 3 and 5× 5, respectively, and F1,
F2 and F3 represent the extracted low-level, mid-level, and high-level features, respectively.
Then, the spectral–spatial attention modules were employed to extract effective information
from the features extracted by each convolutional kernel, where spectral attention and
spatial attention were cascaded. Finally, the three features were fused by element-wise
summation.

2.1.1. Spectral Attention

The main purpose of spectral attention is to generate band weights Wspe to recalibrate
the importance of each spectral band. Considering that the patch block may contain pixels
from other classes, using global average pooling may introduce interference to the pixels of
the current class. Therefore, we only used the center vector pi to generate the weight Wspe.

The specific structure of the spectral attention module is shown in Figure 3. Firstly, the
center vector pi ∈ R1×1×b was taken from the input cube F ∈ Rs×s×b, where s× s was the
spatial size of F and b was the number of bands. Then, the band weight Wspe ∈ R1×1×b was
obtained through the calculation of two convolutional layers with a kernel size of 1× 1, as
shown in Equation (1).

Wspe = σ(W2 ∗ (δ(W1 ∗ pi))), (1)

where σ and δ represent the sigmoid and ReLU activation functions, respectively. W1
and W2 are the weight parameters of the two convolutional layers, and ∗ represents the
convolution operation. Finally, as shown in Figure 2b, the band weight Wspe was used to
recalibrate the bands in the feature F to highlight the useful spectral information, using
Equation (2).

F = Wspe ⊗ F, (2)

where ⊗ represents element-wise multiplication.
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from the input cube F.

2.1.2. Spatial Attention

Spatial attention aims to enhance the spatial information for pixels belonging to the
same class as that of the central pixel, while suppressing pixels of other classes. Therefore,
the spatial weight Wspa should have the same width and height as those of the input feature
F, with a specific structure as shown in Figure 4. Firstly, global max pooling was applied to
the input feature F along the channel direction, as shown in Equation (3).

Fmax = maxc(F(i, j)), (3)

where F(i, j) represents the value at position (i, j) in the feature F ∈ Rs×s×b, maxc represents
taking the maximum value along the channel direction c and Fmax ∈ Rs×s is the feature
map after global max pooling. Then, it is passed through two 2D convolutional layers to
generate the spatial weight Wspa ∈ Rs×s, as shown in Equation (4).

Wspa = σ(δ(Fmax ∗W1) ∗W2), (4)
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where W1 and W2 are the weight parameters of the two convolutional layers, σ and δ
represent the sigmoid and ReLU activation functions, respectively, and ∗ denotes the
convolution operation. Finally, as shown in Figure 2b, the spatial weight Wspa is used
to recalibrate the spatial information in the feature F and highlight the useful spatial
information, using Equation (5).

F = Wspa ⊗ F, (5)

where ⊗ represents element-wise multiplication.
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2.2. Feature Embedding Network

Deep neural networks learn the fine-grained features of local objects in HSIs in shallow
layers, and high-level semantic features in deep layers. However, during the deep learning
process, shallow features are often lost or even disappear, so they are generally not involved
in the final HSI classification. In addition, different-depth features have different levels of
information representation, and fully utilizing information at different levels is beneficial
to improving the effectiveness of HSI classification. In this article, we propose a new
Multiscale Attention Feature Embedding Network. The backbone of MAFEN consists of
a spectral–spatial feature extraction channel and a deep feature embedding channel. The
detailed description of the MAFEN is as follows.

Let H ∈ Rw×h×b represent the original HSI data, where w and h represent the width
and height of the spatial dimension, respectively, and b is the number of spectral bands.
Each pixel in H corresponds to a one-hot label vector Y ∈ R1×1×K, where K is the number
of land cover classes. HSIs have rich spectral information, which will lead to a large
number of spectral dimensions and an increase in computational complexity. HSIs may
also contain noise, causing interference with the classification. Using Principal Component
Analysis (PCA) to perform dimensionality reduction can improve classification accuracy
by removing noise and redundant information, and can also reduce computation time
and resource consumption, thereby enhancing computational efficiency and making deep
learning models more efficient. Therefore, PCA is commonly used to process HSI data.
PCA reduces the number of spectral bands from b to l, while maintaining the spatial size
of HSI. The resulting reduced-dimensional HSI data are represented as Hpca ∈ Rw×h×l ,
where l is the number of reduced spectral bands. To fully leverage the spectral and spatial
information provided by the HSI, a set of cubes F0 ∈ Rs0×s0×l is extracted from Hpca, where
s0 × s0 represents the spatial size of the patch blocks in the HSI cube. The center pixel of
each patch is denoted as (xi, yi), and the true label of each patch is determined by the label
of the center pixel.

(1) Feature Extraction Channel: Given the ith feature Fi ∈ Rsi×si×l , i = 0, 1, 2, 3, where
F0 represents the cube corresponding to the HSI input data; F1, F2 and F3 represent low-
level, mid-level and high-level features, respectively. The feature map Fi+1 is obtained by
applying two layers of convolutions (3D-CNN and 2D-CNN) and residual connections to
each feature map Fi in a bottom-up manner, as shown in Equations (6) and (7):

M = δ(BN( f1(Fi, w1))), (6)
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Fi+1 = MP(δ(BN( f2(M, w2)) + M)), (7)

where f1(·, w1) represents a 3D convolution with a weight parameter w1 and kernel size of
3× 3× 3, and f2(·, w2) represents a 2D convolution with a weight parameter w2 and kernel
size of 3× 3. BN stands for batch normalization, and δ represents the activation function,
which is ReLU here. MP(·) denotes the max pooling function.

The 3D-2D convolution is used to extract spectral–spatial features from the HSI data,
resulting in three features with different levels of information. High-level features con-
tain rich semantic information, while low-level features capture fine-grained local spatial
information.

(2) Deep Feature Embedding Channel: Multiscale attention was applied to different
deep features Fi in three branches to extract effective spectral–spatial information, thereby
enhancing the classification performance. Then, transpose convolution was applied to the
deep features Fi(i = 3, 2) to complete upsampling and obtain Fi

′, as shown in Equation (8).

Fi
′ = ϕ(Fi, θ), (8)

where ϕ(·, θ) represents the transpose convolution with a kernel size of 3× 3 and weight
parameter θ. As a result, Fi

′ has the same spatial resolution as Fi−1. Next, Fi
′ and Fi−1 were

added together for fusion, and the fused features were convolved as shown in Equation (9).

Fi−1
′ = f3

(
Fi
′ ⊕ Fi−1, w3

)
, (9)

where f3(·, w3) represents the convolution operation with a weight parameter w3, and ⊕
represents element-wise addition for fusion. Through the above process, high-level features
can be embedded into low-level features, enhancing the feature representation capability
of the model.

2.3. Adaptive Spatial Feature Fusion

In contrast to conventional feature fusion strategies, ASSF can learn the fusion weights
for each feature map automatically through the network, achieving adaptive fusion. The
specific structure is shown in Figure 5.
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Firstly, the three different-level features Fi
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along the channel dimension to obtain the feature Fs ∈ Rs×s×3b. Then, a convolution
operation was applied to change the channel length, as shown in Equation (10).
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Remote Sens. 2023, 15, 3338 8 of 21

where f4(·, w4) represents a 2D convolution with a kernel size of 1× 1 and δ is the ReLU
activation function. The resulting Fs from the convolution operation has a size of s× s× 3.
To obtain the feature fusion weights α, β, γ of size s× s, the Softmax function was applied
to normalize the exponential function of the data along the channel direction of Fs at the
same position, as shown in Equation (11).

[α, β, γ] =
exp

(
Fs,(i,j)(k)

)
∑3

k=1 exp
(

Fs,(i,j)(k)
) , (11)

where Fs,(i,j)(c) represents the value of the kth channel of the feature Fs at position (i, j).
Therefore, the network can learn the weights for each feature automatically, enhancing the
fusion capability. Next, features F3

′, F2
′ and F1

′ were multiplied in an element-wise way by
weights α, β and γ in each band, respectively, to obtain F3

′′ , F2
′′ and F1

′′ , which were then
summed to obtain the final feature representation F′′ . Finally, the feature F′′ was fed into a
linear layer for classification.

3. Experiment and Analysis
3.1. Dataset Description

In order to verify the performance of the proposed method, we selected four classical
datasets for experiments, including Indian Pines, Kennedy Space Center (KSC), Pavia
University and Salinas.

The Indian Pines dataset was a hyperspectral remote sensing image with a size
of 145 × 145 and a spatial resolution of 20 m. It was acquired using an Airborne Visi-
ble/Infrared Imaging Spectrometer (AVIRIS). It contained 200 spectral bands and 16 land
cover classes, for a total of 10,249 labeled samples. The false-color image and ground-truth
label image are shown in Figure 6a. Table 1 lists the specific classes of the Indian Pines
dataset and the number of training and testing samples for each class.
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Table 1. The information for each class in the Indian Pines dataset.

No. Class Color Train Test

1 Alfalfa
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of 610 × 340 and a spatial resolution of 1.3 m. It was acquired using a Reflective Optics 

System Imaging Spectrometer (ROSIS). It contained 103 spectral bands and 9 land cover 

classes, for a total of 42,776 labeled samples. The false-color image and ground-truth label 

image are shown in Figure 6c. Table 3 lists the specific classes of the Pavia University 

dataset and the number of training and testing samples for each class. 

Table 3. The information for each class in the Pavia University dataset. 

No. Class Color Train Test 

1 Asphalt  199 6432 

2 Meadows  559 18,090 

3 Gravel  63 2036 

4 Trees  92 2972 

5 Metal Sheets  40 1305 

6 Bare soil  151 4878 

7 Bitumen  40 1290 

8 Bricks  110 3572 

9 Shadows  28 919 

9 84

Total 1024 9225

The KSC dataset was a hyperspectral remote sensing image with a size of 512 × 217
and a spatial resolution of 18 m. It was also acquired using an AVIRIS sensor. It contained
176 spectral bands and 13 land cover classes, for a total of 5211 labeled samples. The
false-color image and ground-truth label image are shown in Figure 6b. Table 2 lists the
specific classes of the KSC dataset and the number of training and testing samples for each
class.

Table 2. The information for each class in the KSC dataset.

No. Class Color Train Test

1 Scrub
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The KSC dataset was a hyperspectral remote sensing image with a size of 512 × 217 

and a spatial resolution of 18 m. It was also acquired using an AVIRIS sensor. It contained 

176 spectral bands and 13 land cover classes, for a total of 5211 labeled samples. The false-

color image and ground-truth label image are shown in Figure 6b. Table 2 lists the specific 

classes of the KSC dataset and the number of training and testing samples for each class. 

Table 2. The information for each class in the KSC dataset. 
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The Pavia University dataset was a hyperspectral remote sensing image with a size 

of 610 × 340 and a spatial resolution of 1.3 m. It was acquired using a Reflective Optics 

System Imaging Spectrometer (ROSIS). It contained 103 spectral bands and 9 land cover 

classes, for a total of 42,776 labeled samples. The false-color image and ground-truth label 

image are shown in Figure 6c. Table 3 lists the specific classes of the Pavia University 

dataset and the number of training and testing samples for each class. 

Table 3. The information for each class in the Pavia University dataset. 

No. Class Color Train Test 

1 Asphalt  199 6432 

2 Meadows  559 18,090 

3 Gravel  63 2036 

4 Trees  92 2972 

5 Metal Sheets  40 1305 

6 Bare soil  151 4878 

7 Bitumen  40 1290 

8 Bricks  110 3572 

9 Shadows  28 919 

76 685

2 Willow_swamp
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The KSC dataset was a hyperspectral remote sensing image with a size of 512 × 217 

and a spatial resolution of 18 m. It was also acquired using an AVIRIS sensor. It contained 

176 spectral bands and 13 land cover classes, for a total of 5211 labeled samples. The false-

color image and ground-truth label image are shown in Figure 6b. Table 2 lists the specific 

classes of the KSC dataset and the number of training and testing samples for each class. 

Table 2. The information for each class in the KSC dataset. 
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The Pavia University dataset was a hyperspectral remote sensing image with a size 

of 610 × 340 and a spatial resolution of 1.3 m. It was acquired using a Reflective Optics 

System Imaging Spectrometer (ROSIS). It contained 103 spectral bands and 9 land cover 

classes, for a total of 42,776 labeled samples. The false-color image and ground-truth label 

image are shown in Figure 6c. Table 3 lists the specific classes of the Pavia University 

dataset and the number of training and testing samples for each class. 

Table 3. The information for each class in the Pavia University dataset. 

No. Class Color Train Test 

1 Asphalt  199 6432 

2 Meadows  559 18,090 

3 Gravel  63 2036 

4 Trees  92 2972 

5 Metal Sheets  40 1305 

6 Bare soil  151 4878 

7 Bitumen  40 1290 

8 Bricks  110 3572 

9 Shadows  28 919 

24 219

3 CP_hammock
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The KSC dataset was a hyperspectral remote sensing image with a size of 512 × 217 

and a spatial resolution of 18 m. It was also acquired using an AVIRIS sensor. It contained 

176 spectral bands and 13 land cover classes, for a total of 5211 labeled samples. The false-

color image and ground-truth label image are shown in Figure 6b. Table 2 lists the specific 

classes of the KSC dataset and the number of training and testing samples for each class. 

Table 2. The information for each class in the KSC dataset. 

No. Class Color Train Test 
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2 Willow_swamp  24 219 

3 CP_hammock  26 230 
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The Pavia University dataset was a hyperspectral remote sensing image with a size 

of 610 × 340 and a spatial resolution of 1.3 m. It was acquired using a Reflective Optics 

System Imaging Spectrometer (ROSIS). It contained 103 spectral bands and 9 land cover 

classes, for a total of 42,776 labeled samples. The false-color image and ground-truth label 

image are shown in Figure 6c. Table 3 lists the specific classes of the Pavia University 

dataset and the number of training and testing samples for each class. 

Table 3. The information for each class in the Pavia University dataset. 

No. Class Color Train Test 

1 Asphalt  199 6432 

2 Meadows  559 18,090 

3 Gravel  63 2036 

4 Trees  92 2972 

5 Metal Sheets  40 1305 

6 Bare soil  151 4878 

7 Bitumen  40 1290 

8 Bricks  110 3572 

9 Shadows  28 919 

26 230

4 CP/Oak
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The KSC dataset was a hyperspectral remote sensing image with a size of 512 × 217 

and a spatial resolution of 18 m. It was also acquired using an AVIRIS sensor. It contained 

176 spectral bands and 13 land cover classes, for a total of 5211 labeled samples. The false-

color image and ground-truth label image are shown in Figure 6b. Table 2 lists the specific 

classes of the KSC dataset and the number of training and testing samples for each class. 

Table 2. The information for each class in the KSC dataset. 

No. Class Color Train Test 

1 Scrub  76 685 

2 Willow_swamp  24 219 

3 CP_hammock  26 230 

4 CP/Oak  25 227 

5 Slash_pine  16 145 

6 Oak/Broadleaf  23 206 
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The Pavia University dataset was a hyperspectral remote sensing image with a size 

of 610 × 340 and a spatial resolution of 1.3 m. It was acquired using a Reflective Optics 

System Imaging Spectrometer (ROSIS). It contained 103 spectral bands and 9 land cover 

classes, for a total of 42,776 labeled samples. The false-color image and ground-truth label 

image are shown in Figure 6c. Table 3 lists the specific classes of the Pavia University 

dataset and the number of training and testing samples for each class. 

Table 3. The information for each class in the Pavia University dataset. 

No. Class Color Train Test 

1 Asphalt  199 6432 

2 Meadows  559 18,090 

3 Gravel  63 2036 

4 Trees  92 2972 

5 Metal Sheets  40 1305 

6 Bare soil  151 4878 

7 Bitumen  40 1290 

8 Bricks  110 3572 

9 Shadows  28 919 

25 227

5 Slash_pine
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The KSC dataset was a hyperspectral remote sensing image with a size of 512 × 217 

and a spatial resolution of 18 m. It was also acquired using an AVIRIS sensor. It contained 

176 spectral bands and 13 land cover classes, for a total of 5211 labeled samples. The false-

color image and ground-truth label image are shown in Figure 6b. Table 2 lists the specific 

classes of the KSC dataset and the number of training and testing samples for each class. 

Table 2. The information for each class in the KSC dataset. 

No. Class Color Train Test 

1 Scrub  76 685 

2 Willow_swamp  24 219 
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The Pavia University dataset was a hyperspectral remote sensing image with a size 

of 610 × 340 and a spatial resolution of 1.3 m. It was acquired using a Reflective Optics 

System Imaging Spectrometer (ROSIS). It contained 103 spectral bands and 9 land cover 

classes, for a total of 42,776 labeled samples. The false-color image and ground-truth label 

image are shown in Figure 6c. Table 3 lists the specific classes of the Pavia University 

dataset and the number of training and testing samples for each class. 

Table 3. The information for each class in the Pavia University dataset. 

No. Class Color Train Test 

1 Asphalt  199 6432 

2 Meadows  559 18,090 

3 Gravel  63 2036 

4 Trees  92 2972 

5 Metal Sheets  40 1305 

6 Bare soil  151 4878 

7 Bitumen  40 1290 

8 Bricks  110 3572 

9 Shadows  28 919 

16 145

6 Oak/Broadleaf
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The KSC dataset was a hyperspectral remote sensing image with a size of 512 × 217 

and a spatial resolution of 18 m. It was also acquired using an AVIRIS sensor. It contained 

176 spectral bands and 13 land cover classes, for a total of 5211 labeled samples. The false-

color image and ground-truth label image are shown in Figure 6b. Table 2 lists the specific 

classes of the KSC dataset and the number of training and testing samples for each class. 

Table 2. The information for each class in the KSC dataset. 

No. Class Color Train Test 
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The Pavia University dataset was a hyperspectral remote sensing image with a size 

of 610 × 340 and a spatial resolution of 1.3 m. It was acquired using a Reflective Optics 

System Imaging Spectrometer (ROSIS). It contained 103 spectral bands and 9 land cover 

classes, for a total of 42,776 labeled samples. The false-color image and ground-truth label 

image are shown in Figure 6c. Table 3 lists the specific classes of the Pavia University 

dataset and the number of training and testing samples for each class. 

Table 3. The information for each class in the Pavia University dataset. 

No. Class Color Train Test 

1 Asphalt  199 6432 

2 Meadows  559 18,090 

3 Gravel  63 2036 

4 Trees  92 2972 

5 Metal Sheets  40 1305 

6 Bare soil  151 4878 

7 Bitumen  40 1290 

8 Bricks  110 3572 

9 Shadows  28 919 

23 206

7 Hardwood_swamp
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The KSC dataset was a hyperspectral remote sensing image with a size of 512 × 217 

and a spatial resolution of 18 m. It was also acquired using an AVIRIS sensor. It contained 

176 spectral bands and 13 land cover classes, for a total of 5211 labeled samples. The false-

color image and ground-truth label image are shown in Figure 6b. Table 2 lists the specific 

classes of the KSC dataset and the number of training and testing samples for each class. 

Table 2. The information for each class in the KSC dataset. 

No. Class Color Train Test 
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2 Willow_swamp  24 219 

3 CP_hammock  26 230 
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The Pavia University dataset was a hyperspectral remote sensing image with a size 

of 610 × 340 and a spatial resolution of 1.3 m. It was acquired using a Reflective Optics 

System Imaging Spectrometer (ROSIS). It contained 103 spectral bands and 9 land cover 

classes, for a total of 42,776 labeled samples. The false-color image and ground-truth label 

image are shown in Figure 6c. Table 3 lists the specific classes of the Pavia University 

dataset and the number of training and testing samples for each class. 

Table 3. The information for each class in the Pavia University dataset. 

No. Class Color Train Test 

1 Asphalt  199 6432 

2 Meadows  559 18,090 

3 Gravel  63 2036 

4 Trees  92 2972 

5 Metal Sheets  40 1305 

6 Bare soil  151 4878 

7 Bitumen  40 1290 

8 Bricks  110 3572 

9 Shadows  28 919 

10 95

8 Graminoid_marsh
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The KSC dataset was a hyperspectral remote sensing image with a size of 512 × 217 

and a spatial resolution of 18 m. It was also acquired using an AVIRIS sensor. It contained 

176 spectral bands and 13 land cover classes, for a total of 5211 labeled samples. The false-

color image and ground-truth label image are shown in Figure 6b. Table 2 lists the specific 

classes of the KSC dataset and the number of training and testing samples for each class. 

Table 2. The information for each class in the KSC dataset. 
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The Pavia University dataset was a hyperspectral remote sensing image with a size 

of 610 × 340 and a spatial resolution of 1.3 m. It was acquired using a Reflective Optics 

System Imaging Spectrometer (ROSIS). It contained 103 spectral bands and 9 land cover 

classes, for a total of 42,776 labeled samples. The false-color image and ground-truth label 

image are shown in Figure 6c. Table 3 lists the specific classes of the Pavia University 

dataset and the number of training and testing samples for each class. 

Table 3. The information for each class in the Pavia University dataset. 

No. Class Color Train Test 

1 Asphalt  199 6432 

2 Meadows  559 18,090 

3 Gravel  63 2036 

4 Trees  92 2972 

5 Metal Sheets  40 1305 

6 Bare soil  151 4878 

7 Bitumen  40 1290 

8 Bricks  110 3572 

9 Shadows  28 919 
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The KSC dataset was a hyperspectral remote sensing image with a size of 512 × 217 

and a spatial resolution of 18 m. It was also acquired using an AVIRIS sensor. It contained 

176 spectral bands and 13 land cover classes, for a total of 5211 labeled samples. The false-

color image and ground-truth label image are shown in Figure 6b. Table 2 lists the specific 

classes of the KSC dataset and the number of training and testing samples for each class. 

Table 2. The information for each class in the KSC dataset. 
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The Pavia University dataset was a hyperspectral remote sensing image with a size 

of 610 × 340 and a spatial resolution of 1.3 m. It was acquired using a Reflective Optics 

System Imaging Spectrometer (ROSIS). It contained 103 spectral bands and 9 land cover 

classes, for a total of 42,776 labeled samples. The false-color image and ground-truth label 

image are shown in Figure 6c. Table 3 lists the specific classes of the Pavia University 

dataset and the number of training and testing samples for each class. 

Table 3. The information for each class in the Pavia University dataset. 

No. Class Color Train Test 

1 Asphalt  199 6432 

2 Meadows  559 18,090 

3 Gravel  63 2036 

4 Trees  92 2972 

5 Metal Sheets  40 1305 

6 Bare soil  151 4878 

7 Bitumen  40 1290 

8 Bricks  110 3572 

9 Shadows  28 919 
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The KSC dataset was a hyperspectral remote sensing image with a size of 512 × 217 

and a spatial resolution of 18 m. It was also acquired using an AVIRIS sensor. It contained 

176 spectral bands and 13 land cover classes, for a total of 5211 labeled samples. The false-

color image and ground-truth label image are shown in Figure 6b. Table 2 lists the specific 

classes of the KSC dataset and the number of training and testing samples for each class. 

Table 2. The information for each class in the KSC dataset. 

No. Class Color Train Test 

1 Scrub  76 685 

2 Willow_swamp  24 219 
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The Pavia University dataset was a hyperspectral remote sensing image with a size 

of 610 × 340 and a spatial resolution of 1.3 m. It was acquired using a Reflective Optics 

System Imaging Spectrometer (ROSIS). It contained 103 spectral bands and 9 land cover 

classes, for a total of 42,776 labeled samples. The false-color image and ground-truth label 

image are shown in Figure 6c. Table 3 lists the specific classes of the Pavia University 

dataset and the number of training and testing samples for each class. 

Table 3. The information for each class in the Pavia University dataset. 

No. Class Color Train Test 

1 Asphalt  199 6432 

2 Meadows  559 18,090 

3 Gravel  63 2036 

4 Trees  92 2972 

5 Metal Sheets  40 1305 

6 Bare soil  151 4878 

7 Bitumen  40 1290 

8 Bricks  110 3572 

9 Shadows  28 919 

40 364

11 Salt_marsh
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The KSC dataset was a hyperspectral remote sensing image with a size of 512 × 217 

and a spatial resolution of 18 m. It was also acquired using an AVIRIS sensor. It contained 

176 spectral bands and 13 land cover classes, for a total of 5211 labeled samples. The false-

color image and ground-truth label image are shown in Figure 6b. Table 2 lists the specific 

classes of the KSC dataset and the number of training and testing samples for each class. 

Table 2. The information for each class in the KSC dataset. 

No. Class Color Train Test 

1 Scrub  76 685 

2 Willow_swamp  24 219 

3 CP_hammock  26 230 

4 CP/Oak  25 227 

5 Slash_pine  16 145 
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7 Hardwood_swamp  10 95 

8 Graminoid_marsh  43 388 

9 Spartina_marsh  52 468 

10 Catial_marsh  40 364 

11 Salt_marsh  42 377 

12 Mud_flats  50 453 

13 Water  93 834 
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The Pavia University dataset was a hyperspectral remote sensing image with a size 

of 610 × 340 and a spatial resolution of 1.3 m. It was acquired using a Reflective Optics 

System Imaging Spectrometer (ROSIS). It contained 103 spectral bands and 9 land cover 

classes, for a total of 42,776 labeled samples. The false-color image and ground-truth label 

image are shown in Figure 6c. Table 3 lists the specific classes of the Pavia University 

dataset and the number of training and testing samples for each class. 

Table 3. The information for each class in the Pavia University dataset. 

No. Class Color Train Test 

1 Asphalt  199 6432 

2 Meadows  559 18,090 

3 Gravel  63 2036 

4 Trees  92 2972 

5 Metal Sheets  40 1305 

6 Bare soil  151 4878 

7 Bitumen  40 1290 

8 Bricks  110 3572 

9 Shadows  28 919 

42 377

12 Mud_flats
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The KSC dataset was a hyperspectral remote sensing image with a size of 512 × 217 

and a spatial resolution of 18 m. It was also acquired using an AVIRIS sensor. It contained 

176 spectral bands and 13 land cover classes, for a total of 5211 labeled samples. The false-

color image and ground-truth label image are shown in Figure 6b. Table 2 lists the specific 

classes of the KSC dataset and the number of training and testing samples for each class. 

Table 2. The information for each class in the KSC dataset. 

No. Class Color Train Test 

1 Scrub  76 685 

2 Willow_swamp  24 219 

3 CP_hammock  26 230 

4 CP/Oak  25 227 

5 Slash_pine  16 145 

6 Oak/Broadleaf  23 206 

7 Hardwood_swamp  10 95 
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The Pavia University dataset was a hyperspectral remote sensing image with a size 

of 610 × 340 and a spatial resolution of 1.3 m. It was acquired using a Reflective Optics 

System Imaging Spectrometer (ROSIS). It contained 103 spectral bands and 9 land cover 

classes, for a total of 42,776 labeled samples. The false-color image and ground-truth label 

image are shown in Figure 6c. Table 3 lists the specific classes of the Pavia University 

dataset and the number of training and testing samples for each class. 

Table 3. The information for each class in the Pavia University dataset. 

No. Class Color Train Test 

1 Asphalt  199 6432 

2 Meadows  559 18,090 

3 Gravel  63 2036 

4 Trees  92 2972 

5 Metal Sheets  40 1305 

6 Bare soil  151 4878 

7 Bitumen  40 1290 

8 Bricks  110 3572 

9 Shadows  28 919 

50 453

13 Water
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The KSC dataset was a hyperspectral remote sensing image with a size of 512 × 217 

and a spatial resolution of 18 m. It was also acquired using an AVIRIS sensor. It contained 

176 spectral bands and 13 land cover classes, for a total of 5211 labeled samples. The false-

color image and ground-truth label image are shown in Figure 6b. Table 2 lists the specific 

classes of the KSC dataset and the number of training and testing samples for each class. 

Table 2. The information for each class in the KSC dataset. 

No. Class Color Train Test 

1 Scrub  76 685 

2 Willow_swamp  24 219 

3 CP_hammock  26 230 

4 CP/Oak  25 227 

5 Slash_pine  16 145 

6 Oak/Broadleaf  23 206 

7 Hardwood_swamp  10 95 

8 Graminoid_marsh  43 388 
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10 Catial_marsh  40 364 

11 Salt_marsh  42 377 
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The Pavia University dataset was a hyperspectral remote sensing image with a size 

of 610 × 340 and a spatial resolution of 1.3 m. It was acquired using a Reflective Optics 

System Imaging Spectrometer (ROSIS). It contained 103 spectral bands and 9 land cover 

classes, for a total of 42,776 labeled samples. The false-color image and ground-truth label 

image are shown in Figure 6c. Table 3 lists the specific classes of the Pavia University 

dataset and the number of training and testing samples for each class. 

Table 3. The information for each class in the Pavia University dataset. 

No. Class Color Train Test 

1 Asphalt  199 6432 

2 Meadows  559 18,090 

3 Gravel  63 2036 

4 Trees  92 2972 

5 Metal Sheets  40 1305 

6 Bare soil  151 4878 

7 Bitumen  40 1290 

8 Bricks  110 3572 

9 Shadows  28 919 

93 834

Total 520 4691

The Pavia University dataset was a hyperspectral remote sensing image with a size of
610× 340 and a spatial resolution of 1.3 m. It was acquired using a Reflective Optics System
Imaging Spectrometer (ROSIS). It contained 103 spectral bands and 9 land cover classes,
for a total of 42,776 labeled samples. The false-color image and ground-truth label image
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are shown in Figure 6c. Table 3 lists the specific classes of the Pavia University dataset and
the number of training and testing samples for each class.

The Salinas dataset was a hyperspectral remote sensing image with a size of 512 × 217
and a spatial resolution of 3.7 m. It was also acquired using an AVIRIS sensor. It contained
204 spectral bands and 16 land cover classes, for a total of 54,129 labeled samples. The
false-color image and ground-truth label image are shown in Figure 6d. Table 4 lists the
specific classes of the Salinas dataset and the number of training and testing samples for
each class.

Table 3. The information for each class in the Pavia University dataset.

No. Class Color Train Test

1 Asphalt
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and a spatial resolution of 18 m. It was also acquired using an AVIRIS sensor. It contained 

176 spectral bands and 13 land cover classes, for a total of 5211 labeled samples. The false-

color image and ground-truth label image are shown in Figure 6b. Table 2 lists the specific 

classes of the KSC dataset and the number of training and testing samples for each class. 

Table 2. The information for each class in the KSC dataset. 
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The Pavia University dataset was a hyperspectral remote sensing image with a size 

of 610 × 340 and a spatial resolution of 1.3 m. It was acquired using a Reflective Optics 

System Imaging Spectrometer (ROSIS). It contained 103 spectral bands and 9 land cover 

classes, for a total of 42,776 labeled samples. The false-color image and ground-truth label 

image are shown in Figure 6c. Table 3 lists the specific classes of the Pavia University 

dataset and the number of training and testing samples for each class. 

Table 3. The information for each class in the Pavia University dataset. 

No. Class Color Train Test 

1 Asphalt  199 6432 

2 Meadows  559 18,090 

3 Gravel  63 2036 

4 Trees  92 2972 

5 Metal Sheets  40 1305 

6 Bare soil  151 4878 

7 Bitumen  40 1290 

8 Bricks  110 3572 

9 Shadows  28 919 

199 6432

2 Meadows
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color image and ground-truth label image are shown in Figure 6b. Table 2 lists the specific 

classes of the KSC dataset and the number of training and testing samples for each class. 

Table 2. The information for each class in the KSC dataset. 
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The Pavia University dataset was a hyperspectral remote sensing image with a size 

of 610 × 340 and a spatial resolution of 1.3 m. It was acquired using a Reflective Optics 

System Imaging Spectrometer (ROSIS). It contained 103 spectral bands and 9 land cover 

classes, for a total of 42,776 labeled samples. The false-color image and ground-truth label 

image are shown in Figure 6c. Table 3 lists the specific classes of the Pavia University 

dataset and the number of training and testing samples for each class. 

Table 3. The information for each class in the Pavia University dataset. 

No. Class Color Train Test 

1 Asphalt  199 6432 

2 Meadows  559 18,090 

3 Gravel  63 2036 

4 Trees  92 2972 

5 Metal Sheets  40 1305 

6 Bare soil  151 4878 

7 Bitumen  40 1290 

8 Bricks  110 3572 

9 Shadows  28 919 

559 18,090

3 Gravel
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The KSC dataset was a hyperspectral remote sensing image with a size of 512 × 217 

and a spatial resolution of 18 m. It was also acquired using an AVIRIS sensor. It contained 

176 spectral bands and 13 land cover classes, for a total of 5211 labeled samples. The false-

color image and ground-truth label image are shown in Figure 6b. Table 2 lists the specific 

classes of the KSC dataset and the number of training and testing samples for each class. 

Table 2. The information for each class in the KSC dataset. 
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The Pavia University dataset was a hyperspectral remote sensing image with a size 

of 610 × 340 and a spatial resolution of 1.3 m. It was acquired using a Reflective Optics 

System Imaging Spectrometer (ROSIS). It contained 103 spectral bands and 9 land cover 

classes, for a total of 42,776 labeled samples. The false-color image and ground-truth label 

image are shown in Figure 6c. Table 3 lists the specific classes of the Pavia University 

dataset and the number of training and testing samples for each class. 

Table 3. The information for each class in the Pavia University dataset. 

No. Class Color Train Test 

1 Asphalt  199 6432 

2 Meadows  559 18,090 

3 Gravel  63 2036 

4 Trees  92 2972 

5 Metal Sheets  40 1305 

6 Bare soil  151 4878 

7 Bitumen  40 1290 

8 Bricks  110 3572 

9 Shadows  28 919 

63 2036

4 Trees
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The KSC dataset was a hyperspectral remote sensing image with a size of 512 × 217 

and a spatial resolution of 18 m. It was also acquired using an AVIRIS sensor. It contained 

176 spectral bands and 13 land cover classes, for a total of 5211 labeled samples. The false-

color image and ground-truth label image are shown in Figure 6b. Table 2 lists the specific 

classes of the KSC dataset and the number of training and testing samples for each class. 

Table 2. The information for each class in the KSC dataset. 
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1 Scrub  76 685 

2 Willow_swamp  24 219 

3 CP_hammock  26 230 

4 CP/Oak  25 227 

5 Slash_pine  16 145 

6 Oak/Broadleaf  23 206 

7 Hardwood_swamp  10 95 

8 Graminoid_marsh  43 388 

9 Spartina_marsh  52 468 

10 Catial_marsh  40 364 

11 Salt_marsh  42 377 

12 Mud_flats  50 453 

13 Water  93 834 

Total   520 4691 

The Pavia University dataset was a hyperspectral remote sensing image with a size 

of 610 × 340 and a spatial resolution of 1.3 m. It was acquired using a Reflective Optics 

System Imaging Spectrometer (ROSIS). It contained 103 spectral bands and 9 land cover 

classes, for a total of 42,776 labeled samples. The false-color image and ground-truth label 

image are shown in Figure 6c. Table 3 lists the specific classes of the Pavia University 

dataset and the number of training and testing samples for each class. 

Table 3. The information for each class in the Pavia University dataset. 

No. Class Color Train Test 

1 Asphalt  199 6432 

2 Meadows  559 18,090 

3 Gravel  63 2036 

4 Trees  92 2972 

5 Metal Sheets  40 1305 

6 Bare soil  151 4878 

7 Bitumen  40 1290 

8 Bricks  110 3572 

9 Shadows  28 919 

92 2972

5 Metal Sheets
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176 spectral bands and 13 land cover classes, for a total of 5211 labeled samples. The false-

color image and ground-truth label image are shown in Figure 6b. Table 2 lists the specific 

classes of the KSC dataset and the number of training and testing samples for each class. 

Table 2. The information for each class in the KSC dataset. 
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The Pavia University dataset was a hyperspectral remote sensing image with a size 

of 610 × 340 and a spatial resolution of 1.3 m. It was acquired using a Reflective Optics 

System Imaging Spectrometer (ROSIS). It contained 103 spectral bands and 9 land cover 

classes, for a total of 42,776 labeled samples. The false-color image and ground-truth label 

image are shown in Figure 6c. Table 3 lists the specific classes of the Pavia University 

dataset and the number of training and testing samples for each class. 

Table 3. The information for each class in the Pavia University dataset. 

No. Class Color Train Test 

1 Asphalt  199 6432 

2 Meadows  559 18,090 

3 Gravel  63 2036 

4 Trees  92 2972 

5 Metal Sheets  40 1305 

6 Bare soil  151 4878 

7 Bitumen  40 1290 

8 Bricks  110 3572 

9 Shadows  28 919 

40 1305

6 Bare soil
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The KSC dataset was a hyperspectral remote sensing image with a size of 512 × 217 

and a spatial resolution of 18 m. It was also acquired using an AVIRIS sensor. It contained 

176 spectral bands and 13 land cover classes, for a total of 5211 labeled samples. The false-

color image and ground-truth label image are shown in Figure 6b. Table 2 lists the specific 

classes of the KSC dataset and the number of training and testing samples for each class. 

Table 2. The information for each class in the KSC dataset. 

No. Class Color Train Test 
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The Pavia University dataset was a hyperspectral remote sensing image with a size 

of 610 × 340 and a spatial resolution of 1.3 m. It was acquired using a Reflective Optics 

System Imaging Spectrometer (ROSIS). It contained 103 spectral bands and 9 land cover 

classes, for a total of 42,776 labeled samples. The false-color image and ground-truth label 

image are shown in Figure 6c. Table 3 lists the specific classes of the Pavia University 

dataset and the number of training and testing samples for each class. 

Table 3. The information for each class in the Pavia University dataset. 

No. Class Color Train Test 

1 Asphalt  199 6432 

2 Meadows  559 18,090 

3 Gravel  63 2036 

4 Trees  92 2972 

5 Metal Sheets  40 1305 

6 Bare soil  151 4878 

7 Bitumen  40 1290 

8 Bricks  110 3572 

9 Shadows  28 919 

151 4878

7 Bitumen
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color image and ground-truth label image are shown in Figure 6b. Table 2 lists the specific 

classes of the KSC dataset and the number of training and testing samples for each class. 

Table 2. The information for each class in the KSC dataset. 
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The Pavia University dataset was a hyperspectral remote sensing image with a size 

of 610 × 340 and a spatial resolution of 1.3 m. It was acquired using a Reflective Optics 

System Imaging Spectrometer (ROSIS). It contained 103 spectral bands and 9 land cover 

classes, for a total of 42,776 labeled samples. The false-color image and ground-truth label 

image are shown in Figure 6c. Table 3 lists the specific classes of the Pavia University 

dataset and the number of training and testing samples for each class. 

Table 3. The information for each class in the Pavia University dataset. 

No. Class Color Train Test 

1 Asphalt  199 6432 

2 Meadows  559 18,090 

3 Gravel  63 2036 

4 Trees  92 2972 

5 Metal Sheets  40 1305 

6 Bare soil  151 4878 

7 Bitumen  40 1290 

8 Bricks  110 3572 

9 Shadows  28 919 

40 1290

8 Bricks
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The KSC dataset was a hyperspectral remote sensing image with a size of 512 × 217 

and a spatial resolution of 18 m. It was also acquired using an AVIRIS sensor. It contained 

176 spectral bands and 13 land cover classes, for a total of 5211 labeled samples. The false-

color image and ground-truth label image are shown in Figure 6b. Table 2 lists the specific 

classes of the KSC dataset and the number of training and testing samples for each class. 

Table 2. The information for each class in the KSC dataset. 
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The Pavia University dataset was a hyperspectral remote sensing image with a size 

of 610 × 340 and a spatial resolution of 1.3 m. It was acquired using a Reflective Optics 

System Imaging Spectrometer (ROSIS). It contained 103 spectral bands and 9 land cover 

classes, for a total of 42,776 labeled samples. The false-color image and ground-truth label 

image are shown in Figure 6c. Table 3 lists the specific classes of the Pavia University 

dataset and the number of training and testing samples for each class. 

Table 3. The information for each class in the Pavia University dataset. 

No. Class Color Train Test 

1 Asphalt  199 6432 

2 Meadows  559 18,090 

3 Gravel  63 2036 

4 Trees  92 2972 

5 Metal Sheets  40 1305 

6 Bare soil  151 4878 

7 Bitumen  40 1290 

8 Bricks  110 3572 

9 Shadows  28 919 

110 3572

9 Shadows
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The KSC dataset was a hyperspectral remote sensing image with a size of 512 × 217 

and a spatial resolution of 18 m. It was also acquired using an AVIRIS sensor. It contained 

176 spectral bands and 13 land cover classes, for a total of 5211 labeled samples. The false-

color image and ground-truth label image are shown in Figure 6b. Table 2 lists the specific 

classes of the KSC dataset and the number of training and testing samples for each class. 

Table 2. The information for each class in the KSC dataset. 

No. Class Color Train Test 

1 Scrub  76 685 

2 Willow_swamp  24 219 

3 CP_hammock  26 230 

4 CP/Oak  25 227 

5 Slash_pine  16 145 

6 Oak/Broadleaf  23 206 

7 Hardwood_swamp  10 95 
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The Pavia University dataset was a hyperspectral remote sensing image with a size 

of 610 × 340 and a spatial resolution of 1.3 m. It was acquired using a Reflective Optics 

System Imaging Spectrometer (ROSIS). It contained 103 spectral bands and 9 land cover 

classes, for a total of 42,776 labeled samples. The false-color image and ground-truth label 

image are shown in Figure 6c. Table 3 lists the specific classes of the Pavia University 

dataset and the number of training and testing samples for each class. 

Table 3. The information for each class in the Pavia University dataset. 

No. Class Color Train Test 

1 Asphalt  199 6432 

2 Meadows  559 18,090 

3 Gravel  63 2036 

4 Trees  92 2972 

5 Metal Sheets  40 1305 

6 Bare soil  151 4878 

7 Bitumen  40 1290 

8 Bricks  110 3572 

9 Shadows  28 919 28 919

Total 1282 41,494

Table 4. The information for each class in the Salinas dataset.

No. Class Color Train Test

1 Brocoli_green_weeds_1
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The Salinas dataset was a hyperspectral remote sensing image with a size of 512 × 

217 and a spatial resolution of 3.7 m. It was also acquired using an AVIRIS sensor. It con-

tained 204 spectral bands and 16 land cover classes, for a total of 54,129 labeled samples. 

The false-color image and ground-truth label image are shown in Figure 6d. Table 4 lists 

the specific classes of the Salinas dataset and the number of training and testing samples 

for each class. 

Table 4. The information for each class in the Salinas dataset. 

No. Class Color Train Test 

1 Brocoli_green_weeds_1  60 1949 

2 Brocoli_green_weeds_2  112 3614 

3 Fallow  59 1917 

4 Fallow_rough_plow  42 1352 

5 Fallow_smooth  80 2598 

6 Stubble  119 3840 

7 Celery  107 3472 

8 Grapes_untrained  338 10,933 

9 Soil_vinyard_develop  186 6017 

10 Corn_senesced_green_weeds  98 3180 

11 Lettuce_romaine_4wk  32 1036 

12 Lettuce_romaine_5wk  58 1869 

13 Lettuce_romaine_6wk  27 889 

14 Lettuce_romaine_7wk  32 1038 

15 Vinyard_untrained  218 7050 

16 Vinyard_vertical_trellis  54 1753 

Total   1622 52,507 

3.2. Experimental Setting 

(1) Evaluation Metrics: To quantitatively assess the effectiveness of the proposed 

model, we used Overall Accuracy (OA), Average Accuracy (AA) and the Kappa coeffi-

cient as the evaluation metrics. A higher value for each metric indicated better classifica-

tion performance. 

(2) Configuration: The experiments were conducted using an Inter Xeon Silver 4114 

2.2 GHz CPU, 128 GB RAM, and a NVIDIA Geforce RTX 2080 Ti 12 GB graphics card. The 

PyTorch deep learning framework was used to train the network, with epoch and 

batch_size set to 100 and 32, respectively. A learning rate decay strategy was employed, 

with an initial learning rate of 0.001, and a decay of 0.1 every 50 epochs. Adam was chosen 

as the optimization method for the experiments. Each method was tested five times, and 

the mean value was taken as the experimental result, along with the calculation of the 

standard deviation. 

In the Indian Pines, Pavia University and Salinas datasets, the size of the patch block 

(Patch_Size) was set to 13, while in the KSC dataset it was set to 15. The dimension of PCA 

dimensionality reduction (PCA_Components) was set to 64, 128, 32 and 96 for the Indian 

Pines, KSC, Pavia University and Salinas datasets, respectively. 

In practice, labeling samples of hyperspectral image data requires expert knowledge, 

which is time-consuming and expensive. Therefore, how to train the model well with a lim-

60 1949

2 Brocoli_green_weeds_2
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The Salinas dataset was a hyperspectral remote sensing image with a size of 512 × 
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for each class. 
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3.2. Experimental Setting 

(1) Evaluation Metrics: To quantitatively assess the effectiveness of the proposed 

model, we used Overall Accuracy (OA), Average Accuracy (AA) and the Kappa coeffi-

cient as the evaluation metrics. A higher value for each metric indicated better classifica-

tion performance. 

(2) Configuration: The experiments were conducted using an Inter Xeon Silver 4114 

2.2 GHz CPU, 128 GB RAM, and a NVIDIA Geforce RTX 2080 Ti 12 GB graphics card. The 

PyTorch deep learning framework was used to train the network, with epoch and 

batch_size set to 100 and 32, respectively. A learning rate decay strategy was employed, 

with an initial learning rate of 0.001, and a decay of 0.1 every 50 epochs. Adam was chosen 

as the optimization method for the experiments. Each method was tested five times, and 

the mean value was taken as the experimental result, along with the calculation of the 

standard deviation. 

In the Indian Pines, Pavia University and Salinas datasets, the size of the patch block 

(Patch_Size) was set to 13, while in the KSC dataset it was set to 15. The dimension of PCA 

dimensionality reduction (PCA_Components) was set to 64, 128, 32 and 96 for the Indian 

Pines, KSC, Pavia University and Salinas datasets, respectively. 

In practice, labeling samples of hyperspectral image data requires expert knowledge, 

which is time-consuming and expensive. Therefore, how to train the model well with a lim-

112 3614

3 Fallow
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tained 204 spectral bands and 16 land cover classes, for a total of 54,129 labeled samples. 
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for each class. 

Table 4. The information for each class in the Salinas dataset. 
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15 Vinyard_untrained  218 7050 

16 Vinyard_vertical_trellis  54 1753 
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3.2. Experimental Setting 

(1) Evaluation Metrics: To quantitatively assess the effectiveness of the proposed 

model, we used Overall Accuracy (OA), Average Accuracy (AA) and the Kappa coeffi-

cient as the evaluation metrics. A higher value for each metric indicated better classifica-

tion performance. 

(2) Configuration: The experiments were conducted using an Inter Xeon Silver 4114 

2.2 GHz CPU, 128 GB RAM, and a NVIDIA Geforce RTX 2080 Ti 12 GB graphics card. The 

PyTorch deep learning framework was used to train the network, with epoch and 

batch_size set to 100 and 32, respectively. A learning rate decay strategy was employed, 

with an initial learning rate of 0.001, and a decay of 0.1 every 50 epochs. Adam was chosen 

as the optimization method for the experiments. Each method was tested five times, and 

the mean value was taken as the experimental result, along with the calculation of the 

standard deviation. 

In the Indian Pines, Pavia University and Salinas datasets, the size of the patch block 

(Patch_Size) was set to 13, while in the KSC dataset it was set to 15. The dimension of PCA 

dimensionality reduction (PCA_Components) was set to 64, 128, 32 and 96 for the Indian 

Pines, KSC, Pavia University and Salinas datasets, respectively. 

In practice, labeling samples of hyperspectral image data requires expert knowledge, 

which is time-consuming and expensive. Therefore, how to train the model well with a lim-
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The Salinas dataset was a hyperspectral remote sensing image with a size of 512 × 

217 and a spatial resolution of 3.7 m. It was also acquired using an AVIRIS sensor. It con-
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The false-color image and ground-truth label image are shown in Figure 6d. Table 4 lists 

the specific classes of the Salinas dataset and the number of training and testing samples 

for each class. 

Table 4. The information for each class in the Salinas dataset. 
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tion performance. 

(2) Configuration: The experiments were conducted using an Inter Xeon Silver 4114 

2.2 GHz CPU, 128 GB RAM, and a NVIDIA Geforce RTX 2080 Ti 12 GB graphics card. The 

PyTorch deep learning framework was used to train the network, with epoch and 

batch_size set to 100 and 32, respectively. A learning rate decay strategy was employed, 

with an initial learning rate of 0.001, and a decay of 0.1 every 50 epochs. Adam was chosen 

as the optimization method for the experiments. Each method was tested five times, and 

the mean value was taken as the experimental result, along with the calculation of the 

standard deviation. 

In the Indian Pines, Pavia University and Salinas datasets, the size of the patch block 

(Patch_Size) was set to 13, while in the KSC dataset it was set to 15. The dimension of PCA 

dimensionality reduction (PCA_Components) was set to 64, 128, 32 and 96 for the Indian 

Pines, KSC, Pavia University and Salinas datasets, respectively. 

In practice, labeling samples of hyperspectral image data requires expert knowledge, 
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as the optimization method for the experiments. Each method was tested five times, and 
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(Patch_Size) was set to 13, while in the KSC dataset it was set to 15. The dimension of PCA 

dimensionality reduction (PCA_Components) was set to 64, 128, 32 and 96 for the Indian 
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3.2. Experimental Setting 

(1) Evaluation Metrics: To quantitatively assess the effectiveness of the proposed 

model, we used Overall Accuracy (OA), Average Accuracy (AA) and the Kappa coeffi-

cient as the evaluation metrics. A higher value for each metric indicated better classifica-

tion performance. 

(2) Configuration: The experiments were conducted using an Inter Xeon Silver 4114 
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dimensionality reduction (PCA_Components) was set to 64, 128, 32 and 96 for the Indian 
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dimensionality reduction (PCA_Components) was set to 64, 128, 32 and 96 for the Indian 
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as the optimization method for the experiments. Each method was tested five times, and 
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dimensionality reduction (PCA_Components) was set to 64, 128, 32 and 96 for the Indian 
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tion performance. 
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tion performance. 

(2) Configuration: The experiments were conducted using an Inter Xeon Silver 4114 

2.2 GHz CPU, 128 GB RAM, and a NVIDIA Geforce RTX 2080 Ti 12 GB graphics card. The 
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as the optimization method for the experiments. Each method was tested five times, and 
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tion performance. 
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PyTorch deep learning framework was used to train the network, with epoch and 
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with an initial learning rate of 0.001, and a decay of 0.1 every 50 epochs. Adam was chosen 

as the optimization method for the experiments. Each method was tested five times, and 

the mean value was taken as the experimental result, along with the calculation of the 

standard deviation. 

In the Indian Pines, Pavia University and Salinas datasets, the size of the patch block 

(Patch_Size) was set to 13, while in the KSC dataset it was set to 15. The dimension of PCA 

dimensionality reduction (PCA_Components) was set to 64, 128, 32 and 96 for the Indian 
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3.2. Experimental Setting 

(1) Evaluation Metrics: To quantitatively assess the effectiveness of the proposed 

model, we used Overall Accuracy (OA), Average Accuracy (AA) and the Kappa coeffi-

cient as the evaluation metrics. A higher value for each metric indicated better classifica-

tion performance. 

(2) Configuration: The experiments were conducted using an Inter Xeon Silver 4114 

2.2 GHz CPU, 128 GB RAM, and a NVIDIA Geforce RTX 2080 Ti 12 GB graphics card. The 

PyTorch deep learning framework was used to train the network, with epoch and 

batch_size set to 100 and 32, respectively. A learning rate decay strategy was employed, 

with an initial learning rate of 0.001, and a decay of 0.1 every 50 epochs. Adam was chosen 

as the optimization method for the experiments. Each method was tested five times, and 

the mean value was taken as the experimental result, along with the calculation of the 

standard deviation. 

In the Indian Pines, Pavia University and Salinas datasets, the size of the patch block 

(Patch_Size) was set to 13, while in the KSC dataset it was set to 15. The dimension of PCA 

dimensionality reduction (PCA_Components) was set to 64, 128, 32 and 96 for the Indian 
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In practice, labeling samples of hyperspectral image data requires expert knowledge, 
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(1) Evaluation Metrics: To quantitatively assess the effectiveness of the proposed 
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cient as the evaluation metrics. A higher value for each metric indicated better classifica-

tion performance. 

(2) Configuration: The experiments were conducted using an Inter Xeon Silver 4114 

2.2 GHz CPU, 128 GB RAM, and a NVIDIA Geforce RTX 2080 Ti 12 GB graphics card. The 

PyTorch deep learning framework was used to train the network, with epoch and 

batch_size set to 100 and 32, respectively. A learning rate decay strategy was employed, 

with an initial learning rate of 0.001, and a decay of 0.1 every 50 epochs. Adam was chosen 

as the optimization method for the experiments. Each method was tested five times, and 

the mean value was taken as the experimental result, along with the calculation of the 

standard deviation. 
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(1) Evaluation Metrics: To quantitatively assess the effectiveness of the proposed
model, we used Overall Accuracy (OA), Average Accuracy (AA) and the Kappa coefficient
as the evaluation metrics. A higher value for each metric indicated better classification
performance.
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(2) Configuration: The experiments were conducted using an Inter Xeon Silver 4114
2.2 GHz CPU, 128 GB RAM, and a NVIDIA Geforce RTX 2080 Ti 12 GB graphics card.
The PyTorch deep learning framework was used to train the network, with epoch and
batch_size set to 100 and 32, respectively. A learning rate decay strategy was employed,
with an initial learning rate of 0.001, and a decay of 0.1 every 50 epochs. Adam was chosen
as the optimization method for the experiments. Each method was tested five times, and
the mean value was taken as the experimental result, along with the calculation of the
standard deviation.

In the Indian Pines, Pavia University and Salinas datasets, the size of the patch block
(Patch_Size) was set to 13, while in the KSC dataset it was set to 15. The dimension of PCA
dimensionality reduction (PCA_Components) was set to 64, 128, 32 and 96 for the Indian
Pines, KSC, Pavia University and Salinas datasets, respectively.

In practice, labeling samples of hyperspectral image data requires expert knowledge,
which is time-consuming and expensive. Therefore, how to train the model well with a
limited or low percentage of samples has become an important topic [17], and it is also a
necessary way to test the effectiveness of the proposed model. In recent years, with the
improvement of deep neural network models, the percentage of the training samples has
tended to decrease from 30% [24] to 10%, 5% or 3% [17,20]. In this paper, we also used a
low percentage of samples to train the proposed model. There were many available samples
in the Pavia University and Salinas datasets, so the number of random training samples in
these two datasets accounted for 3% of the total samples, and the number of random training
samples in the Indian Pines and KSC datasets accounted for 10% of the total samples.

3.3. Experimental Results and Analysis
3.3.1. Classification Results

We compared the proposed MAFEN model with several representative methods
to validate its effectiveness, including traditional methods such as SVM, deep-learning-
based methods such as 3DCNN [22], SSRN [23], DFFN [30] and HybridSN [24], as well as
attention-based methods such as Speformer [36] and SSFTT [37]. The detailed experimental
results of these methods on the Indian Pines, KSC, Pavia University and Salinas datasets
are as follows.

(1) Indian Pines: Firstly, all the models were evaluated using the Indian Pines dataset,
and the quantitative experimental results are shown in Table 5, where the numbers in
bold mean the best results. The results of evaluation metrics show that the proposed
MAFEN method performed the best, obtaining the highest OA, AA and Kappa values.
Specifically, compared with SVM, the accuracy of 3DCNN was improved by 12.02%, which
shows that deep learning has a significant advantage in HSI classification. SSRN had
better classification performance than 3DCNN because it uses continuous residual blocks
to learn spectral and spatial features separately. The classification performance of DFFN
was lower than that of SSRN, which may be because the feature distribution of the Indian
Pines dataset did not match well with the DFFN network structure and the way of feature
fusion. The poor accuracy of HybridSN and Speformer in the “Grass-pawn-mowed” (class
7, mint green) and “Oats” (class 9, yellow) categories was due to the fact that the number
of training samples in the two categories was only three and two, respectively, which was
challenging for HSI classification. SSFTT achieved 100% accuracy in the “Grass-Pasture-
Mowed” category, but 76.67% accuracy in the “Oats” category, because the region shape of
this category was narrow and spatial features could not be fully extracted. However, the
accuracy of the proposed model on the two categories was 100% and 93.34%, respectively,
and the accuracy of each category was relatively close, which indicates that the model has
good feature expression ability for samples with a small training number and an irregular
region shape.
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Table 5. Classification results of different methods on the Indian Pines dataset.

Class SVM 3DCNN SSRN DFFN HybridSN Speformer SSFTT MAFEN

1 33.81 ± 0.05 89.74 ± 0.01 96.58 ± 4.78 91.16 ± 0.06 90.73 ± 13.83 94.63 ± 5.21 97.07 ± 3.58 100 ± 0.00
2 74.99 ± 0.03 85.01 ± 0.12 93.87 ± 2.94 93.47 ± 0.04 93.96 ± 1.88 89.90 ± 1.71 96.68 ± 0.68 96.76 ± 0.56
3 68.86 ± 0.02 86.41 ± 0.26 93.95 ± 4.99 89.12 ± 0.14 98.90 ± 0.67 89.97 ± 1.25 99.22 ± 0.41 99.57 ± 0.66
4 47.57 ± 0.04 96.19 ± 0.02 86.29 ± 2.17 92.41 ± 0.05 96.53 ± 2.23 97.65 ± 1.07 99.62 ± 0.55 99.15 ± 0.91
5 85.29 ± 0.03 88.19 ± 0.01 99.17 ± 0.78 81.38 ± 0.06 98.85 ± 1.32 97.06 ± 1.07 98.57 ± 1.48 99.86 ± 0.11
6 95.77 ± 0.03 88.16 ± 0.02 98.14 ± 0.50 96.53 ± 0.01 98.99 ± 0.67 99.33 ± 0.41 99.63 ± 0.39 99.51 ± 0.34
7 60.00 ± 0.24 87.50 ± 0.04 97.6 ± 3.20 93.60 ± 0.08 18.4 ± 36.8 71.20 ± 10.24 100 ± 0.00 100 ± 0.00
8 98.56 ± 0.01 100 ± 0.00 99.58 ± 0.45 100 ± 0.00 99.91 ± 0.19 99.86 ± 0.19 100 ± 0.00 99.90 ± 0.19
9 30.00 ± 0.08 88.23 ± 0.16 88.89 ± 7.03 66.67 ± 0.12 21.43 ± 7.36 66.67 ± 11.11 76.67 ± 7.36 93.34 ± 5.44

10 75.45 ± 0.02 89.35 ± 0.01 96.32 ± 1.88 89.86 ± 0.05 99.11 ± 0.15 92.78 ± 1.41 97.76 ± 1.12 99.43 ± 0.19
11 82.14 ± 0.01 93.71 ± 0.03 94.14 ± 3.04 89.69 ± 0.14 99.36 ± 0.25 95.70 ± 1.34 99.38 ± 0.33 99.38 ± 0.20
12 61.31 ± 0.01 93.63 ± 0.23 92.77 ± 2.25 77.21 ± 0.14 95.43 ± 1.39 80.56 ± 3.29 96.29 ± 1.36 98.58 ± 0.39
13 95.14 ± 0.02 100 ± 0.00 99.68 ± 0.65 95.19 ± 0.03 98.38 ± 1.41 99.68 ± 0.43 98.16 ± 2.04 99.89 ± 0.22
14 94.19 ± 0.02 97.99 ± 0.04 99.37 ± 0.13 97.76 ± 0.01 99.39 ± 0.52 98.53 ± 1.03 99.89 ± 0.21 99.84 ± 0.13
15 53.91 ± 0.04 88.92 ± 0.01 97.64 ± 1.05 94.30 ± 0.02 99.08 ± 1.05 90.72 ± 2.67 97.46 ± 2.90 100 ± 0.00
16 80.95 ± 0.05 95.29 ± 0.01 99.28 ± 0.95 98.05 ± 0.01 96.90 ± 1.78 91.90 ± 5.80 88.80 ± 6.80 97.14 ± 0.95

OA 79.60 ± 0.01 91.62 ± 0.01 95.75 ± 0.61 91.43 ± 0.04 97.73 ± 0.33 93.92 ± 0.91 98.49 ± 0.46 99.10 ± 0.06
AA 71.12 ± 0.01 91.78 ± 0.01 95.83 ± 0.61 90.40 ± 0.04 86.49 ± 0.33 91.01 ± 0.93 96.58 ± 0.46 98.90 ± 0.30

Kappa 76.66 ± 0.01 90.45 ± 0.01 95.16 ± 0.61 90.27 ± 0.04 97.41 ± 0.33 93.06 ± 1.04 98.28 ± 0.46 98.98 ± 0.07

Figure 7 shows the classification maps of these methods on the Indian Pines dataset.
The compared methods performed poorly on the land cover objects with region edges and
narrow shapes, but the proposed MAFEN model generated more accurate classification
maps with better homogeneity in each region. This is because MAFEN enhances the feature
representation of different categories through deep feature embedding and multiscale
attention learning.

(2) KSC: Secondly, we evaluated all the models on the KSC dataset, and the quantitative
experimental results are shown in Table 6. The KSC dataset had a sparse distribution of
classes, and patches were less affected by interference from neighboring classes, which
allowed for better extraction of pixel-level features. Therefore, the accuracy of various
methods was relatively high. Among them, HybridSN and Speformer achieved 100%
accuracy in five and three categories, respectively, and SSFTT achieved 100% accuracy in
nine classes. The proposed MAFEN model achieved 100% accuracy in 10 classes, with OA,
AA and Kappa values reaching 99.91%, 99.87% and 99.90%, respectively.
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Figure 7. Classification maps of the Indian Pines dataset. (a) SVM (OA = 79.60%); (b) 3DCNN
(OA = 91.62%); (c) SSRN (OA = 95.75%); (d) DFFN (OA = 91.43%); (e) HybridSN (OA = 97.73%);
(f) Speformer (OA = 93.92%); (g) SSFTT (OA = 98.49%); (h) MAFEN (OA = 99.10%).
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Table 6. Classification results of different methods on the KSC dataset.

Class SVM 3DCNN SSRN DFFN HybridSN Speformer SSFTT MAFEN

1 95.01 ± 0.01 98.12 ± 0.34 99.68 ± 0.35 99.74 ± 0.21 100 ± 0.00 99.74 ± 0.06 99.80 ± 0.25 100 ± 0.00
2 85.84 ± 0.06 77.53 ± 8.56 98.54 ± 0.73 99.27 ± 1.07 97.35 ± 1.27 98.36 ± 0.89 100 ± 0.00 100 ± 0.00
3 86.93 ± 0.04 87.15 ± 4.09 70.78 ± 32.36 97.22 ± 2.26 98.43 ± 1.66 97.13 ± 2.05 100 ± 0.00 99.74 ± 0.35
4 50.66 ± 0.03 80.11 ± 1.30 82.91 ± 11.67 83.96 ± 7.69 95.51 ± 2.42 70.84 ± 2.29 91.37 ± 6.85 98.68 ± 1.47
5 31.45 ± 0.19 84.25 ± 6.46 72.28 ± 34.09 91.31 ± 0.94 97.93 ± 1.57 94.07 ± 2.81 100 ± 0.00 100 ± 0.00
6 52.75 ± 0.04 87.63 ± 4.32 77.57 ± 19.72 75.92 ± 6.51 98.64 ± 1.77 92.23 ± 1.62 99.51 ± 0.75 100 ± 0.00
7 75.16 ± 0.16 96.22 ± 4.05 69.57 ± 36.19 100 ± 0.00 80.00 ± 8.52 100 ± 0.00 100 ± 0.00 100 ± 0.00
8 89.28 ± 0.03 85.83 ± 3.65 99.48 ± 0.36 99.43 ± 0.50 100 ± 0.00 99.95 ± 0.10 100 ± 0.00 100 ± 0.00
9 97.73 ± 0.01 95.77 ± 0.90 100 ± 0.00 98.50 ± 0.63 100 ± 0.00 100 ± 0.00 100 ± 0.00 100 ± 0.00

10 94.51 ± 0.02 93.43 ± 4.76 99.78 ± 0.44 99.89 ± 0.22 99.07 ± 1.87 99.67 ± 0.32 100 ± 0.00 100 ± 0.00
11 97.04 ± 0.01 93.86 ± 2.54 100 ± 0.00 99.63 ± 0.27 99.95 ± 0.11 99.95 ± 0.11 100 ± 0.00 99.84 ± 0.32
12 88.30 ± 0.04 95.74 ± 1.39 99.25 ± 0.38 99.38 ± 0.61 100 ± 0.00 93.55 ± 2.80 99.51 ± 0.87 100 ± 0.00
13 99.07 ± 0.01 98.67 ± 1.07 100 ± 0.00 100 ± 0.00 100 ± 0.00 100 ± 0.00 100 ± 0.00 100 ± 0.00

OA 87.81 ± 0.01 92.74 ± 1.42 95.04 ± 3.31 97.39 ± 0.62 98.98 ± 0.91 97.15 ± 0.40 99.48 ± 0.43 99.91 ± 0.09
AA 80.29 ± 0.01 90.33 ± 1.46 89.99 ± 7.71 95.71 ± 0.99 97.45 ± 3.23 95.81 ± 0.50 99.25 ± 0.64 99.87 ± 0.14

Kappa 86.41 ± 0.01 91.91 ± 1.58 94.47 ± 3.70 97.10 ± 0.69 98.86 ± 1.02 96.83 ± 0.45 99.43 ± 0.48 99.90 ± 0.10

Figure 8 displays the classification maps of these methods on the KSC dataset. Several
comparison methods had more noise points in the category “CP/Oak” (class 4, in cyan),
which led to poor classification results. Among them, HybridSN achieved the best classifi-
cation performance, reaching 95.51%. The proposed MAFEN model can better distinguish
this category and achieved the best accuracy in this category, reaching 98.68%.

(3) Pavia University: We further evaluated all the models on the Pavia University
dataset, and the quantitative experimental results are shown in Table 7. The Pavia Uni-
versity dataset had a large number of samples in each category and abundant training
samples, resulting in good classification performance for all methods. Compared with
other methods, the proposed MAFEN model achieved the best overall classification results
and the best accuracy in most categories.
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Figure 9 shows the classification maps of these methods on the Pavia University
dataset. The “Gravel” (class 3, in orange) and “Bricks” (class 8, in steel blue) classes had
similar spectra but differed in spatial details. From the classification maps, it can be seen
that SSRN using deep features for classification could not effectively distinguish “Gravel”
and “Bricks”. However, the proposed model performed well on “Gravel” and “Bricks”,
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which indicates that utilizing shallow local spatial details was beneficial for distinguishing
the “Gravel” and “Bricks” classes.

Table 7. Classification results of different methods on the Pavia University dataset.

Class SVM 3DCNN SSRN DFFN HybridSN Speformer SSFTT MAFEN

1 94.65 ± 0.01 98.75 ± 0.01 95.04 ± 2.61 99.36 ± 0.47 97.33 ± 4.49 93.59 ± 0.50 97.58 ± 1.50 99.29 ± 0.56
2 98.12 ± 0.01 99.35 ± 0.01 99.49 ± 0.59 99.96 ± 0.03 99.90 ± 0.05 99.29 ± 0.16 99.67 ± 0.08 99.97 ± 0.02
3 76.84 ± 0.04 91.83 ± 0.03 86.31 ± 6.14 97.89 ± 1.05 98.57 ± 0.79 87.65 ± 2.41 90.27 ± 3.54 91.68 ± 2.31
4 92.91 ± 0.03 93.00 ± 0.02 96.52 ± 0.85 90.51 ± 3.52 95.38 ± 1.03 95.34 ± 0.32 97.19 ± 1.14 98.48 ± 0.64
5 99.30 ± 0.01 98.57 ± 0.01 98.74 ± 1.54 96.88 ± 3.45 98.57 ± 0.90 99.97 ± 0.06 99.91 ± 0.15 100 ± 0.00
6 87.84 ± 0.02 99.68 ± 0.01 91.96 ± 4.58 99.40 ± 0.45 100 ± 0.00 96.87 ± 0.45 98.43 ± 1.15 99.79 ± 0.27
7 85.92 ± 0.02 99.70 ± 0.01 85.44 ± 12.85 99.18 ± 0.76 59.94 ± 5.94 83.16 ± 1.39 97.72 ± 1.31 98.60 ± 1.08
8 89.92 ± 0.01 96.56 ± 0.02 90.09 ± 5.72 97.99 ± 1.72 95.74 ± 3.04 93.51 ± 0.53 97.22 ± 0.94 97.87 ± 0.63
9 99.76 ± 0.01 93.65 ± 0.03 98.48 ± 1.22 78.24 ± 12.68 94.04 ± 3.03 98.74 ± 0.56 97.91 ± 2.61 99.41 ± 0.47

OA 93.94 ± 0.01 98.09 ± 0.01 95.76 ± 0.58 98.25 ± 0.42 97.35 ± 1.62 96.28 ± 0.16 98.26 ± 0.26 99.09 ± 0.03
AA 91.69 ± 0.01 96.79 ± 0.01 93.56 ± 0.87 95.49 ± 1.44 93.28 ± 5.22 94.24 ± 0.26 97.32 ± 0.49 98.34 ± 0.18

Kappa 91.93 ± 0.01 97.47 ± 0.01 94.37 ± 0.78 97.68 ± 0.57 96.48 ± 2.16 95.07 ± 0.21 97.69 ± 0.34 98.80 ± 0.05
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Figure 9. Classification maps of the Pavia University dataset. (a) SVM (OA = 93.94%); (b) 3DCNN
(OA = 98.09%); (c) SSRN (OA = 95.76%); (d) DFFN (OA = 98.25%); (e) HybridSN (OA = 97.35%);
(f) Speformer (OA = 96.28%); (g) SSFTT (OA = 98.26%); (h) MAFEN (OA = 99.09%).

(4) Salinas: Finally, we evaluated all the models on the Salinas dataset, and quantitative
analysis results for different methods are presented in Table 8. The Salinas dataset had
larger regions and regular shapes for different classes, which allowed for better extraction
of spatial features. The proposed MAFEN model achieved an accuracy of 100% for six
classes, with OA, AA and Kappa values reaching 99.82%, 99.80% and 99.80%, respectively.
This further confirms the feature representation capability of the proposed model.
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Figure 10 shows the classification maps of different methods on the Salinas dataset.
From the top left corner of the classification maps, we can observe that due to the very
similar spectra of “Grapes Untrained” (class 8, in steel blue) and “Vinyard Untrained” (class
15, in olive), the compared methods contained a lot of noise in the classification maps of
these two classes. However, the proposed MAFEN model, which has better spectral–spatial
feature representation capability, was able to distinguish these two classes, resulting in
smoother and more accurate classification maps.
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Figure 10. Classification maps of the Salinas dataset. (a) SVM (OA = 93.30%); (b) 3DCNN (OA
= 96.64%); (c) SSRN (OA = 96.27%); (d) DFFN (OA = 98.77%); (e) HybridSN (OA = 98.46%);
(f) Speformer (OA = 98.49%); (g) SSFTT (OA = 98.89%); (h) MAFEN (OA = 99.82%).

Table 8. Classification results of different methods on the Salinas dataset.

Class SVM 3DCNN SSRN DFFN HybridSN Speformer SSFTT MAFEN

1 99.35 ± 0.01 99.96 ± 0.01 99.64 ± 0.30 97.98 ± 4.04 99.94 ± 0.12 99.68 ± 0.53 99.99 ± 0.02 100 ± 0.00
2 99.88 ± 0.01 99.52 ± 0.01 100 ± 0.00 99.62 ± 0.22 100 ± 0.00 99.75 ± 0.23 99.99 ± 0.01 99.99 ± 0.02
3 99.12 ± 0.01 98.37 ± 0.01 99.99 ± 0.02 99.99 ± 0.02 100 ± 0.00 98.41 ± 0.90 99.97 ± 0.04 100 ± 0.00
4 99.74 ± 0.01 95.63 ± 0.02 98.79 ± 0.91 91.72 ± 8.36 99.87 ± 0.12 99.56 ± 0.25 99.62 ± 0.20 99.50 ± 0.35
5 98.11 ± 0.01 99.11 ± 0.01 99.69 ± 0.34 99.85 ± 0.29 99.71 ± 0.43 99.41 ± 0.25 99.68 ± 0.24 99.73 ± 0.44
6 99.96 ± 0.01 100 ± 0.00 99.83 ± 0.33 98.68 ± 1.88 99.99 ± 0.01 99.98 ± 0.02 99.98 ± 0.04 99.99 ± 0.02
7 99.85 ± 0.01 99.94 ± 0.01 99.85 ± 0.14 99.83 ± 0.07 99.95 ± 0.09 99.37 ± 0.49 99.95 ± 0.04 100 ± 0.00
8 90.83 ± 0.01 94.36 ± 0.02 91.89 ± 6.05 99.08 ± 1.71 99.92 ± 0.12 97.77 ± 0.34 96.81 ± 1.11 99.81 ± 0.15
9 99.75 ± 0.01 99.74 ± 0.01 100 ± 0.00 100 ± 0.00 100 ± 0.00 99.18 ± 0.30 99.97 ± 0.06 100 ± 0.00
10 96.17 ± 0.01 98.38 ± 0.01 97.73 ± 1.11 100 ± 0.00 99.84 ± 0.16 99.53 ± 0.24 99.36 ± 0.35 99.97 ± 0.05
11 96.12 ± 0.02 98.01 ± 0.01 99.52 ± 0.45 99.71 ± 0.48 100 ± 0.00 99.15 ± 0.32 99.86 ± 0.08 100 ± 0.00
12 100 ± 0.00 99.92 ± 0.01 100 ± 0.00 97.15 ± 1.66 99.65 ± 0.70 99.05 ± 0.90 99.84 ± 0.32 100 ± 0.00
13 98.88 ± 0.01 99.52 ± 0.01 99.73 ± 0.54 97.16 ± 1.97 39.29 ± 4.85 98.90 ± 0.44 98.81 ± 0.69 99.91 ± 0.08
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Table 8. Cont.

Class SVM 3DCNN SSRN DFFN HybridSN Speformer SSFTT MAFEN

14 94.31 ± 0.02 95.87 ± 0.01 95.16 ± 3.96 93.47 ± 6.03 96.95 ± 5.82 96.59 ± 1.77 98.88 ± 0.16 98.92 ± 0.38
15 69.37 ± 0.03 87.70 ± 0.05 87.48 ± 6.68 97.57 ± 2.63 97.10 ± 5.19 95.53 ± 0.62 97.83 ± 0.41 99.43 ± 0.24
16 98.95 ± 0.01 99.49 ± 0.01 99.16 ± 0.38 100 ± 0.00 99.93 ± 0.14 99.60 ± 0.28 99.27 ± 0.19 99.54 ± 0.26

OA 93.30 ± 0.01 96.64 ± 0.01 96.27 ± 0.54 98.77 ± 0.69 98.46 ± 1.19 98.49 ± 0.12 98.89 ± 0.28 99.82 ± 0.06
AA 96.27 ± 0.01 97.84 ± 0.01 98.03 ± 0.28 98.24 ± 0.85 95.76 ± 2.91 98.84 ± 0.21 99.36 ± 0.13 99.80 ± 0.04

Kappa 92.52 ± 0.01 96.26 ± 0.01 95.85 ± 0.59 98.63 ± 0.77 98.28 ± 1.33 98.32 ± 0.13 98.77 ± 0.31 99.80 ± 0.07

3.3.2. Parameter Analysis

(1) Impact of Patch_Size and PCA_Components on the OA: We analyzed the influence
of Patch_Size and PCA_Components on classification performance in the Indian Pines,
KSC, Pavia University and Salinas datasets. Patch_Size was selected as (11, 13, 15, 17,
19) for all four datasets, and PCA_Components was selected as (32, 48, 64, 80, 96, 112,
128) for the Indian Pines, KSC and Salinas datasets. Since the Pavia University dataset
had 103 spectral bands, PCA_Components was selected as (32, 48, 64, 80, 96) for this
dataset. From Figure 11a, we can observe that the best performance was achieved when
Patch_Size was set to 13 and PCA_Components was set to 64 on the Indian Pines dataset.
From Figure 11b, the classification performance on the KSC dataset was strongly correlated
with PCA_Components. As PCA_Components increased, the classification performance
improved, and eventually the OA approached 100%. In Figure 11c, the classification
performance was better when PCA_Components was in the range (32, 48). As you can see
from Figure 11d, the smaller PCA_Components fit well on the Salinas dataset.

(2) OA of Models with Different Percentages of Training Samples: Figure 12 presents
the classification accuracy of various methods with different percentages of training sam-
ples. Considering the differences in the number of available samples for each dataset, 2%,
4%, 6%, 8% and 10% of labeled samples were selected as training samples for the Indian
Pines and KSC datasets, while 0.5%, 1%, 2%, 3% and 4% of labeled samples were selected
as training samples for the Pavia University and Salinas datasets. From Figure 12, it can
be seen that the proposed MAFEN method still performed well even with fewer training
samples. In addition, as the percentage of training samples increased, the accuracy of
various methods also increased. Among them, the accuracy of SSFTT and HybridSN was
close to our method, showing better classification performance.

(3) Computational Performance: The results of training and testing time consumed
by SSRN, DFFN, HybridSN, Speformer, SSFTT and our proposed MAFEN method are
listed in Table 9. It can be seen that there were obvious differences in the training and
testing time of several methods on different datasets. Among them, SSFTT was the most
computationally efficient, and the training time was much lower than that of the other
methods on all datasets. In contrast, the training time of Speformer was longer, especially
on the Indian Pines dataset, where the training time was more than four times longer
than that of the other models. On the whole, our proposed method performed well with
relatively short training time on different datasets.

Table 9. Computational performance comparison of several comparison methods and the proposed
method.

Methods
Indian Pines KSC Pavia University Salinas

Train. (s) Test. (s) Train. (s) Test. (s) Train. (s) Test. (s) Train. (s) Test. (s)

SSRN 78.90 1.69 115.47 1.90 129.75 9.71 449.59 24.43
DFFN 65.56 1.82 37.79 1.10 83.54 8.26 112.91 11.71

HybridSN 73.85 2.02 40.54 1.02 91.93 9.21 115.28 12.37
Speformer 394.06 23.99 118.99 5.70 58.15 12.07 198.74 52.78

SSFTT 25.18 0.65 26.64 0.76 8.78 1.15 10.79 1.46
MAFEN 66.13 1.93 86.21 2.67 65.59 7.66 88.75 9.76
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(c) Pavia University; (d) Salinas.
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3.3.3. Ablation Experiment

In order to thoroughly validate the effectiveness of each component in the proposed
method, the ablation experiment was conducted on the Indian Pines, KSC, Pavia University
and Salinas datasets to analyze the impact of the ASFF and MAM components. Four
combinations were considered, where the Base network did not contain the MAM and
ASFF modules. Three indicators, OA, AA and Kappa, were used to analyze the influence
of different components on the whole model, and the experimental results are shown in
Figure 13.

The Base network, which did not include the MAM and ASFF modules, had the
worst classification performance on the four datasets. When adding the MAM or ASFF
module, the classification performance was significantly improved compared with that
of the Base network, which verifies the effectiveness of the MAM and ASFF modules.
Compared with the network containing the ASFF module, the network containing the
MAM module had better improvement performance, showing that the attention mechanism
can extract effective spectral–spatial information, which is more helpful to improve the HSI
classification performance. The classification performance of the MAFEN network with
two modules was better, which reflects the better performance of spectral–spatial features
by using both modules simultaneously. In summary, the results of the ablation experiment
further prove the effectiveness of the proposed model.

Remote Sens. 2023, 15, 3338 19 of 22 
 

 

Figure 12. OA of models with different percentages of training samples. (a) Indian Pines; (b) KSC; 

(c) Pavia University; (d) Salinas. 

(3) Computational Performance: The results of training and testing time consumed 

by SSRN, DFFN, HybridSN, Speformer, SSFTT and our proposed MAFEN method are 

listed in Table 9. It can be seen that there were obvious differences in the training and 

testing time of several methods on different datasets. Among them, SSFTT was the most 

computationally efficient, and the training time was much lower than that of the other 

methods on all datasets. In contrast, the training time of Speformer was longer, especially 

on the Indian Pines dataset, where the training time was more than four times longer than 

that of the other models. On the whole, our proposed method performed well with rela-

tively short training time on different datasets. 

Table 9. Computational performance comparison of several comparison methods and the proposed 

method. 

Methods 
Indian Pines KSC Pavia University Salinas 

Train. (s) Test. (s) Train. (s) Test. (s) Train. (s) Test. (s) Train. (s) Test. (s) 

SSRN 78.90 1.69 115.47 1.90 129.75 9.71 449.59 24.43 

DFFN 65.56 1.82 37.79 1.10 83.54 8.26 112.91 11.71 

HybridSN 73.85 2.02 40.54 1.02 91.93 9.21 115.28 12.37 

Speformer 394.06 23.99 118.99 5.70 58.15 12.07 198.74 52.78 

SSFTT 25.18 0.65 26.64 0.76 8.78 1.15 10.79 1.46 

MAFEN 66.13 1.93 86.21 2.67 65.59 7.66 88.75 9.76 

3.3.3. Ablation Experiment 

In order to thoroughly validate the effectiveness of each component in the proposed 

method, the ablation experiment was conducted on the Indian Pines, KSC, Pavia Univer-

sity and Salinas datasets to analyze the impact of the ASFF and MAM components. Four 

combinations were considered, where the Base network did not contain the MAM and 

ASFF modules. Three indicators, OA, AA and Kappa, were used to analyze the influence 

of different components on the whole model, and the experimental results are shown in 

Figure 13. 

  

(a) (b) 

Remote Sens. 2023, 15, 3338 20 of 22 
 

 

  
(c) (d) 

Figure 13. Ablation experiment. (a) Indian Pines; (b) KSC; (c) Pavia University; (d) Salinas. 

The Base network, which did not include the MAM and ASFF modules, had the worst 

classification performance on the four datasets. When adding the MAM or ASFF module, 

the classification performance was significantly improved compared with that of the Base 

network, which verifies the effectiveness of the MAM and ASFF modules. Compared with 

the network containing the ASFF module, the network containing the MAM module had 

better improvement performance, showing that the attention mechanism can extract ef-

fective spectral–spatial information, which is more helpful to improve the HSI classifica-

tion performance. The classification performance of the MAFEN network with two mod-

ules was better, which reflects the better performance of spectral–spatial features by using 

both modules simultaneously. In summary, the results of the ablation experiment further 

prove the effectiveness of the proposed model. 

4. Conclusions 

The method named Feature Embedding Network with Multiscale Attention 

(MAFEN) is proposed in this article to improve the classification performance of Hyper-

spectral Images (HSIs). The MAFEN model first utilizes multiscale attention modules to 

extract informative features, then embeds deep features into shallow features to enhance 

the feature representation capability of the network. Finally, adaptive fusion is performed 

on features at different levels. Experiments were conducted on four commonly used HSI 

datasets, and comparisons were made with existing methods. The proposed MAFEN 

method demonstrated superior spectral–spatial feature representation capability, as it ef-

fectively utilized spatial details from shallow features and semantic information from 

deep features, resulting in a significant improvement in classification accuracies on all 

four datasets compared with those of several other methods. In the future, we will further 

study new attention-based networks to fully leverage the critical information in HSIs. 

Author Contributions: Conceptualization, Y.L. and J.Z.; Data curation, J.F. and C.M.; Funding ac-

quisition, Y.L. and C.M.; Investigation, J.Z. and J.F.; Methodology, Y.L. and J.Z.; Software, J.Z.; Su-

pervision, Y.L.; Visualization, J.Z. and C.M.; Writing—original draft, J.Z.; Writing—review and ed-

iting, Y.L. and C.M. All authors have read and agreed to the published version of the manuscript. 

Funding: This work was supported by the National Natural Science Foundation of China (Nos. 

62077038, 61672405, 62176196 and 62271374). 

Data Availability Statement: The data used in this study are available at Hyperspectral Remote 

Sensing Scenes—Grupo de Inteligencia Computacional (GIC) (ehu.eus) (accessed on 9 May 2023) 

(Indian Pines), Hyperspectral Remote Sensing Scenes—Grupo de Inteligencia Computacional (GIC) 

(ehu.eus) (accessed on 9 May 2023) (Kennedy Space Center), Hyperspectral Remote Sensing 

Figure 13. Ablation experiment. (a) Indian Pines; (b) KSC; (c) Pavia University; (d) Salinas.

4. Conclusions

The method named Feature Embedding Network with Multiscale Attention (MAFEN)
is proposed in this article to improve the classification performance of Hyperspectral
Images (HSIs). The MAFEN model first utilizes multiscale attention modules to extract
informative features, then embeds deep features into shallow features to enhance the
feature representation capability of the network. Finally, adaptive fusion is performed
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on features at different levels. Experiments were conducted on four commonly used HSI
datasets, and comparisons were made with existing methods. The proposed MAFEN
method demonstrated superior spectral–spatial feature representation capability, as it
effectively utilized spatial details from shallow features and semantic information from
deep features, resulting in a significant improvement in classification accuracies on all four
datasets compared with those of several other methods. In the future, we will further study
new attention-based networks to fully leverage the critical information in HSIs.
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