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Abstract: Recently, atmospheric perturbations residing over around epicenters of forthcoming earth-
quakes were remotely sensed by the multiple instruments of the MVP-LAI (Monitoring of Vibrations
and Perturbations in Lithosphere, Atmosphere and Ionosphere) system. In this study, we found
another way and proposed a theory for the evolution of the perturbations in the atmosphere from
the aspect of numerical simulation. We started from the fundamental hydromechanics equations
for the perturbations based on the atmospheric dynamics in the cylindrical symmetric coordinate to
solve their analytical solution. The solution shows that a persistent vibration at the bottom of the
cylindrical symmetric coordinate tends to decay exponentially with along altitude. In other words,
a persistent ground vibration in a wide area can rapidly evolve into small-scale perturbations in
the atmosphere. The preliminary theoretical model in this study shows the kernel concept for the
coupling of geospheres.

Keywords: hydromechanics simulation; ground vibrations; atmospheric perturbations; wave evolution;
LAI coupling

1. Introduction

The coupling of the lithosphere, atmosphere, and ionosphere (LAI) has been widely
reported in previous studies [1–17]. Four promising channels have been proposed and
examined by numerous geophysical parameters during hazard events [16,18–20]. The
chemical channel suggests that the total electron contents (TECs) in the ionosphere can be
changed by variations in the atmospheric contents near the Earth’s surface mainly due to
gas released from the underground [21,22]. The conductivity channel indicates the iono-
sphere can be heated by the upward lighting due to the enhancement of the conductivity
near the Earth’s surface [23–25]. The TEC can also be changed by the acoustic and gravity
waves (i.e., the acoustic-gravity channel) [26–35]. Changes in TECs exhibit period character-
istics longer than ~5 min that is probably related to the atmospheric gravity waves [36,37].
Generations of the gravity waves are mainly referred to variations in temperature near the
Earth’s surface [38–44]. In contrast, changes of TECs with period characteristics shorter
than ~5 min are probably caused by the acoustic waves [45,46]. The acoustic waves mainly
originate from the ground vibrations particularly for the Rayleigh waves and propagate
upward with sonic velocity from the Earth’s surface to the ionosphere [2,6,11,14,31,47]. In
terms of the electromagnetic emission channel, enhancements of the electromagnetic field
at a particular frequency band of ~0.01 Hz can change the ionosphere, accordingly [48,49].
Seismo-anomalous phenomena have been observed in the LAI. The four potential channels
(i.e., radiation gases for the chemical channel, current and/or water for the conductiv-
ity channel, geothermal temperature variations for the acoustic-gravity channel, and the
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geomagnetic anomaly for the emission channel) have been proposed to explain the seismo-
TEC anomalies triggered by changes in the lithosphere. (see the references mentioned in
above). However, the causal mechanisms for the seismo-LAI coupling remain unclear.
Chen et al. [50] retrieved seismo-crustal deformation from the long-term crustal displace-
ment data. The results show that seismo-crustal deformation for earthquake preparation
covering a larger area that is hereafter confirmed by the study [51] reported in 2020. The
seismo-deformation and vibrations begin few days before earthquakes [51–55]. Moreover,
numerous studies have shown that the lithosphere-atmosphere-ionosphere coupling phe-
nomenon can be observed before earthquake [1–4].Those observation results suggest that
the seismo-ground vibrations can be promising sources triggering acoustic waves upward
propagating and driving changes in atmosphere and TEC via the acoustic-gravity channel
that have to be examine.

Chen et al. [52] analyzed crustal displacements and/or deformation data from the
seismometers and ground-based GNSS (Global Navigation Satellite System) receivers
associated with major earthquakes. Seismo-ground vibrations with amplitude of 0.1 m at
frequencies ranged mainly between 8 × 10−5 Hz and 2 × 10−4 Hz in a wide area with a
radius of epicentral distance >200 km. Chen et al. [56] found that the frequencies where the
ground vibration amplitudes enhanced were not stable but tended to be high at (>10−2 Hz)
with the approaching of forthcoming earthquakes. Meanwhile, the frequencies can be a
resonant phenomenon as natural frequencies before failure of a grant size of rocks that
can be estimated by changes in seismicity [56]. To examine whether the seismo-ground
vibrations can excite acoustic waves deriving changes in atmosphere and TECs or not,
Chen et al. [57] established an instrumental array in Sichuan, China for monitoring the
vibrations and perturbations in the lithosphere, atmosphere and ionosphere (MVP-LAI).
Ground vibrations and TECs share the frequency of ~0.005 Hz before the earthquakes due
to that the atmospheric resonance was attributed to the persistent lithospheric vibrations
in a wide frequency band [58]. Chen et al. [59] reported that a resonant LAI coupling is
existence even if the amplitude of vibrations in the lithosphere is small.

The previous studies showed the observational evidence of the persistent lithospheric
vibrations inducing disturbance and wave in the atmosphere. However, a possible mathe-
matical proof does not yet exist, which motivates us to derive the theoretical solution of
the wave evolution due to the persistent lithospheric vibrations. Some previous studies
on numeric simulations have been performed [60–72]. Mikhailenko et al. [60] developed a
numerical–analytical algorithm to simulate the propagation of seismic and acoustic-gravity
waves within the limits of a heterogeneous Earth–Atmosphere model. The algorithm is
based on the integral Laguerre transform with respect to time and tested for simple models
of an elastic half-space that borders on the atmosphere. Kherani et al. [61] simulated the
atmosphere and ionospheric anomalies for the Tohoku-Oki tsunami and found that the
Tsunami-Atmosphere-Ionosphere (TAI) coupling mechanism via acoustic-gravity waves
(AGWs) was explored theoretically using the TAI-coupled model. Brissaund et al. [62]
introduced a finite difference in the time domain (FDTD) approach to stimulate interactions
between lithosphere and atmosphere. Carbone et al. [68] used the Wentzel-Kramers-
Brillouin (WKB) approach to simulate the atmospheric fluctuations excited by a generic
seismic event on the top of the first layer of the atmosphere, and estimated its dispersion re-
lation as a function of the characteristic parameters of the earthquake. Matsumura et al. [72]
simulated the atmospheric perturbations observed at 300-km altitude just after the 2011
off the Pacific coast of Tohoku Earthquake, and the results showed remarkable agreement
with the observed TEC oscillations qualitatively. Most of the previous studies simulate
the atmospheric acoustic or gravity waves triggered by a point source [60–77], while the
ground vibrations are typically observed in a wide area [52]. Therefore, the innovation of
the simulation in this study considers the persistent variation in a wide area. We quantita-
tively analyze atmospheric perturbations triggered by persistent lithospheric vibrations
below a height of 100 km based on the numerical simulation results.
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2. Perturbation Equations in the Cylindrical Symmetric Coordinates and its
Numerical Solution

As we all know, air is a typical fluid, so the dynamical properties in atmosphere can
be described by the physical quantities such as atmospheric pressure, air density and flow
velocities, and the physical evolution process can be derived by hydromechanics equations.
In the cylinder coordinate, the equations of atmospheric dynamics are given by

dvr

dt
−

v2
θ

r
− f vθ = −1

ρ

∂p
∂r

+ Fr, (1)

dvθ

dt
+

vrvθ

r
+ f vr = −

1
ρr

∂p
∂θ

+ Fθ , (2)

dw
dt

= −g− 1
ρ

∂p
∂z

+ Fz, (3)

where p, ρ, (Fr, Fθ , Fz) and (vr, vθ , w) are atmospheric pressure, air density, viscous forces
and (radial, tangential and vertical) velocity of the fluid respectively. g = GM/(z0 + z)2

is acceleration of gravity (z0 is the earth radius, M is the mass of earth, and G is the
gravitational constant), and the earth rotates with angular velocity Ωsinϕ = f /2 (Ω is the
angular velocity of the earth’s rotation, ϕ is dimension, and f is the Coriolis parameter).

The equation of continuity, thermodynamical equation and the water vapor equa-
tion are

dρ

dt
+ ρ

(
∂vr

∂r
+

vr

r
+

1
r

∂vθ

∂θ
+

∂w
∂z

)
= 0, (4)

cp
dT
dt
− 1

ρ

dp
dt

= Q, (5)

dq
dt

= S, (6)

where Q is the amount of heat per unit mass of air per unit time received from the outside,
T is the temperature of air, cp = 1.005× 103J · kg−1 ·K−1 is specific heat of air at constant
pressure, q and S are specific humidity and the amount of water vapor per unit mass of
wet air obtained from the outside world per unit time. In hydromechanics, we set

d
dt
≡ ∂

∂t
+ vr

∂

∂r
+

vθ

r
∂

∂θ
+ w

∂

∂z
, (7)

For the sake of simplicity, the earth rotation effect and viscous effect of fluid are
ignored, so f = Fr = Fθ = Fz = vθ = 0. We also ignore the water vapor Equation (6)
and the exchange of heat between air and the outside of system (Q = 0), and assume all
physical quantities in the work have cylindrical symmetry, so that above equations are
simplified as:

dvr

dt
= −1

ρ

∂p
∂r

, (8)

dw
dt

= −g− 1
ρ
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, (9)
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+ ρ

(
∂vr
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+
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+

∂w
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)
= 0, (10)

cp
dT
dt
− 1

ρ

dp
dt

= 0, (11)
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We consider the air as perfect gas, so it satisfy the state equation:

p = ρRT, (12)

with R = 287 J · kg−1 ·K−1. Under the condition of no wind, let’s consider a perturbation
with frequency ω, so the physical funtions are set as the form: vr = δṽr(r, z)e−iωt , w =
δw̃(r, z)e−iωt , ρ = ρ(z) + δρ̃(r, z)e−iωt, p = p(z) + δ p̃(r, z)e−iωt, T = T(z) + δT̃(r, z)e−iωt

with δ� 1 as mark of perturbation. We can get

p′ = − GM

(z + z0)
2 ρ, (13)

with A′ ≡ ∂z A. Therefore, we get the perturbation equations as follows

∂r p̃− iωρṽr = 0, (14)

∂z p̃ +
GM

(z + z0)
2 ρ̃− iωρw̃ = 0, (15)

∂r ṽr + ∂zw̃ +
ṽr

r
+

ρ′
ρ

w̃− i
ω

ρ
ρ̃ = 0, (16)

ρ̃ =
cp − R

cp

ρ

p
p̃− i

GM
(
cp − R

)
ρ2 + cp(z + z0)

2 p ρ′
cp(z + z0)

2ωp
w̃, (17)

From Equations (14), (15) and (17), we can derive ṽr, ρ̃ and w̃ by p̃ and its derivative.
By using the ansatz p̃ = pr(r)pz(z), Equation (16) is rewritten as

(z+z0)ω
2ρ

pz{G2 M2(cp−R)ρ2+cp(z+z0)
2ρ[(z+z0)

2ρω2+GMρ′]}2 {GM
(
cp − R

)
ρ{cpGM(z + z0)

3ρρ′p′z+

pz {GM
(
cp − R

)
[2GM + (z + z0)

3ω2]ρ2 − cp(z + z0)
5ω2ρρ′ − cpGM(z + z0)

3ρ′ρ′}}+
c2

p(z + z0)
4ρ2 {(z + z0)[(z + z0)

2ω2ρ + GMρ′]p′′z − p′z {[−2GM + (z + z0)
3ω2]ρ′+

GM(z + z0)ρ
′′}}+ cp

(
cp − R

)
(z + z0)

2ρ{G2M2ρ{2p′z[2ρ− (z + z0)ρ′] + (z+
z0)ρp′′z }+ (z + z0)pz {(z + z0)ω

2[−2GM + (z + z0)
3ω2]ρ2 + 2G2M2ρ′2+

GMρ[2(z + z0)
2ω2ρ′ − GMρ′′] }}} = − p′′r

pr
− (p′r)

rpr
= C2

L,

(18)

where CL is a constant of separating variables.
Now, let’s try to solve pr. As CL = 0, we find pr = C0 + C1 ln(r), but it is a trivial

solution because pr → ∞ at infinity ( r → ∞ ). It means that CL can not vanish (CL 6= 0)
in this work, and the solution is pr = CaJ0(CLr) + CbY0(CLr) with Cb = 0 because the
boundary condition at infinity, (where Jn(r) and Yn(r) are the Berssel function of the first
kind and the second kind respectively). For the sake of simplificity, it is assumed that
atmosphere pressure satisfy the relation

p(z) = p0e−
z

zh , (19)

where the parameter zh = 7990 m is the atmosphere scale height, and p0 is atmospheric
pressure near the ground. Finally, we obtain the numerical solution of perturbation equa-
tions as follows:

p̃ = pr(r)pz(z) = CA cos(ωt) p̃¬
z
(z)J0(CLr), (20)

ρ̃ = −
(z + z0)

2[
(
cp − R

)
(z + z0)

3ω2 p̃¬
z
(z) + GM[−2cpzh + R(z + z0) p̃′z(z)]]

GM[GM[−2cpzh + R(z + z0)]−cpzh(z + z0)
3ω2]

CA cos(ωt)J0(CLr), (21)
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ṽr =
CLe

z
zh GMzh

p0(z + z0)
2ω

CA sin(ωt) p̃¬
z
(z)J1(CLr), (22)

w̃ = −
e

z
zh GM(z + z0)zhω[

(
cp − R

)
p̃¬

z
(z) + cpzh p̃′z(z)]

[2cpzhGM− GMR(z + z0) + cpzh(z + z0)
3ω2]p0

CA sin(ωt)J0(CLr), (23)

The physical solutions should be the real parts of solutions, so we have

p = p(z) + CA cos(ωt) p̃¬
z
(z)J0(CLr), (24)

ρ = ρ(z) + CA cos(ωt)ρ̃¬
z
(z)J0(CLr), (25)

vr = CA sin(ωt)ṽ¬
z
(z)J1(CLr), (26)

w = CA sin(ωt)w̃¬
z
(z)J0(CLr) (27)

We have rewritten the z- component of perturbation physical quantities as p̃Z(z),
ρ̃Z(z), ṽZ(z) and w̃Z(z), whose analytical forms are given in Equations (20)–(23).

3. Results and Discussion

The specific parameters are substituited into above formulas, and we investigate
the function propreties with different radius and altitudes. To show the evolution of the
perturbations from ground to upper atmosphere, we choose ω = 2π× 1.6× 10−3 Hz,
zh = 7990 m, CL = 1× 10−5 and substitute the parameters into above equations.

The signals with a frequency of ~10−2 Hz due to the ground vibrations within a wide
area with a radius larger than ~102 km (Figure 1) reach the upper atmosphere at 100 km
altitude (Figure 2). The air pressure and density perturbations attenuate significantly with
height (Figure 2a,b). The results suggest the feasibility of ground vibrations propagating
into the upper atmosphere. Moreover, we can also find that the propagation velocities
(ṽZ and w̃Z) in upper atmosphere is faster than those near the ground (Figure 2c,d), which
indicate that the perturbations propagate easier at the lower pressure and density atmo-
sphere. Accordingly, the upper atmosphere is an ideal signal transfer medium for the
warning of natural disasters, such as volcanic eruption and earthquakes [77].

The lithosphere-atmosphere coupling has been observed and widely reported in many
previous studies. The coupling phenomena can be detected during earthquakes and vol-
canic eruptions [4,11,58–60,78]. However, the coupling phenomena too complex to be
simulated comprehensively. Therefore, in this study, we stand on the ground and started
from solving the classical hydromechanics equations to deal with the complex mechanism
for coupling. We calculated the numerical solution of the disturbance equations in the
cylindrical symmetric coordinate to understand the possible effect of the persistent litho-
spheric vibrations on the upper atmosphere, which is a preliminary result for explaining the
possible relation between the vibration signals on the ground and those in the atmosphere
above. The solution reveals that the persistent vibrations in a wide area on the ground
(>105 km2, mainly corresponding to the area of Sichuan Province, China 4.86× 105 km2

(https://www.sc.gov.cn/, accessed on 8 March 2022) is capable of decaying rapidly in the z
direction of the cylinder. The rapid decay of large disturbance agrees with the observational
evidences of a large disturbances tend to evolve into finer-scale in the atmosphere [75,76].

In fact, the ground vibrations are recognizable before earthquake [51,56,59], and
they can propagate upward to change the air pressure in the atmosphere and TEC in
the ionosphere [4,11,59]. Essential parameters in different spheres can be recorded by
corresponding instruments. Liu et al. [11] showed that the magnetometer can observed
changes in the ionosphere current at 100 km in altitude. The HF Doppler sounding can

https://www.sc.gov.cn/
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detect changes at 200 km in altitude. The ground-based GNSS receivers can monitor
changes in TEC.
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radial and vertical velocity perturbation ṽZ(z) (c) and angular frequency w̃Z(z) (d).

Previous studies simulate the atmospheric acoustic or gravity waves triggered by a
point source [75–77]. The new idea of the simulation in this study is considering the persis-
tent variation in a wide area. In other words, the numerical results reveal that persistent
ground vibrations in a wide area are possible to evolves into small-scale perturbations
in the atmosphere [76]. Figure 2c shows that vertical velocity gradually increases with
height, and finally reach 100 m/s at 100 km altitude. We compare the simulation result
with the observation from Liu et al. [11]. Their observational results show the velocity of
acoustic wave triggered from ground increased with height and up to 400 m/s at 100 km
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altitude. The simulation and observational results yield similar characteristics, while little
discrepancy of velocity between them may be due to the complexity of nature we have not
considered at present. For instance, the waves or disturbances evolve nonlinearly [46,76]
and interact with the background wind flow [77,78], which relates to numerous effects such
as Coriolis’s force, viscosity of air, nonlinear wave-to-wave interaction, dynamics etc.

The preliminary analytical simulation is based on the conclusions of observational
evidence from previous studies. In fact, we show the possibility of waves evolving from
the lithosphere to the atmosphere. We understand that actual situation can reduce the
possibility. However, the reduction of the possibility cannot change the fact of the waves
propagating from the lithosphere to the atmosphere. Of course, the calculation in the
frequency domain can be extended and transformed to the time domain for the further
visualization application.

4. Conclusions

The analytical solution of perturbations in the hydromechanics equations in the cylin-
drical symmetric coordinate was solved. This is a preliminary theoretical model. The
solution preliminarily proves the observational evidence that ground vibrations of wide
area with a radius larger than ~102 km in the lithosphere can propagate into the atmosphere
and evolve there. The vibrations are capable of decaying rapidly with the altitude. The
solution is quite challenged to be found from the fundamental equations of atmospheric
disturbances and dynamics for the geospheres’ coupling that is complex. Therefore, the
preliminary theoretical model in this study here shows the kernel concept, and of course it
will be improved in several aspects in the future.
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