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Abstract: The timely and accurate estimation of above-ground biomass (AGB) is crucial for indicating
crop growth status, assisting management decisions, and predicting grain yield. Unmanned aerial
vehicle (UAV) remote sensing technology is a promising approach for monitoring crop biomass.
However, the determination of winter wheat AGB based on canopy reflectance is affected by spectral
saturation effects. Thus, constructing a generic model for accurately estimating winter wheat AGB
using UAV data is significant. In this study, a three-dimensional conceptual model (3DCM) for
estimating winter wheat AGB was constructed using plant height (PH) and fractional vegetation
cover (FVC). Compared with both the traditional vegetation index model and the traditional multi-
feature combination model, the 3DCM yielded the best accuracy for the jointing stage (based on RGB
data: coefficient of determination (R2) = 0.82, normalized root mean square error (nRMSE) = 0.2;
based on multispectral (MS) data: R2 = 0.84, nRMSE = 0.16), but the accuracy decreased significantly
when the spike organ appeared. Therefore, the spike number (SN) was added to create a new
three-dimensional conceptual model (n3DCM). Under different growth stages and UAV platforms,
the n3DCM (RGB: R2 = 0.73–0.85, nRMSE = 0.17–0.23; MS: R2 = 0.77–0.84, nRMSE = 0.17–0.23)
remarkably outperformed the traditional multi-feature combination model (RGB: R2 = 0.67–0.88,
nRMSE = 0.15–0.25; MS: R2 = 0.60–0.77, nRMSE = 0.19–0.26) for the estimation accuracy of the AGB.
This study suggests that the n3DCM has great potential in resolving spectral errors and monitoring
growth parameters, which could be extended to other crops and regions for AGB estimation and
field-based high-throughput phenotyping.

Keywords: AGB; UAV; winter wheat; spectral features; three-dimensional conceptual model

1. Introduction

Winter wheat is one of the world’s major cereal crops, accounting for 18% of the
cultivated area in China [1]. Its yield is also crucial for international grain trade and global
food security [2–4]. The AGB is a critical indicator in crop growth status assessment, farm
management, and grain yield prediction [5,6]. Traditional measurements of AGB in the
laboratory are destructive and time-consuming; the measurements are highly accurate
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but challenging to promote on a large scale [7,8]. Therefore, the timely, efficient, and
accurate monitoring of winter wheat AGB is important for effective field management and
increasing yield [9,10].

Compared with traditional measurement methods, remote sensing as a non-destructive
technique has been demonstrated to have great potential in the measurement of AGB due
to its simplicity and efficiency [11–13]. Various remote sensing platforms can capture
crop canopy reflection spectrum signals to monitor crop biophysical/biochemical parame-
ters [14,15]. These platforms that have been used to monitor crop AGB include near-surface
hyperspectral systems [16,17], unmanned aerial vehicles (UAVs) [18–20], and satellites [21–23].
Although near-surface hyperspectral systems and satellite images have high spectral resolu-
tion and a wide field of view [24,25], UAV platforms have great potential in crop phenotype
monitoring due to their low cost and simple operation [26,27]. Most studies of AGB have
been conducted using vegetation indices (VIs), e.g., the normalized difference vegetation
index (NDVI [28]) and excess green (ExG [29]), which have achieved remarkable research
results [30–33]. However, some studies have shown that the spectral saturation effect
significantly impacts the estimation of crop biochemical parameters [34–37]. In particular,
VIs constructed using the red and near-infrared bands can easily result in spectral satu-
ration under conditions of high crop coverage [35,38,39]. Especially for upright-growing
crops, such as winter wheat and corn, dense and compact planting modes will inevitably
produce dense canopy growth. Another issue is that VIs are insensitive to AGB during
the reproductive growth stage, which is because the reflection and absorption of light of
different wavelengths by the chlorophyll in the canopy are saturated at this stage [38,40].
The spectral features have nonlinear relationships with physiological and biochemical pa-
rameters, and the sensitivity of these features to crop biochemical parameters is low during
the reproductive growth stage [41,42]. These factors limit the ability of VIs to estimate crop
physiological and biochemical parameters at different growth stages.

Several researchers have made efforts to address the saturation problem in crop estima-
tion, such as improving or constructing vegetation indices [39,43,44] or integrating texture
features [38,45], structural features [46–48], and fractional vegetation cover (FVC) [49,50]
into estimation models. Generally, the combination of multi-source features can provide
higher accuracy in AGB estimation and reduce the influence of the spectral saturation effect
on the model [47,51,52]. However, many studies have tended to use multiple features as
independent model input factors to estimate target features, leading to the accuracy of
traditional multi-feature combination models being unstable under different research and
experimental conditions [53]. Therefore, to ensure the stability and universality of models,
a more efficient method of feature combination must be found. For example, considering
that maize AGB is composed of stems and leaves before the tasseling stage, Shu et al. [54]
constructed a three-dimensional conceptual model (3DCM) for predicting maize AGB
by integrating the leaf area index (LAI) and plant height (PH) to improve the accuracy
of using UAV data to monitor the maize AGB at the jointing stage. However, it is still
unclear whether the 3DCM can be applied to estimate the AGB of winter wheat, whether
it is suitable for different growth stages, and whether the 3DCM has better accuracy than
the traditional multi-feature combination model. Therefore, it is necessary to explore the
potential of the 3DCM for winter wheat AGB estimation.

Recent studies have reported high-dimensional data and non-linear relationships,
posing new challenges to current data processing methods [55]. Compared with traditional
regression techniques, machine learning (ML) algorithms are typically better at handling
high-dimensional data and non-linear relationships between the predictor variable and
target variable [56–58]. Currently, ML regression algorithms such as the support vector machine
(SVM) [59,60], artificial neural network (ANN) [61,62], and random forest (RF) [63,64] have been
widely used to integrate multi-source input variables, including integrating VIs and plant
height [48], integrating VIs and thermal characteristics [65], and integrating texture, color,
and VIs [66]. However, the winter wheat AGB prediction improvement through traditional
multi-source feature combinations is limited. Therefore, it is necessary to consider the
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contributions of characteristic variables to the estimation of AGB and accurately estimate
winter wheat AGB by effectively combining the characteristic variables.

Therefore, this research aimed to establish a 3DCM for the accurate estimation of winter
wheat AGB across multiple stages. The specific objectives of this study were as follows:
(1) to construct a new three-dimensional conceptual model (n3DCM), (2) to evaluate the
potential of the n3DCM in AGB estimation, and (3) to compare the advantages of different
UAVs in AGB estimation.

2. Materials and Methods
2.1. Experimental Design

The winter wheat field experiment was conducted in the 2021 growing season. The
winter wheat experiment site was located at Xiaogang Village, Fengyang County, Chuzhou
City, Anhui Province in China (117◦42′E, 32◦16′N) (Figure 1).
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Figure 1. Location of the experimental site and the experimental design of the winter wheat field
plots in 2021.

Different winter wheat cultivars and nitrogen (N) fertilizer treatments were set up in
the experiment. The plot number was 36 and the plot size was 2 m × 8 m. The three winter
wheat cultivars were Huaimai 44 (V1, high-gluten wheat), Yannong 999 (V2, high-gluten
wheat), and Ningmai 13 (V3, low-gluten wheat), with three replicates of each. The four
nitrogen fertilizer treatments were N0 (0 kg/ha), N1 (100 kg/ha), N2 (200 kg/ha), and N3
(300 kg/ha). The N fertilizer was applied in the form of urea, with 60% applied before
planting and 40% applied during the jointing stage. Other management practices were
consistent with local recommendations.

2.2. Field Data Collection

In 2021, 36 plots were sampled to measure the PH and winter wheat AGB at four
critical growth stages. Three winter wheat plants from a sample plot were randomly
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selected, and their distances from the highest point to the ground were measured using a
ruler. The average value was then taken as the true plant height in the sample plot.

The winter wheat AGB was measured via manually destructive sampling from two
rows. Each sample was 0.5 m long. These winter wheat samples were quickly transported
to the lab for leaf, stem, and spike separation. All fresh organs were oven-dried at 105 ◦C
for 30 min and then at 75 ◦C for at least 24 h to achieve a constant weight. The dry weight
of the winter wheat was then obtained using a balance (accuracy: 0.01 g) and the AGB was
then converted to kg/ha.

At the mature stage of winter wheat, 1 m2 of wheat with consistent growth was
randomly selected from each plot in the study area. The yield and SN of winter wheat
samples were obtained after threshing, drying to constant weight, and weighing.

2.3. Data Acquisition
2.3.1. Acquisition of the UAV Images

This study employed a DJI Mavic 2 (DJI Technology Co., Shenzhen, China) with an
RGB digital camera to acquire high spatial-resolution image and a DJI Phantom 4 multi-
spectral (DJI Technology Co., Shenzhen, China) to capture the multispectral image. The
UAV images of winter wheat were acquired before sowing and at critical growth stages (jointing,
booting, flowering, and filling). The DJI GS pro software package (https://www.dji.com/cn/
downloads/djiapp/dji-gs-pro, accessed on 13 May 2023) was used to design the same flight
plans for all campaigns. The flight altitude was set to 30 m (pixel size: 0.7 cm for RGB data,
1.5 cm for multispectral (MS) data) with a flight speed of 2 m/s. The forward overlap of
images was higher than 90% and the side overlap was higher than 85%. Four standard
reflector panels were placed on the ground for radiometric calibration, and five ground
control points were evenly distributed in the field. All UAV flights were conducted from
10 a.m. to 2 p.m. on sunny and cloudless days. The UAV camera specifications and data
acquisition dates are shown in Table 1.

Table 1. Camera specifications and summary of field campaigns for the wheat experiments.

Camera Spectral Band (nm) Date of UAV Flight Growth Stage

RGB
Red

14 March 2021
8 April 2021
29 April 2021
9 May 2021

Jointing
Booting

Flowering
Filling

Green
Blue

MS

Blue (450 ± 16 nm)
Green (560 ± 16 nm)
Red (650 ± 16 nm)

Red edge (730 ± 16 nm)
Near-infrared (840 ± 26 nm)

2.3.2. Preprocessing of the UAV Images

The RGB and MS image mosaicking was conducted with the PIX4Dmapper software
(4.4.12 version, Pix4D SA, Prilly, Switzerland) to generate ortho-mosaics from four crit-
ical growth stages. The main operations of this procedure mainly include aligning the
images, adding ground control points, generating dense point clouds and texture meshes,
reconstructing 3D images based on structure from a motion (SfM) algorithm [67], and,
finally, obtaining the digital orthophoto model (DOM), digital surface model (DSM), and
digital terrain model (DTM) images of the study area. The images of reflector panels on the
ground were collected for radiometric calibration. ArcGIS (10.2 version, Environmental
Systems Research Institute, Inc., Redlands, CA, USA) was used to create all plots’ vector
boundaries. To minimize the impact of marginal effects, the edge of each plot was omitted
while creating the .shp file. The average of all the extracted pixel values of each plot was
used as the corresponding feature.

https://www.dji.com/cn/downloads/djiapp/dji-gs-pro
https://www.dji.com/cn/downloads/djiapp/dji-gs-pro
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2.4. Methods

The PH and FVC values extracted from the UAV data were used to construct a 3DCM
for estimating the AGB of winter wheat. The critical process is shown in Figure 2. First, the
canopy height model (CHM) was used to obtain the PH of winter wheat. Second, the VI
was extracted from UAV images, and the FVC of each plot was extracted using the “excess
green (ExG)—excess red (ExR)” method. Third, different models were trained and verified.
Fourth, the accuracy of different models was compared and the AGB was visualized.
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2.4.1. PH Extraction

Before planting the winter wheat, we used UAVs to obtain the terrain model of the
fields. Then, we used the UAVs to acquire the winter wheat’s DSM at different growth
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stages and subtracted the DTM from the DSM at each growth stage to extract the plant
height of the winter wheat. The calculation method is shown as Equation (1):

CHM = DSMi − DTM0, (1)

where DSMi represents the DSM generated in the ith stage and DTM0 represents the
terrain DTM obtained before planting. As shown in Figure 3, the measured and extracted
PHs exhibited good consistency (RGB: R2 = 0.76; MS: R2 = 0.88). Overall, the extracted PH
was slightly lower compared to the measured PH.
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2.4.2. FVC Calculation

FVC is usually defined as the percentage of the vertical projection area of vegetation
(including branches, stems, and leaves) in a unit area [68]. In this study, the “ExG–ExR”
method was used to segment soil background pixels from original images, which is effective
for different soil backgrounds and has excellent performance in processing natural color
digital images [69]. The FVC of each plot was calculated using Equation (2):

FVC =
Ngreen

Nall
, (2)

where Nall represents the full number of pixels in one plot and Ngreen represents the number
of pixels after removing the background.

2.4.3. Machine Learning Algorithm

RF, which was proposed by Breiman [70], is commonly used in the estimation of the
AGB of winter wheat [71,72]. The RF model combines a large number of trees to improve
accuracy [73]. RF regression not only handles a large number of input variables but also
uses small subsets of variables to obtain a reasonable prediction accuracy. In addition, RF
regression can help overcome the overfitting issue of simple decision trees [31,74]. There
are three parameters, including the number of trees (ntree), the number of variables used
as predictors for each tree (mtry), and the minimum size for each terminal mode (node
size) [75]. This paper set ntree to 1000 and mtry to 1 to 2.

2.4.4. Three-Dimensional Conceptual Model

Many studies have shown a good correlation between PH and AGB [7,30,33,76]. Most
studies combine the PH value with spectral and texture characteristics to estimate winter
wheat biomass, but the accuracy of this method varies across different studies. Therefore,
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to estimate winter wheat AGB accurately and stably, this study established a 3DCM for
estimating the AGB based on the work of Shu et al. [54] (Figure 4B). Before the heading
stage, the winter wheat AGB was composed of stems and leaves. Different winter wheat
varieties have different stem heights. The stem height is associated with stem weight [77].
The number and area of leaves determine the weight of the leaves. FVC refers to the
percentage of the vertical projection area of the canopy to the total area and is highly
correlated with the leaf biomass. Although the VI was the same, the biomass varied with
stem height. Therefore, it was necessary to consider differences in PH to improve the
accuracy of the AGB estimates. A winter wheat population can be regarded as a cube.
The FVC is the base area of the winter wheat cube. The larger the FVC value, the larger
the bottom area of the cube. The height of the cube is represented in the PH value. The
higher the PH, the higher the height of the winter wheat cube. The volume of the cube is
calculated by multiplying the area of its base by its height. Therefore, before the heading
stage of winter wheat, AGB could be estimated using Equation (3).
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Figure 4. Conceptual map of the prediction model for above-ground biomass of winter wheat based
on plant height, spike number, and fractional vegetation cover ((A) winter wheat population after
the jointing stage; (B) winter wheat population at the jointing stage; (C) spike organs of winter
wheat population).

However, Shu et al. [54] only focused on the jointing stage (no spike organ appeared).
Therefore, to enhance the stability and universality of the model during the entire growth
cycle, attention needed to be paid to the influence of spike organ emergence. Therefore,
the present study used the SN to quantify the contribution of spike organs to the AGB
(Figure 4A,C). A larger SN value indicated that there were more spike organs and that
the AGB of spike organs was larger in the winter wheat population. The influence of
spike organs on the AGB of winter wheat was represented by the SN, and the n3DCM was
proposed to improve the accuracy of AGB estimation (Equation (4)):

M1 :AGB = Fun[(PH × FVC)] (3)

M2 : AGB = Fun[(PH × FVC), SN] (4)

where PH is the plant height, SN is the number of spikes, and FVC represents the fractional
vegetation cover. Fun represents the RF algorithm.

2.5. Accuracy Evaluation

The study dataset was divided into two portions, with 70% of the samples used
for calibration and 30% used for validation. This resulted in 25 calibration samples and
11 validation samples. Two metrics of the coefficient of determination (R2) and normalized
root mean square error (nRMSE) were used to evaluate the accuracy of the calibration and
validation models as follows:
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R2 = 1−

n
∑

i=1
(yi − xi)

2

n
∑

i=1
(xi − x)2

(5)

nRMSE =

√
1
n

n
∑

i=1
(yi − xi)

2

¯
x

(6)

where xi and yi represent the measured and predicted winter wheat AGB for sample i,
respectively; x is the average measured winter wheat AGB and n is the number of samples.

3. Results
3.1. Comparison of the Ability to Estimate the AGB of Winter Wheat between the
Three-Dimensional Conceptual Model (3DCM) and the Traditional VI Model of Different
Growth Stages

The R2 and nRMSE for the AGB simulated using the VI model and the 3DCM are
displayed in Figure 5. In general, the two models exhibited greater estimation accuracy
values in the jointing stage than in other growth stages. In addition, the RGB or MS accuracy
values for the 3DCM (jointing: RGB: R2 = 0.82, nRMSE = 0.20; MS: R2 = 0.84, nRMSE = 0.16)
were higher than those for the VI model. Among them, compared with the 3DCM, the R2

was slightly higher for the VI model RGB-based ExG at the jointing stage, but the nRMSE of
AGB estimated using the VI model was larger. The results demonstrated that the 3DCM could
yield satisfactory accuracy in the jointing stage, which is similar to the finding of Shu et al. [54].
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Figure 5. Relationship between measured and predicted above-ground biomass (AGB) based on
the traditional vegetation model. ((A,B) Traditional vegetation model; (C,D) 3DCM; (A,C) RGB;
(B,D) multispectral). Coefficient of determination, R2; normalized root mean square error, nRMSE.
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3.2. Differences between the Three-Dimensional Conceptual Model (3DCM) and the Traditional
Multi-Feature Combination Model in Estimating Winter Wheat AGB

Figure 6 shows a comparison of the 3DCM and traditional multi-feature combination
model for the estimation of AGB across the critical growth stages. Compared with the
3DCM, the performance of the traditional multi-feature combination model was lower than
that of the 3DCM in the jointing stage. In addition, the traditional multi-feature combination
model also showed a similar decrease in accuracy after the jointing stage. In the jointing
stage, the traditional multi-feature combination model achieved the best accuracy (RGB:
R2 = 0.76, nRMSE = 0.21; MS: R2 = 0.70, nRMSE = 0.21) among the four growth stages. At
the stages of the emergence of spike organs, the accuracy of the traditional multi-feature
combination model was higher than that of the 3DCM, indicating that the 3DCM had high
consistency with the winter wheat AGB at the jointing stage without the appearance of
the spike organ. However, after the formation of the spike organ, the 3DCM needed more
description of spike characteristics, which resulted in the poor performance of estimating
the winter wheat AGB.
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Figure 6. Traditional multi-feature combination model and 3DCM was used to estimate winter wheat
above-ground biomass (AGB) at different growth stages based on RGB and multispectral (MS) UAV.
((A,B) Traditional multi-feature combination model; (C,D) 3DCM; (A,C) RGB; (B,D) MS). Coefficient
of determination, R2; normalized root mean square error, nRMSE.

3.3. The Three-Dimensional Conceptual Model (3DCM) with Spike Organ Consideration

To improve the accuracy of the 3DCM in estimating winter wheat AGB and broaden
the usability of the model at different growth stages, this study introduced a feature highly
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correlated with spike weight: the SN. The SN and PH×FVC were used as input factors to
construct an n3DCM. To explore the performance of the n3DCM in estimating the winter
wheat AGB under different UAVs and growth stages, this study compared its performance
with that of the n3DCM and the traditional multi-feature combination model (PH, FVC,
and SN). The results are shown in Figure 7.
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Figure 7. Traditional multi-feature combination model and n3DCM was used to estimate winter
wheat above-ground biomass (AGB) at different growth stages based on RGB and multispectral
(MS) UAV. ((A,B) n3DCM; (C,D) traditional multi-feature combination model; (A,C) RGB; (B,D) MS).
Coefficient of determination, R2; normalized root mean square error, nRMSE.

The results of winter wheat AGB estimation using the n3DCM are shown in Figure 7A,B).
The accuracy of the n3DCM was significantly better than that of the 3DCM (Figure 6C,D).
The R2 and nRMSE of winter wheat AGB were estimated to be above 0.73 and below 0.21,
respectively, using the n3DCM based on different UAV and growth stages. Compared
with the 3DCM, the accuracy of the n3DCM was not significantly improved at the jointing
stage, but it was significantly improved after the jointing stage. Compared with the 3DCM
(Figure 6C,D), the accuracy of the n3DCM improved most significantly in estimating the
AGB of winter wheat during the flowering stage; the R2 increased from 0.06 to 0.79 and the
nRMSE decreased from 0.48 to 0.23 for the RGB UAV. Under the MS UAV, the R2 increased
from 0.03 to 0.77 and the nRMSE decreased from 0.47 to 0.23. Furthermore, the n3DCM
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exhibits high and consistent accuracy in estimating winter wheat AGB across different
UAVs and growth stages.

Based on the traditional multi-feature combination model, the FVC, PH, and SN were
used as input features of the model to estimate the winter wheat AGB. The results are
shown in Figure 7C,D. Overall, the accuracy of the n3DCM was higher than that of the
traditional multi-feature combination model. However, the accuracy of the traditional
multi-feature combination model was better than that of the n3DCM when predicting
the winter wheat AGB based on RGB UAV data at the booting stage, and the R2 and
nRMSE were 0.88 and 0.15 for the traditional multi-feature combination model, respectively,
and 0.73 and 0.21 for the n3DCM, respectively. The changing pattern of the traditional
multi-feature combination model based on the FVC, PH, and SN was similar to that of the
traditional multi-feature combination model based on the FVC and PH. Adding the SN
feature significantly improved the accuracy of AGB estimation at the booting, flowering,
and filling stages. However, there was no apparent improvement at the jointing stage. The
3DCM also showed the same difference. These results indicate that the SN feature has great
potential in estimating the AGB during spike organ emergence. In general, the n3DCM
with the SN feature had the best performance in AGB estimation, and the model had stable
performance in different growth stages and with different UAVs. These results indicate
that n3DCM is better than the traditional multi-feature combination model and 3DCM.

3.4. The Performance of Multi-Sensor Fusion in AGB Estimation

The PH and FVC features extracted from RGB and MS images were fused for estimat-
ing the winter wheat AGB. The results are shown in Figure 8. The accuracy of the n3DCM
combining the PH and FVC extracted from different UAVs was lower than that based on a
single UAV. The n3DCM that combined PH values based on MS and the FVC value based
on RGB had the lowest accuracy for the jointing stage (R2 = 0.58, nRMSE = 0.26). Overall,
these results indicated that mixed multi-source UAV features did not necessarily improve
the AGB estimation accuracy.
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Figure 8. Results of winter wheat above-ground biomass (AGB) estimation using a new three-
dimensional conceptual model integrating multi-source unmanned aerial vehicle (UAV) features.
((A) The determination coefficients of winter wheat AGB monitoring with UAV features and single
UAV features; (B) nRMSE for monitoring winter wheat AGB with UAV feature fusion and single
UAV features). Coefficient of determination, R2; normalized root mean square error, nRMSE.

3.5. AGB Mapping Using the New Three-Dimensional Conceptual Model (n3DCM)

We mapped the winter wheat AGB using n3DCM and two types of UAV data (Figure 9).
The n3DCM based on MS had higher accuracy in estimating AGB. The n3DCM based on
RGB showed clear underestimation in the N0 region during the jointing stage. In booting
images, there was an overestimation in the N0 region and an underestimation in the
N3 region.
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4. Discussion
4.1. Limitations of Spectral Information for Monitoring Crops

Remote sensing technology allows for efficient and convenient estimates of crop
biophysical/biochemical parameters using canopy spectral reflectance, but the spectral
saturation phenomenon can significantly affect the accuracy of the model. Our study also
showed that spectral features alone could not reasonably estimate the AGB of winter wheat
during the whole growth stage (Figure 5A,B). The variation pattern of NDVI and AGB in
Figure 10 shows that with increases in AGB in winter wheat, the VI produced a relatively
saturated effect, resulting significant decrease in the ability of VI to estimate AGB.
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Figure 10. Changes in normalized difference vegetation index (NDVI) and above-ground biomass (AGB).

Over the past few decades, various schemes have been proposed to overcome the
effect of spectral saturation on crop AGB estimates. Although the problem of saturation in
spectral features has been partially overcome, spectral signals are susceptible to various
factors in real situations. In the field scene, soil background, moisture, spectral acquisition
time, spatial image resolution, and other factors will affect the spectral signals [16,31,78,79].
As shown in Figure 11, taking jointing stage as an example, the difference in green pixel
reflectance and all pixel reflectance was determined under various N fertilizer treatments.
With both UAVs, the reflectance increased when the background was removed. The vegeta-
tion coverage under the N0 treatment was relatively low, and GreenPix and AllPix differed
significantly in red, red-edge, and near-infrared bands. With the increase in coverage, the
gap between GreenPix and AllPix in red, red-edge, and near-infrared bands became smaller
and gradually tended to be the same, only being slightly different in near-infrared bands.
This shows that background has a strong influence on spectral characteristics.
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Figure 11. Comparison of the average reflectance of all pixels (all) and wheat pixels (green) under dif-
ferent nitrogen fertilizer treatments ((A–D) RGB; (E–H) (multispectral) MS; (A,E) nitrogen rate:
0 kg/ha; (B,F) nitrogen rate: 100 kg/ha; (C,G) nitrogen rate: 200 kg/ha; (D,H) nitrogen rate:
300 kg/ha). The solid line represents all pixels, while the dashed line represents green pixels.

The spectral signal collected by UAV are generally of the leaf canopy, which correlate
well with the biochemical parameters of leaves. However, winter wheat AGB is composed
of multiple organs; thus, it is not appropriate to estimate the sum of leaf, stem, and spike
organs using only the spectral signal of the canopy [62]. Because the zenith angle makes
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it challenging to obtain spectral signals of crop stems or below the canopy, in order to
collect more spectral information reflected by crop organs and reduce the contribution of
the soil background to the spectral reflectance of the canopy, some studies have obtained
multi-angle image data by adjusting the shooting angle of the UAV [80,81]. In addition,
several studies have collected spectral reflectance at different times to obtain more spectral
signals of the physiological and biochemical parameters of crops by using the changes
in the solar altitude angle [19,82]. However, the dense planting pattern of winter wheat
prevents the sensor from acquiring spectral signals reflected by all crop organs. Therefore,
in a relatively complex field environment, it is necessary to consider using characteristic
information that is not affected by natural conditions to estimate the AGB of winter wheat.

4.2. Estimating the AGB Potential of Three-Dimensional Information in Winter Wheat

The canopy reflectance of crops can be affected by the complex interaction between
sunlight, vegetation, and soil, and this effect is difficult to eliminate in existing field
trials [83]. Because the AGB of winter wheat contains the weight of leaves, stems, and
spikes, the dense canopy structure hinders the spectral signal acquisition of stems in the
middle and late growing season, and the spectral reflectance cannot reflect the weight of
winter wheat stems well.

The PH is an important indicator for characterizing the AGB of the vertical growing
crops. Previous studies have shown a moderate correlation between the PH and the crop
AGB [46,77,84]. The present study also found a moderate correlation between the PH and
the crop AGB (Table 2). Moreover, the CHM-derived PH was slightly lower than the field
measurements (Figure 3). Bendig et al. [48] found that there is a degree of underestimation
when UAVs are used to estimate plant height. The cause of this underestimation may be
that in the field environment, the wind can blow the leaves of winter wheat, resulting in
positional changes and differences in the same leaf in the overlapping images captured
by the UAV. This leads to the stitched image being unable to accurately reflect the height
of the winter wheat. In addition, the maximum spatial resolution of the UAV used in our
study was 0.7 cm, which made it difficult to capture the height of the top of the winter
wheat canopy for very narrow winter wheat plants. This also leads to the underestimation
of plant height.

Table 2. Correlation between the AGB with the FVC, PH, and spike number at different growth stages.

Growth Stage
Fractional Vegetation Cover Plant Height

Spike Number
RGB MS RGB MS

Jointing stage 0.81 0.81 0.75 0.77 0.41
Booting stage 0.28 0.54 0.62 0.63 0.82

Flowering stage 0.37 0.51 0.61 0.67 0.91
Filling stage 0.39 0.71 0.78 0.79 0.82

The FVC is a vital feature in characterizing a canopy and is closely related to the
canopy organ and the leaf area index (LAI) [85]. Compared with the LAI, acquiring the
FVC is more straightforward and does not require field measurement data. As shown in
Table 2, the correlation between the FVC obtained using the two UAVs and the AGB of
winter wheat showed the maximum value at the jointing stage, indicating that the FVC
at the jointing stage was highly correlated with the AGB of winter wheat. As shown in
Figure 12, the AGB at the jointing stage was mainly composed of the leaf organ, which did
not show stratification or overlap, and the FVC could well represent the leaf organ. Yue
et al. [62] also showed that the leaf organ made up a large proportion in the jointing stage,
and leaf features such as the FVC could effectively improve estimation accuracy.
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Figure 12. Proportion of different organs (stem, leaf, and spike) in the above-ground biomass at
different growth stages.

The PH and FVC used in this study were derived from the CHM and orthophoto
images, respectively, which were generated from overlapping images acquired by RGB and
MS UAVs. The combination of the PH and FVC as input data for regression techniques is
equivalent to using two types of features, namely, vertical and canopy features. The results
show that the 3DCM using a combination of PH and FVC information estimated AGB with
higher accuracy than models using the VI (Figures 5A,B and 6A,B). However, the accuracy
of PH combined with FVC was higher only in the jointing stage, and the model’s accuracy
in other growth stages could not satisfy the application requirements, indicating that the
influence of the spike organ on the model should be considered.

As shown in Figure 12, spike organs appeared after the booting stage, and the weight
of spike organs gradually increased with the winter wheat grows, making it necessary to
consider the contribution of spike organs to the AGB when estimating the AGB in winter
wheat. However, most current studies estimate the AGB using information on spectral,
textural, thermal characteristics, PH, and canopy features [10,38,47,54], but the relationship
between these characteristics and spike organs is not significant, making it difficult to
quantify the weight of spike organs in winter wheat AGB. As shown in Table 2, in the
analysis of the correlation between the SN and winter wheat, the SN was better correlated
with the winter wheat AGB when spike organs were appearance. Therefore, this study
used SN to quantify the contributions of spike characteristics to the winter wheat AGB
to enhance the ability of the model to estimate the winter wheat AGB at different growth
stages. The PH, FVC, and SN were used as input characteristics to estimate the winter
wheat AGB (Figure 7C,D). Adding spike characteristics significantly improved the PH
and FVC models after the jointing stage. This indicates that the SN has great potential in
estimating winter wheat AGB.

Three-dimensional information has great potential for estimating the AGB in winter
wheat, but a simple data feature input may not improve model accuracy [86]. Therefore,
the form of the feature combination must be considered to improve the estimation ability
of the model.

4.3. Potential Estimation of Winter Wheat AGB Using a New Three-Dimensional Conceptual
Model (n3DCM) and the Performance of Multi-Source Data Fusion

Previous studies have found that the effect of treating the maize population volume
without spike organs as the AGB is more accurate than the traditional VI model [54]. How-
ever, previous studies did not compare different combinations of three-dimensional features
and only performed comparisons with a single VI model. Therefore, this study explored
whether this 3DCM could be applied to winter wheat and compared its performance with
traditional VI model and traditional multi-feature combination model.

Compared with the traditional VI model, the 3DCM performed better in estimating
the AGB of winter wheat during the jointing stage (Figure 5), which was similar to the
results of Shu et al. [54]. However, the study of Shu et al. [54] did not compare the accuracy
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of the 3DCM with that of the traditional multi-feature combination model. Therefore, this
study compared the accuracy of the 3DCM with the traditional multi-feature combination
model (Figure 6). The results showed that the accuracy of the 3DCM was higher than that
of the traditional multi-feature combination model at the jointing stage. However, the
accuracy for the other growth stages was similar to that of the traditional multi-feature
combination model. This indicates that although the volume-based 3DCM has some
potential for estimating the AGB of winter wheat, it has some limitations in estimating
the AGB of winter wheat during the whole reproductive stage. This may be due to the
emergence of a spike organ. Many studies have shown that photosynthetic products are
usually transferred to the reproductive organs of the crop (e.g., wheat spikes) at late stages
of growth [62,87,88]. Therefore, considering only stem and leaf organs may lead to an
underestimation of the winter wheat AGB at the reproductive growth stage.

Therefore, this study proposed the n3DCM to improve the model’s universality in
multiple growth stages. The n3DCM mainly considered the impact of spike organ (the
SN) on AGB estimation. This study compared the n3DCM (Figure 7A,B) with the 3DCM
(Figure 6C,D). The accuracy of the n3DCM was significantly improved after the jointing
stage, indicating that adding the SN could effectively improve the model accuracy to
estimate the winter wheat AGB during the whole growth stage. This study also compared
the n3DCM with the traditional multi-feature combination model of PH, FVC, and SN
(Figure 7), and the results showed that the effect of the n3DCM was better than that of
the traditional multi-feature combination model. These results indicate that the 3DCM of
fused SN can effectively consider the influence of the spike organ on the AGB estimation of
winter wheat.

In order to further explore the performance of the n3DCM, the PH and FVC extracted
from the two UAVs were combined to estimate the winter wheat AGB (Figure 8). The
overall estimated accuracy was above 0.7, but the R2 of the Fun [(PHMS × FVCRGB), SN]
model at the jointing stage was 0.58, which was lower than the overall level. In addition,
the n3DCM based on multi-source data fusion did not significantly improve accuracy in
estimating the winter wheat AGB. RGB and MS UAVs are equipped with optical sensors,
with differences only in band and resolution. Because the flight height in the current study
was 30 m, the extracted PH and FVC features were less affected by spectral bands and
spatial resolution. Therefore, in this study, the feature combination of multi-source UAVs
did not significantly impact the n3DCM.

4.4. Limitations and Prospects

Although the n3DCM was more effective than the traditional method in estimating
the AGB of winter wheat, it has some limitations. For example, the measured number
of spikes was used to represent the weight of spike organ. Crop spike detection using
image recognition techniques is already available [89,90], and these techniques can be used
for spike counting. This study selected the “ExG–ExR” threshold method to extract the
vegetation elements of winter wheat due to the convenience of operation. However, the
“ExG–ExR” method, which is an effective indicator to distinguish green vegetation pixels
from the original image, is strictly limited to green objects and is not sensitive to non-green
objects [91]. Previous studies have shown that supervised classification methods (e.g., SVM
and RF) can provide higher classification accuracy and lower uncertainty [92,93]. Therefore,
supervised classification methods can be considered instead of the “ExG–ExR” threshold
method in future work.

Although the n3DCM obtained good performance in estimating winter wheat AGB,
the results of this study were based on four growth stages in one year and a single location
consisting of a combination of varieties and N rates. Therefore, further exploration of the
potential of n3DCM must be carried out by utilizing additional locations, winter wheat
varieties, nitrogen rates, and growth stages to verify the portability of the model. In
addition, investigating how to apply the n3DCM to satellite scales for global applications
is also worthy of continued research [23]. This study evaluated the performance of the
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winter wheat population volume in estimating the winter wheat AGB but neglected the
effect of planting density on estimating the winter wheat AGB [94]. Future work should
also consider the effect of crop planting density on the estimation of the winter wheat AGB
using the n3DCM.

5. Conclusions

This study investigated the potential of the 3DCM for estimating the winter wheat
AGB based on UAV data. The performances of three models on the winter wheat AGB
were compared at different growth stages and under different UAVs. Compared with the
traditional VI model, the 3DCM performed better in the jointing stage, but its accuracy
decreased significantly after the jointing stage. Compared with the traditional multi-feature
combination model, the 3DCM only performed better in the jointing stage. In order to
enhance the stability of the 3DCM in estimating the winter wheat AGB at different growth
stages, an n3DCM was proposed. Compared with the previous three models, the accuracy
of the n3DCM was significantly improved after the jointing stage. The R2 and nRMSE
values of the n3DCM were all higher than 0.73 and less than 0.23, respectively, at different
growth stages of winter wheat. These results indicate that the n3DCM has great potential in
estimating the AGB of winter wheat. The n3DCM provides a new way to estimate the AGB
of winter wheat and has excellent potential in the accurate estimation of growth parameters
for other crops.
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