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Abstract: Anomaly detection is a crucial task for hyperspectral image processing. Most popular
methods detect anomalies at the pixel level, while a few algorithms for anomaly detection only
utilize subpixel level unmixing technology to extract features without fundamentally analyzing the
anomalies. To better detect and separate the anomalies from the background, this paper proposes
a dual-view hyperspectral anomaly detection method by taking account of the anomaly analysis
at both levels mentioned. At the pixel level, the spectral angular distance is adopted to calculate
the similarities between the central pixel and its neighbors in order to further mine the spatial
consistency for anomaly detection. On the other hand, from the aspect of the subpixel level analysis,
it is considered that the difference between the anomaly and the background usually arises from
dissimilar endmembers, where the unmixing will be fully implemented. Finally, the detection results
of both views are fused to obtain the anomalies. Overall, the proposed algorithm not only interprets
and analyzes the anomalies from dual levels, but also fully employs the unmixing for anomaly
detection. Additionally, the performance of multiple data sets also confirmed the effectiveness of the
proposed algorithm.

Keywords: hyperspectral images; anomaly detection; spatial consistency; spectral unmixing; mani-
fold constraint

1. Introduction

In recent decades, the advent of recent remote sensing technologies has enabled various
remote sensors to collect data in a more convenient way. Consequently, image processing
techniques also experienced a rapid development and found widespread applications in
many fields. A hyperspectral image (HSI) consists of approximately a hundred or more
contiguous spectral bands, and each pixel can extract a whole complete high-resolution
spectral curve [1,2]. With this feature, it contains more precise and accurate spectral
information, allowing for a better characterization and identification of targets. Therefore,
the HSI has attracted significant academic interest due to its competitive advantage and
potential application in various industries [3–5].

In general, the most widely used processing techniques of hyperspectral remote images
can be divided into several classes including mixed-pixel decomposition (unmixing) [6,7],
land-cover classification [8,9], anomaly detection [10,11], target detection [12,13], and so
forth. Although the hyperspectral sensor has a very high spectral resolution, its spatial
resolution is limited. Moreover, the land-cover is complex, and these factors would lead to
the presence of the mixed pixels. Hyperspectral unmixing (HU) aims to decompose the
mixed pixel into numerous ground objects (endmembers) and determine their correspond-
ing proportions (abundances) within this pixel [14]. The goal of anomaly detection is to
identify the uncommon objects that are significantly different from the background [15].

For the anomaly detection task, the anomaly targets in the image are unknown,
making it difficult to obtain sufficient prior knowledge. Therefore, the algorithms for
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anomaly detection can vary depending on the approach used to recognize the anomalies.
Hyperspectral anomaly detection methods can generally be categorized into the following
two categories based on the involvement of neural networks in the model construction
phase: traditional methods and deep learning-based methods [16].

On one hand, traditional algorithms mainly include statistics-based methods, distance-
based methods, collaborative representation-based methods, etc. Among these, the Reed–Xiaoli
(RX) algorithm [17], which comprises the global RX detection (GRX) algorithm and the
local RX detection (LRX) algorithm, is widely applied. This algorithm primarily focuses
on the distribution characteristics of the anomaly points, assuming that the background
follows a multivariate normal distribution. It utilizes the Mahalanobis distance to measure
the differences between a test pixel and its neighbor pixels for anomaly detection [18].
Building upon the RX algorithm, several improved algorithms were developed to enhance
the detection accuracy for complex backgrounds, such as in [19–21]. In addition, there are
other statistics-based methods, such as single-feature anomaly detection [22], Gaussian
Markov random field [23], and so on. For distance-based methods, pixels grouped based
on their distance and pixels deviating from the cluster center are considered abnormal [24].
Support vector machine (SVM)-based methods are typical distance-based methods that
use a one class classifier to estimate the smallest closed hypersphere, i.e., one-class SVM
(OCSVM) [25]. The background samples support the hypersphere, and the pixels beyond
the hypersphere model are considered anomalies [26]. Furthermore, the clustering-based
method [27,28], such as the density-based methods [29], are adopted for hyperspectral
anomaly detection, which is an important component of distance-based methods. These
methods first cluster the original data, and then estimate the anomaly degree of the testing
pixel [24]. Density-based methods, such as local outlier factor [30], connectivity-based
outlier factor [31], etc., assume that the cluster density of the normal sample points is
higher than that of the abnormal sample points. Moreover, the collaborative representation
detection (CRD) for anomalies has received significant attention [32]. Li et al. [33] proposed
a collaborative representation and a kernel version for hyperspectral anomaly detection.
The algorithm is based on the concept that each background pixel can be represented
approximately by its spatial neighborhood, whereas anomalies cannot. A hyperspectral
anomaly detection method performed by combining the collaborative representation with
the principal component analysis, suggested by Su et al. [34], turned out to achieve a better
performance.

On the other hand, with the continuous development of deep learning, anomaly detec-
tion algorithms based on deep learning became a new research hotspot in recent years [35].
Depending on whether sample support is needed, deep learning-based methods can be
divided into two categories, supervised and unsupervised. The typical representative of
the former category is based on the convolutional neural network, and a series of related
algorithms were proposed, such as the transferred deep convolutional neural network [36],
the algorithm of convolutional neural network and low rank with density-based cluster-
ing [37], etc. The unsupervised deep learning-based algorithms mainly include autoencoder
networks and generative adversarial networks, and lots of methods were proposed [38,39],
which do not need prior samples to be suitable for hyperspectral anomaly detection.

Some scholars presented new ideas for anomaly detection that consider multiple pro-
cessing technologies of the HSI. Qu et al. proposed a detection algorithm based on spectral
unmixing, which utilizes the abundances as distinctive features to construct the background
dictionary for HSI anomaly detection. They referred to the proposed anomaly detection al-
gorithm as abundance- and dictionary-based low rank decomposition (ADLR) [40]. Huang
et al. extracted features in the HSI at three levels, which include the subpixel level, pixel
level, and super-pixel level. They performed the detection using an existing low-rank and
sparse matrix decomposition algorithm, and constructed weight maps for the fusion to
obtain the final result [41]. Acar et al. believed that anomalies are small, rare objects or
materials with different spectral characteristics compared to their surroundings. They intro-
duced an anomaly detection method using sparse unmixing and a Gaussian mixture model
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for the HSI [42]. These methods mentioned above provide a novel research direction for
detecting anomalies, with many of them utilizing unmixing technology to extract features
for further detection. However, they do not deeply analyze the mechanism of the anomalies
on a subpixel level.

This paper proposes a dual-view anomaly detection algorithm (DVAD) that considers
the anomaly characteristics at different levels by incorporating spatial consistency and
spectral unmixing based on the local and global information in the HSI. On one side, similar
to most algorithms, we believe that anomalies are pixels that differ from their surrounding
pixels. To accurately explore the differences between the anomaly and its neighbors, we
introduce the spectral angular distance (SAD) [43] to access the spatial consistency. The
SAD measures the spectral similarity by calculating the angle between the spectra, and it
is not affected by the spectral scale, either. Thus, we calculate the sum of the SAD values
for the center pixel and its neighbors. When the sum is large, indicating a significant
difference between the center pixel and its neighbors, we classify the center pixel as an
anomaly pixel. On the other side, from the subpixel level view, the most essential difference
between the anomaly and the background lies in the variation of the endmembers. The
endmembers can be divided into anomaly endmembers and background endmembers.
Anomaly endmembers only participate in the mixing of anomaly pixels, which are rare in
distribution. A novel manifold-constrained sparse spectral unmixing method based on the
non-negative matrix factorization (NMF) model [44] is proposed to obtain the endmembers
and their corresponding abundances. For each endmember, we count the number of small
values in its corresponding abundance, and when the number approaches the total number
of pixels, it is considered to be the anomaly endmember for anomaly detection. Thus,
by analyzing the anomaly characteristics at the subpixel level, the internal relationship
between the tasks of spectral unmixing and anomaly detection were exploited. Finally,
when its detection results of both two views are anomalies, the pixel will be considered as
the anomaly. To achieve this goal, we fuse the detection results from both views, indicating
an anomaly. For this fusion process, we adopt a strategy of multiplying the detection
results from different levels. Although the fusion strategy is strict and may reduce the
detection result, it effectively integrates the advantage of each level, resulting in a more
reliable detection outcome.

In summary, the proposed DVAD algorithm, as depicted in Figure 1, not only per-
forms the anomaly detection at the pixel and subpixel levels, but also applies the spectral
unmixing technology into the anomaly detection task in a more meaningful manner. The
effectiveness of the algorithm is demonstrated through experiments on multiple data. The
main contributions of the proposed algorithm are as follows:

(1) A dual-view anomaly detection method via spatial consistency and spectral unmixing
from the pixel level and subpixel level is presented, which makes full use of the local
and global information in the HSI.

(2) Taking the characteristics of the HSI into account, a novel manifold-based sparse
spectral unmixing algorithm is put forward.

(3) This paper proposes, for the first time, that the difference between the anomaly and
background mainly comes from the difference of endmembers based on the subpixel
level analysis.

The remainder of this paper is organized as follows. Section 2 presents the theoretical
background. In Section 3, the proposed method is exhibited in detail. Section 4 reports the
experimental results and provides a discussion. Finally, Section 5 concludes the paper and
discusses future work.



Remote Sens. 2023, 15, 3330 4 of 19
Remote Sens. 2023, 15, x FOR PEER REVIEW 4 of 20 
 

 

 

Figure 1. The flowchart of the proposed DVAD method; (a) pixel level detection, (b) spectral un-

mixing, (c) subpixel level detection, and (d) decision fusion. 

2. Theoretical Background 

The HSI data are commonly broken up into three parts, including the background, 

anomaly, and noise [11,15], whose model can be formulated as follows: 

𝐘 = 𝐁 + 𝐗 + 𝐍 (1) 

where 𝐘 ∈ ℛ𝐿×𝑃 is the hyperspectral matrix with L spectral bands and P pixels, 𝐁 ∈ ℛ𝐿×𝑃 

and 𝐗 ∈ ℛ𝐿×𝑃  are respectively the background and the anomaly, and 𝐍 ∈ ℛ𝐿×𝑃  is the 

noise matrix. 

The linear spectral mixture model is a popular model that is widely used in HU. The 

matrix form for the linear unmixing model can be written as follows: 

𝐘 = 𝐄𝐀 + 𝐍 (2) 

where 𝐄 ∈ ℛ𝐿×𝐾 is the endmember matrix of the K endmembers, and 𝐀 ∈ ℛ𝐾×𝑃 is the 

abundance matrix. The following two constraints of abundance usually need to be satis-

fied for unmixing process: (1) the abundance is non-negative (ANC) and (2) the sum of 

each column of abundance is one (ASC). 

Based on the linear mixture model, the NMF is applied for HU. The basic idea of 

NMF model is that, for any non-negative matrix, it can find two non-negative matrices 

that their product is this non-negative matrice. The objective function in the view of Eu-

clidean distance is as follows: 

min
𝐄,𝐀

   
1

2
‖𝐘 − 𝐄𝐀‖𝐹

2

𝑠. 𝑡.   𝐄 ≥ 0, 𝐀 ≥ 0
 (3) 

where operator ‖∙‖𝐹 represents the Frobenius norm. While there are many optimization 

algorithms to estimate 𝐄 and 𝐀, it is still difficult to obtain a globally optimal solution 

because of the non-convexity of Formula (3) with respect to both 𝐄 and 𝐀. Furthermore, 

the NMF is always utilized with other constraints, due to the fact that the NMF lacks a 

Figure 1. The flowchart of the proposed DVAD method; (a) pixel level detection, (b) spectral
unmixing, (c) subpixel level detection, and (d) decision fusion.

2. Theoretical Background

The HSI data are commonly broken up into three parts, including the background,
anomaly, and noise [11,15], whose model can be formulated as follows:

Y = B + X + N (1)

where Y ∈ RL×P is the hyperspectral matrix with L spectral bands and P pixels, B ∈ RL×P

and X ∈ RL×P are respectively the background and the anomaly, and N ∈ RL×P is the noise
matrix.

The linear spectral mixture model is a popular model that is widely used in HU. The
matrix form for the linear unmixing model can be written as follows:

Y = EA + N (2)

where E ∈ RL×K is the endmember matrix of the K endmembers, and A ∈ RK×P is the
abundance matrix. The following two constraints of abundance usually need to be satisfied
for unmixing process: (1) the abundance is non-negative (ANC) and (2) the sum of each
column of abundance is one (ASC).

Based on the linear mixture model, the NMF is applied for HU. The basic idea of
NMF model is that, for any non-negative matrix, it can find two non-negative matrices that
their product is this non-negative matrice. The objective function in the view of Euclidean
distance is as follows:

min
E,A

1
2‖Y− EA‖2

F

s.t. E ≥ 0, A ≥ 0
(3)

where operator ‖·‖F represents the Frobenius norm. While there are many optimization
algorithms to estimate E and A, it is still difficult to obtain a globally optimal solution
because of the non-convexity of Formula (3) with respect to both E and A. Furthermore,
the NMF is always utilized with other constraints, due to the fact that the NMF lacks a
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unique solution. The iterative algorithm for the minimization of the objective function [45]
in Formula (3) is as follows:

E← E. ∗ YAT ./
(

EAAT
)

A← A. ∗ ETY./
(
ETEA

) (4)

where (·)T denotes the matrix transpose, and .* and ./ are the element-wise multiplication
and division.

3. Dual-View Anomaly Hyperspectral Detection via Spatial Consistency and
Spectral Unmixing

In fact, anomalies usually refer to pixels that are less distributed and not similar to
the neighbor pixels [42], which is the main analysis and basic understanding of the pixel
level view. Moreover, when it comes to the subpixel level, the dissimilarities between the
anomaly and background are mainly reflected in different endmembers. There are anomaly
endmembers and background endmembers. For instance, an anomaly endmember only
participates in the mixing of the anomaly pixel. Based on the above two analyses, a method
of anomaly detection that utilizes spatial consistency and spectral unmixing is proposed.
In particular, this section briefly introduces the proposed algorithm in detail, including the
algorithm construction, model analysis, and solution.

3.1. Pixel Level Anomaly Detection via Spatial Consistency

With regard to the pixel level, as many papers assumed, the anomalies with few
distributions are considered to be the pixels that are not similar to their surrounding
pixels. Firstly, we perform a sliding window to obtain the neighbors of the central pixels.
Secondly, we measure the spatial consistency between the central pixel and its surrounding
neighbors. Additionally, the SAD is a metric that is commonly used as a measurement for
the similarities between the spectra by calculating their angles. It will not be affected by
the spectral scale, either. The SAD used to measure the similarity between the pixel and its
neighbors is defined as follows:

SAD = cos−1 (

∼
E

T
E∥∥∥∥∼E∥∥∥∥‖E‖ ) (5)

where E refers to a spectrum, and
∼
E is another spectrum or the estimated spectrum of E.

When the value of the SAD is small, the angle between two spectra is small, which means
they are similar.

The main steps of the anomaly detection process are as follows. First of all, we calculate
the SAD value between the central pixel and its neighbors. Then, we calculate the sum
of the SAD value of the center pixel and its neighbors as the anomaly value of the center
pixel for detection. In the experiment, the dual window shown in Figure 2 is adopted for
the center pixel, and the pixels between the inner and outer windows are considered as its
neighbors. Moreover, due to the different sizes of the abnormal targets in different data
sets, the size of the dual window can be changed to find the exact neighbors for each pixel.

The distribution of anomalies is rare; thus, there are four circumstances to be studied,
as shown in Figure 3.
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Figure 3. Four situations (a–d) during anomaly detection of pixel level.

(a) The center pixel is the anomaly, and the neighbor pixels are the background. The SAD
values are all large, and the center pixel with a large sum of SAD values is deemed as
the anomaly pixel.

(b) The center pixel is the anomaly, and the neighbor pixels contain a small number of
anomalies. However, most neighbor pixels are still the background. Thus, most of
the SAD values are large, and the center pixel with a large sum of SAD values is also
detected as the anomaly.

(c) The center pixel is the background, and the neighbor pixels are the background.
The SAD values are all small, which illustrates the similarity of the center pixel to
its neighbors. The center pixel with a small sum of SAD values is viewed as the
background.

(d) The center pixel is the background, and the neighbor pixels contain a small number of
anomalies. Most of the neighbor pixels are the background, and the corresponding
SAD values are small. The center pixel with a small sum of SAD values is detected as
the background.

From the above-mentioned analysis, it can be seen that the proposed detection method
can perform anomaly detection efficiently under various situations.
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3.2. Subpixel Level Anomaly Detection via Spectral Unmixing
3.2.1. Manifold-Constrained Sparse Spectral Unmixing

In light of the subpixel level, the endmembers are largely responsible for the dissimi-
larities between the anomaly and the background. At this point, the endmember can be
divided into the anomaly endmember and the background endmember. The anomaly
endmember only participates in the mixing of the anomaly pixels, whose distribution is few.
Following this, the spectral unmixing technology can be applied in the task of the anomaly
detection. Then, the first step is to obtain the endmembers and abundances via spectral
unmixing. The construction process of the objective function for unmixing is explained in
further detail.

The proposed unmixing method is based upon the NMF model, which is a regular
employed model for hyperspectral unmixing. As the objective function of the NMF is
non-convex, the solution can easily fall into local optimum. Having said that, some other
constraints are added to the model to address this issue. Many related studies [44,46,47] also
revealed that only part of the endmembers in the mixing participate during the unmixing
process. In view of the characteristics of sparsity, we added the sparse constraint in the
model. The basic model of the sparse NMF algorithm works as follows:

min
E,A

1
2‖Y− EA‖2

F + α‖A‖ 1
2

s.t. A ≥ 0, 1T
KA = 1T

P

(6)

where α represents the sparsity factor. The objective function described in Formula (6) is
convex, with respect to the individual parameters E and A, and the most popular algorithms
for solving this NMF are the iterative ones [44]. The expected solution formula can be
captured using the solution algorithm of the NMF [45], which is estimated as follows.

E← E. ∗ YAT ./
(

EAAT
)

A← A. ∗ ETY./(ETEA + α
2 A−

1
2 )

(7)

As is well known, an HSI is a kind of high-dimensional datum, and it tends to locate
in the low-dimensional subspace embedded in high-dimensional space [48]. The manifold
learning digs into the essence of the data, and discovers the inherent laws and potential
characteristics. In addition, the low-dimensional manifold features were well studied for
HSI processing. Therefore, to exploit the potential of manifold learning, we added it to the
model.

The main idea is that if the two pixels yi and yj are very close, their representations
ai and aj in the low-dimensional subspace, i.e., the abundance space, will be as close as
possible. All points are constructed as a graph, provided that each pixel is a node. Only the
nearest several points of the node, which are its most similar points, are connected with
it [49]. Following this, we usually construct the connection weight between two points to
effectively benefit from the characteristics of the HSI. On top of that, the weight function
should be able to clearly distinguish the similarities between one point and the rest of the
points by different weight values. The sigmoid function with good discrimination was
proven to be a commonly used widely applied one in hyperspectral image processing.
Thus, we construct the weight function by deforming the sigmoid function. If the point i is
linked to the point j, the connection weight between them is estimated as follows.

Wi,j = 2/
(

1 + exp
(∥∥∥yi − yj

∥∥∥2
/σ

))
(8)

From Formula (8), it can be noted that when two points are more similar, their connec-
tion weight is closer to one. However, if they are dissimilar, the connection weight is closer
to zero. That said, these two points are not connected.



Remote Sens. 2023, 15, 3330 8 of 19

It is hoped that when the two points yi and yj are similar in the original space, their
representations ai and aj in the abundance space are also similar. To that end, the constraint
is constructed as follows:

1
2

N
∑

i,j=1

∥∥ai − aj
∥∥2Wij =

N
∑

i=1
aT

i aiDii −
N
∑

i,j=1
aT

i ajWij

= Tr
(

ADAT
)
− Tr

(
AWAT

)
= Tr

(
ALAT

) (9)

where Tr(·) represents the trace of the matrix, Dii =
P
∑

j=1
Wij, and L = D−W. The manifold

constraint on abundance is added to the sparse unmixing model to form the following
objective function:

min
E,A

1
2‖Y− EA‖2

F + α‖A‖ 1
2
+ βTr

(
ALAT

)
s.t. A ≥ 0, 1T

KA = 1T
P

(10)

where β is the control parameter. The objective function in Formula (10) is also convex with
respect to the individual parameters E and A, and according to the iterative algorithm of
NMF model, the solution formulas of the endmember and abundance are set as shown
below.

E← E. ∗ YAT ./
(

EAAT
)

A← A. ∗
(
ETY + βAW

)
./
(

ETEA + α
2 A−

1
2 + βAD

) (11)

Furthermore, with the purpose of making the solution of abundance to satisfy the ASC,
one more row is added to the observation matrix and the endmember matrix as follows:

Y f =

[
Y

ε1T
P

]
, E f =

[
E

ε1T
K

]
(12)

where ε controls the convergence rate of the solution. Finally, taking the ASC into account,
we replace Y and E with Y f and E f . Then, the obtained iterative formula of abundance is
as below.

A← A. ∗
(

ET
f Y f + βAW

)
./
(

ET
f E f A +

α

2
A−

1
2 + βAD

)
(13)

After this, we obtained the endmember and abundance by considering the different
characteristics for the unmixing task.

3.2.2. Subpixel Level Anomaly Detection

From the subpixel level, the difference between the anomaly and the background
usually lies in the difference of the endmember. In other words, the endmember can be
divided into the background endmember EB and the anomaly endmember EX . The main
basic model for anomaly detection is now illustrated as follows:

Y = EB ∗AB + EX ∗AX + N (14)

where AB and AX are respectively the background abundance and the anomaly abundance.
It is easily observed that we can reconstruct the anomaly X in Formula (1) by using the
second term of Formula (14).

Consequently, it is necessary to analyze the endmember and its corresponding abun-
dance for anomaly detection. As mentioned from the previous analysis, the anomaly
endmember can only participate in the mixing of the anomaly pixels, and their distribution
could be very small. Hence, the distribution of each endmember is counted by analyzing
its corresponding abundance. To be more specific, a small threshold is set first. As for
one endmember, when its corresponding abundance value is less than this threshold at a
certain pixel, this endmember is not considered to participate in the mixing of this pixel.
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That is, this endmember is not distributed at this pixel. From there, we count the number
of the abundance value that is smaller than the threshold for each endmember. Likewise,
when the number is almost up to 90% of the total pixel number, the distribution is few, and
then this endmember is regarded as the anomaly endmember.

The anomaly is reconstructed using Formula (14), and the final detection result can
be achieved through the L2 norm, which is commonly used for anomaly detection. The
anomaly value of each pixel in the detection map is obtained as follows [10,15]:

R(yi) = ‖X:,i‖2 =

√
∑

j

(
Xj,i
)2 (15)

where when the anomaly value of a pixel is high, it is more likely to be an anomaly pixel.

3.3. Fusion for Pixel and Subpixel Levels Anomaly Detection

We analyze the characteristics of the anomaly and perform anomaly detection from
the pixel and subpixel levels via spatial consistency and spectral unmixing, respectively. In
order to further improve the detection results, the results based on different levels should
be used to obtain the final anomaly detection. The general idea of fusion is that the final
detection result will be the anomaly only when the detection results of two levels are
anomalies. Here, the fusion method is to multiply the detection results of two levels. Thus,
the detection result of the proposed method does not count on the result of a certain level.
Although this fusion method is strict and might reduce the detection result, it ensures the
reliability of the final result, which is very important for anomaly detection.

Above all, the entire DVAD algorithm was outlined in greater detail, and the whole
process is reviewed in Figure 1. The DVAD algorithm not only merely analyzes the
anomaly characteristics from the pixel and subpixel levels via spatial consistency and
spectral unmixing, but also thoroughly combines the tasks of unmixing and anomaly
detection.

4. Experiments Results

In order to start the process of verifying the effectiveness of the proposed algorithm,
we designed a series of experiments on multiple data sets in this section. The subsequent
arrangements are performed in three main steps. The first part mainly focuses on the per-
formance metrics and comparison algorithms, including the traditional anomaly detection
algorithms, namely, GRX, LRX, and OCSVM, as well as the related algorithms comprising
the representation-based CRD and the unmixing-based ADLR. Consequently, we review
the performance and analyze the effectiveness of each view and the overall algorithm.
Finally, we draw conclusions in the parameter analysis part.

4.1. Data Set

The first data set of real-world anomaly detection as the test image is a subscene
of the airport in San Diego, USA, which is a popular data set collected by the Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) sensor [10,50,51]. It has 189 bands and
100 × 100 pixels, in which the bands with water absorption regions, low SNR, and poor
quality are removed. The reference anomaly map, the false color image, and the ground
truth are presented in Figure 4a,e,i, respectively. The buildings with different roofs, parking
aprons with different materials, an airport runway, and a small quantity of vegetation are
considered as the main land types. Additionally, the airplanes in the image are regarded as
the anomaly target to be detected. Fifty-seven pixels were selected as anomalies, composed
of full-pixel anomalies in the main body of the airplanes and subpixel targets on the edges
of the airplanes [10]. Although the spectral of aircraft is largely different from that of the
background, it is somewhat correlated with the spectra of roof and shadow. It leads to the
difficulty for anomaly detection [52].
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Figure 4. The illustration of data sets and their corresponding ground truths. (a) Reference anomaly
map of San Diego data set; (b) reference anomaly map of HYDICE data set; (c) reference anomaly
map of Texas data set; (d) reference anomaly map of Urban data set; (e) false color image of San
Diego data set; (f) false color image of HYDICE data set; (g) false color image of Texas data set; and
(h) false color image of Urban data set. (i) Reference detection map of San Diego data set; (j) reference
detection map of HYDICE data set; (k) reference detection map of Texas data set; and (l) reference
detection map of Urban data set.

The second data set in the experiment is captured by the Hyperspectral Digital Imagery
Collection Experiment (HYDICE) airborne sensor covering the urban area [53], which
comprises a vegetation area, a construction area, and several roads including some vehicles.
Its spectral and spatial resolution are, respectively, 10 nm and 1 m. There are 175 spectral
bands remaining after the removal of the water absorption bands (1–4, 76, 87, 101–111,
136–153, and 198–210). The subscene with 80 × 100 pixels is picked from an entire scene
of 307 × 307 pixels. Additionally, 21 anomalous target pixels in urban scene are roof and
cars of different sizes [3,33]. The ground truth defines that the anomalous targets in [10] are
the cars and roofs embedded in the different backgrounds in the upper rightmost area of
the scene, and the considered subscene consists of pixels covering this area. The original
anomaly map, color representation, and ground truth map are illustrated in Figure 4b,f,j.

The third data set is from an open Airport–Beach–Urban data set, which was collected
over the Texas Coast on 29 August 2010. The sample image with a size of 100 × 100 pixels
is manually extracted from large images downloaded from the AVIRIS website [54], whose
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reference maps are manually labeled with the help of the Environment for Visualizing
Images (ENVI) software. It contains 67 anomaly pixels, and its spatial resolution is 17.2 m
per pixel with 204 bands remaining after removing the noise bands in the original images
by using a recently published noise level estimation method [3]. The original anomaly
map, color representation, and reference anomaly map of Texas data set are shown in
Figure 4c,g,k.

The final data set, which is called the Urban data set, was also collected over the Texas
Coast in 2010, and its procedure of the reference map creation is the same as the third data
set. The original anomaly map acquired by the AVIRIS sensor [3,55], false color image,
and reference map are displayed in Figure 4d,h,l, respectively. It has 100 × 100 pixels
with 155 anomaly pixels and 207 bands remaining after the removal of noise bands, whose
spatial resolution is 17.2 m per pixel. Except for the second data set that covers a spectral
range of 0.4~2.5 µm, all the other data sets were collected using the AVIRIS sensor, which
provides a spatial resolution of 20 m and a spectral resolution of 10 nm, covering a spectral
range of 0.4~2.5 µm.

4.2. Comparison Methods and Performance Metrics

In our experiment, four representative anomaly detection methods are selected to be
compared with the proposed DVAD algorithm to evaluate its performance, particularly
with regard to the GRX, LRX, OCSVM, CRD, and ADLR. The GRX and LRX algorithms
are widely considered as two traditional methods for anomaly detection, which belong
to the classical statistic-based methods. The OCSVM method, a traditional algorithm
for anomaly detection, maps the data to the feature space corresponding to the kernel,
builds a hyperplane between the data and the origin, and maximizes the distance from
the hyperplane to the zero point. Given the fact that the proposed pixel level detection
method is similar to the method based on representation, we use the CRD algorithm
as a comparison in our following experiments. The ADLR algorithm only employs the
unmixing technique to extract features, and these features will be further used as the input
for a low-rank sparse model to detect the anomaly. It is an unmixing-related anomaly
detection algorithm based on the subpixel level analysis. Furthermore, to further illustrate
its efficiency, we also make a contrast to the detection algorithms of the two levels in the
DVAD algorithm.

Moreover, with the purpose of evaluating the performance of the different mentioned
algorithms, we present two metrics that were extensively applied in anomaly detection.
One is the receiver operating characteristic (ROC) curve, and the other is the area under
ROC curve (AUC) [56], whose value is usually smaller than one. When a good perfor-
mance for the algorithm is achieved, the ROC curve is closer to the upper left corner, and
correspondingly, the AUC value is higher.

4.3. Anomaly Detection Performance

In this section, we objectively evaluate the detection performance of the proposed
DVAD algorithm and make a comparison with four state-of-the-art detection methods,
including the GRX, LRX, OCSVM, CRD, and ADLR. The size of the dual window (winin, winout)
for the LRX and CRD is the same as (5, 7) for the HYDICE data set and the Urban data
set, (9, 13) for the San Diego data set, and (3, 9) for Texas data set. The parameter λ of the
CRD and ADLR is defined as 0.01. In addition, the HySime algorithm [57], a broadly used
method in unmixing, is selected to estimate the endmember number. The endmember
number in the ADLR algorithm is set to be 1.5–2 times larger than the number estimated by
the HySime method according to [40]. The initial endmember and abundance are extracted
and estimated by the VCA-FCLS algorithm [58,59].

The detection maps of the different algorithms on different data sets are provided in
Figure 5. It can be easily observed that the anomaly detected by the DVAD algorithm is
more obvious than the comparisons. For the San Diego data set, in view of the similarity of
the anomaly target and roof, some roof pixels are detected to be anomaly pixels. However,
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the overall detection result turned out to be better than the other existing algorithms. The
proposed DVAD algorithm benefited from the multiple level analysis for anomaly and
achieved good detection efficiency based on these data sets in general, which demonstrates
its effectiveness for anomaly detection.
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In addition, as for the quantitative analysis and comparison, the ROC curves of the
different algorithms are exhibited in Figure 6. From Figure 6, we can derive that the DVAD
algorithm almost produces the best results of anomaly detection. Thanks to its global
statistical characteristic, the GRX detector can obtain good detection results on most data
sets, except for the San Diego data set. The LRX detector and the CRD detector both
adopt the dual window to obtain the local information for anomaly detection, whose
detection efficiency is influenced by the window size. Their results might be low when
the distribution of anomalies in the data set is dense, or when the background is cluttered.
Additionally, the performance of the ADLR algorithm is not stable and it may be affected by
the results of the endmember and clustering. In brief, the DVAD method does not only fully
consider the local and global information via spatial consistency and spectral unmixing,
but also analyzes the anomaly from the pixel and subpixel levels. Therefore, the proposed
DVAD algorithm achieves the satisfactory results both quantitatively and qualitatively.
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Additionally, the AUC values and the time of the different detectors on the different
data sets are listed in Table 1, in which the best result of each data set is shown in bold.
The AUC values obtained by the proposed DVAD algorithm are almost higher than the
comparisons on the different data sets, except for the HYDICE data set. Since the anomaly
targets in the HYDICE data set are some independently scattered pixels that are similar to
the noise in the image, the final detection result might be affected. In addition, the GRX
algorithm has the shortest running time, followed by the DAVD algorithm and the LRX
algorithm, with the OCSVM and ADLR algorithms taking the longest time. Therefore,
from the perspective of real-time performance analysis, the proposed algorithm achieved
relatively good detection results with relatively less time consumption. In general, the
DVAD algorithm successfully achieves the satisfactory result for anomaly detection owing
to the consideration of the spatial consistency and spectral unmixing.

Table 1. AUC and time for the detectors on different data sets with the best result in bold.

Data Set GRX LRX OCSVM CRD ADLR DVAD

San Diego AUC 0.9055 0.7624 0.8888 0.9587 0.9577 0.9847
Time(s) 1.24 33.59 1691.02 45.92 1667.23 47.15

HYDICE
AUC 0.9857 0.9605 0.6738 0.9935 0.9335 0.9880

Time(s) 0.07 22.37 168.70 24.56 5897.29 27.50

Texas
AUC 0.9910 0.9827 0.8743 0.9890 0.9641 0.9950

Time(s) 0.09 38.67 365.16 48.22 3858.96 21.62

Urban
AUC 0.9934 0.9224 0.7861 0.9387 0.9711 0.9980

Time(s) 0.12 41.23 993.76 45.08 35.80 13.17
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In addition, the detection maps of each level on the four data sets are expressed in
Figure 7 to further exhibit the detailed result of the DVAD algorithm. From the result of
the pixel level, it is not difficult to find out that there is some structure information in the
detection maps on the different data sets. Given that the detection method of the pixel
level is a window-based algorithm, it would obtain some local information of the image.
However, the detection maps of the subpixel level can reflect the global information of
the image via the manifold constraint in the unmixing model. For the San Diego data set,
the detection results of some regions, which are mixed by similar materials, such as the
airplane region and roof region, are more likely to be the same. Therefore, it is necessary to
detect the anomaly from different views to fully integrate the advantages. Then, the fusion
strategy is adopted to make the final result benefit from different level detection results.
The final result would be an anomaly only when both of the detection results on two levels
is an anomaly. This fusion strategy makes full use of the information of the different levels.
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Figure 7. The detection maps of each level obtained by the proposed DVAD method on four data
sets. (a) San Diego data set; (b) HYDICE data set; (c) Texas data set; and (d) Urban data set.

The endmembers extracted by the proposed spectral unmixing method on the four
data sets are displayed in Figure 8, including the background endmembers and anomaly
endmembers. A large difference can be found between the background endmembers and
the anomaly endmembers. Due to the unknown number of endmembers, the HySime
algorithm [57] is used to estimate the endmember number. As we know, the endmember
number estimated by the HySime algorithm is usually higher than the real number. Never-
theless, overestimation may not have a bad effect. For example, in the experiment part of
paper [40], the number of endmembers is set to be 1.5–2 times higher than the estimated
number by HySime algorithm. The estimated endmember numbers of the four different
data sets are, respectively, 15, 17, 15, and 4. In the experiment conducted in this paper, a
small trick is adopted to further weaken the influence of overestimation. Firstly, the number
of endmembers is estimated by the HySime algorithm, and the corresponding abundance is
obtained after unmixing. Then, for each endmember, the number of abundance values less
than 0.01 is counted. When the number almost reaches the total number of pixels, which is
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greater than 98% of the total number of pixels [43], this endmember is considered to be the
redundant endmember.
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Figure 8. The endmembers with different colors extracted by the proposed spectral unmixing model
on four data sets, including the background endmembers and anomaly endmembers. (a) San Diego
data set; (b) HYDICE data set; (c) Texas data set; and (d) Urban data set.

Additionally, the abundance maps and anomaly abundance maps obtained from the
subpixel level on the different data sets are displayed in Figure 9, which also separately
marks the background endmembers and anomaly endmembers on the y-axis. From the
abundance map of Figure 9, it can be clearly noticed that the pixels are mainly mixed by
the background endmembers, and the distribution of anomaly endmembers in the whole
image is very sparse. Furthermore, in the anomaly abundance map of Figure 9, the anomaly
endmember mostly participates in the mixing of anomaly pixels, which also contain a small
number of background endmembers.
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4.4. Parameter Analysis

There are two level detection methods in the DVAD algorithm, and we first analyze
the parameters in the pixel level. The detection algorithm based on the pixel level has two
parameters to analyze, including the window size of Win and Wout. The AUC performance
of the DVAD algorithm, with various values of Win and Wout for the different data sets,
is recorded in Table 2. On one hand, by comparing and analyzing the data in Table 2, we
can find that the suitable window size on the different data sets is different. For the data
set with a small anomaly target, such as the HYDICE data set, the Urban data set, and the
Texas data set, the size of the window is small. In this case, the window size is related
to the size of the anomaly target. After determining the parameters on the pixel level, its
detection result is shown in Figure 7. It can be noticed that there is some local structural
information in the detection map due to the sliding window.

Table 2. The AUC performance of the proposed DVAD method with varying window size.

Data Set
Wout

Win
1 3 5

San Diego
7 0.9923 0.9920 0.9910
9 0.9930 0.9932 0.9928

11 0.9932 0.9933 0.9934

HYDICE
3 0.9050 - -
7 0.8407 0.8344 0.7893
9 0.8184 0.8188 0.7913

Texas
7 0.9651 0.9690 0.9675
9 0.9617 0.9660 0.9674

11 0.9551 0.9587 0.9633

Urban
7 0.9044 0.9030 0.8968
9 0.9079 0.9121 0.9068

11 0.9059 0.9108 0.9127

Moreover, the parameters of the subpixel level also need to be discussed. There are
two regularization parameters, α and β, in the spectral unmixing model. The parameter α
is closely related to the sparsity of abundance, and it could be estimated by calculating the
sparsity of the hyperspectral data recorded in [44,60,61], which is defined as follows:

α =
1√
L

L

∑
l=1

√
P− ‖yl‖1/‖yl‖2√

P− 1
(16)

where yl is l-th band in the HSI. The analysis maps for parameter β on the different data sets
are shown in the first line of Figure 10. The curves of parameter β in Figure 10 eventually
keep stable, and the corresponding AUC values are ultimately higher than 0.98. The curve
of parameter β is stable, and the difference between the maximum and minimum values is
not significant. The values of β for four data sets, respectively, are 0.045, 0.1, 0.01, and 0.001.
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5. Conclusions

In this paper, we present a dual-view anomaly detection algorithm via spatial consis-
tency and spectral unmixing aimed at detecting anomalies from different levels. In terms of
the pixel level view, as many papers assumed, the anomaly mainly refers to the pixel that is
dissimilar to its neighbors. From the subpixel level, the difference between the background
and anomaly mainly reflects on the endmember difference. The anomaly endmember only
participates in the mixing of the anomaly pixels. Therefore, with the anomaly analysis
above in mind, we construct the detection model separately from different views and obtain
the satisfactory detection result via fusion, which fully considers the spatial consistency and
spectral unmixing by utilizing the local and global information in the HSI. The proposed
algorithm not only performs the anomaly detection from different levels, but also applies
the task of unmixing to anomaly detection. It outperforms the other methods and is verified
its effectiveness, as seen in the results of multiple data sets.

Further research is needed to improve our algorithm, for instance, how to eliminate
redundant endmembers, how to obtain the true number of endmembers, etc. In our future
work, we will take into consideration the correlation between the tasks of anomaly detection
and unmixing from other aspects to detect the anomaly more efficiently.
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