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Abstract: Circular synthetic aperture radar (CSAR) has the potential to form 3D images with single-
pass single-channel radar data, which is very time-efficient. This article proposes a volumetric neural
renderer that utilizes CSAR 2D amplitude images to reconstruct the 3D power distribution of the
imaged scene. The innovations are two-fold: Firstly, we propose a new SAR amplitude image forma-
tion model that establishes a linear mapping relationship between multi-look amplitude-squared
SAR images and a real-valued 4D (spatial location (x, y, z) and azimuth angle θ) radar scattered
field. Secondly, incorporating the proposed image formation model and SAR imaging geometry,
we extend the neural radiance field (NeRF) methods to reconstruct the 4D radar scattered field
using a set of 2D multi-aspect SAR images. Using real-world drone SAR data, we demonstrate our
method for (1) creating realistic SAR imagery from arbitrary new viewpoints and (2) reconstructing
high-precision 3D structures of the imaged scene.

Keywords: 3D imaging; synthetic aperture radar (SAR); circular SAR; neural radiance field (NeRF);
differentiable rendering

1. Introduction

Circular Synthetic Aperture Radar (SAR) is a novel airborne SAR imaging mode
that has gained increasing attention in recent years [1]. By flying in a circular trajectory,
circular SAR (CSAR) can obtain 360° radar responses of a target, which is a significant
advantage over traditional narrow-angle linear-trajectory SAR systems [2]. In the field of
reconnaissance, the primary motivation for adopting a circular trajectory is to achieve con-
tinuous and comprehensive observation of complex or dynamic scenes, which can provide
valuable information for target identification, classification, and tracking [3]. It is widely
acknowledged that, in comparison to conventional narrow-angle linear-trajectory SAR
systems, CSAR can capture more comprehensive scattering characteristics of targets [4],
leading to improved accuracy in target identification and classification [5–7], enhanced
detection, velocity measurement, and tracking capabilities of moving targets [8–10], as
well as reduced radar blind (shadowed) areas [11], among other benefits. In addition to
the aforementioned benefits that have been widely recognized, the varying range-Doppler
geometry of CSAR data presents a potential for forming high-resolution 3D images in a
single-flight pass [12]. This is in contrast to the tomographic SAR (TomoSAR) methods,
which rely on multiple passes of data collection for creating a 3D image [13]. As a result, a
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3D imaging solution with CSAR data may offer the advantage of higher time efficiency for
data collection.

It is noteworthy here that the 3D imaging problems investigated in this article differ
from those of multi-view stereo (MVS)-like ones. The latter typically assumes the absence
of layover scatterers in SAR imagery and estimates the height of image pixels using stereo
radargrammetric methods [14,15] based on this assumption. In recent years, stereo-based
3D reconstruction methods have yielded promising results with CSAR data, with some
studies demonstrating dense 3D point cloud reconstruction with sub-meter accuracy [16].
However, we have to acknowledge here that layover scatterers are prevalent in SAR
imagery, particularly in urban areas [17]. In contrast to stereo methods, the 3D imaging
addressed in this paper focuses more on separating the layover scatterers along radar
elevation directions and generating radar images with true 3D resolution.

Airborne SAR 3D imaging is typically treated as an inverse imaging problem [18].
TomoSAR is now the most commonly used 3D imaging mode for single-channel radar
systems, which reconstructs the 3D reflectivity by querying the multi-baseline data in ele-
vation directions. However, TomoSAR typically requires a significant number of repeated
flight passes to improve the resolution and reduce sidelobes in elevation, which may limit
its feasibility in reconnaissance applications. In airborne scenarios, the number of repeated
passes is typically up to 10∼20 [19]. Moreover, for drone platforms, the applicability of
TomoSAR may be further compromised by motion errors and irregular baselines [20].
These factors motivate the development of the new 3D imaging mode in this article, which
is expected to achieve fine 3D resolution from single-channel single-pass SAR data and can
be easily deployed with drone platforms.

The CSAR imaging mode offers the potential to achieve fine 3D resolution without
the need for interferometric baselines. To the best of our knowledge, almost all current 3D
imaging methods for CSAR utilize the coherent imaging strategy to create a 3D image [21].
Specifically, the standard coherent 3D imaging method for CSAR is the filtered back-
projection method, where all radar echoes are coherently added to a 3D image grid [22].
(However, as we will explain in the next paragraph, this method may not be a wise
choice for drone-collected data.) Coherent processing with ideal isotropic point scatterers
theoretically provide a very high horizontal resolution up to the order of radar wavelength
and a vertical resolution on the order of radar bandwidth [23]. The achieved 3D resolution
of coherent imaging methods has been verified with real airborne data on man-made
targets at X-band [24] and natural targets at L-band [22]. When CSAR is utilized as a
wide-angle coherent imaging system, the anticipated 3D resolution as a function of the
processed azimuth aperture size has been discussed in previous studies [25], revealing that
an azimuth aperture with an angular extent of approximately 45◦ would yield an elevation
resolution that is comparable to the radar bandwidth.

However, for lightweight drone platforms, coherent imaging over such a large curved
aperture presents significant challenges. Firstly, forming a single synthetic aperture (∼45°
azimuth extent) typically takes several minutes, during which time the accuracy of radar
position recordings should not have an error greater than 1/4 of the radar wavelength;
otherwise, the quality of the 3D image may be degraded [26]. To address this issue, in almost
all published airborne CSAR experiments, special artificial reflectors need to be placed in
the scene to realize the correction of residual motion errors [22,24]. However, this approach
can only be achieved in cooperative scenarios. Many drone SAR systems are now only
equipped with tactical-grade navigation systems, which do not easily meet the requirements
for 3D coherent processing. Secondly, the wide-angle coherent imaging method requires
the scatterers to conform to the isotropic point scattering model within a single processed
aperture. This requires the inherent phase of the target’s complex reflectivity to remain
constant over the observation angle changes of several tens of degrees [2]. However, many
targets in natural and urban scenes are so-called distributed scatters. Even a slight change in
the radar viewing angle can make a significant phase shift in their complex reflectivity. Such
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targets are inherently unsuitable for obtaining high 3D resolution through the wide-angle
coherent imaging methods.

Aforementioned issues with a coherent 3D inversion method have motivated us to
develop the incoherent 3D imaging strategy in this article. In our method, we first utilize
the sub-aperture imaging strategy to process the CSAR data into a series of 2D sub-aperture
images. Then, we only use the 2D amplitude images to deduce the target’s 3D scattering
power distribution. This 3D inversion problem is formulated as an inverse imaging problem.
To address this inverse problem, we first build a forward image formation model in
Section 2, which elucidates the relationship between the 2D amplitude images and the
target’s 4D (spatial coordinates (x, y, z) and radar azimuth angle θ) reflectivity distribution.
In this section, we adopt a random volume scattering assumption for radar scatterers to
make the image formation model sufficiently differentiable, which enables us to solve
the inverse imaging problems using differentiable rendering techniques. Specifically, our
fundamental assumption is that the target’s complex reflectivity should roughly conform
to Goodman’s volume scattering model [27]. Based on this assumption, we establish a
linear mapping relationship between the target’s 4D scattering energy distribution and the
multi-look amplitude-squared SAR images, which is differentiable.

In Section 3, we introduce our second innovation, which involves extending the Neural
Radiance Field (NeRF) [28] to solve the 4D inverse imaging problem raised in Section 2.
NeRFs have gained significant popularity in the field of differentiable volume rendering.
NeRF uses multi-layer perceptrons (MLPs) to fit the target’s radiance fields, which can
create virtual but realistic new perspectives as well as learning the target’s 3D shape. So
far, some methods based on NeRF transformations have achieved remarkable results in
the problems that have close similarities to the CSAR inverse imaging problems raised
in Section 2. These include extending NeRF to solve sparse-view computed tomography
(CT) reconstruction problems [29], 3D imaging problems with imaging sonar data [30], and
non-line-of-sight (NLOS) imaging problems with 1D light transient collections [31], among
others. As the image formation model of SAR proposed in Section 2 is similar to that of
imaging sonar, CT, and time-of-flight (ToF)-based NLOS imaging problems, we shall solve
the non-convex optimization problem of CSAR 4D inverse imaging by adapting the NeRF
model. Specifically, considering the SAR phenomenology and geometry, we redefine the
concept of ‘rays’ in the NeRF models, redesign the rendering equations, and redesign new
error functions. Above aspects will be discussed in detail in Section 3.

In Section 4, we present a demonstration of the performance of our proposed method
using real-world CSAR data collected by a drone platform. We showcase our method’s
ability to generate new viewpoints and perform 3D reconstruction. We also quantita-
tively analyze the height accuracy of the learned 3D model. In Section 5, we provide a
brief conclusion of this article. The primary goal of this article is to present a simple yet
efficient SAR 3D imaging solution. The advantages of our method may be (1) using single-
channel single-pass data for 3D imaging, which improves the data acquisition efficiency,
and (2) utilizing an incoherent 3D imaging strategy for the circular SAR data, which does
not require high-precision motion recordings, thus enabling high-quality 3D imaging with
drone SAR systems. (3) Additionally, inspired by NeRF, we first introduce the MLP to solve
the non-convex optimization problem of CSAR scene-level 3D inversion.

2. SAR Amplitude Image Formation Model

The 3-D reconstruction problem in this article is an inverse imaging problem. In
this section, we aim to build a forward image formation model for CSAR 3D (or more
accurately, 4D) inversion problems. The forward image formation model should be dif-
ferentiable mathematical expressions that account for the generation of low-dimensional
observations, typically 2D SAR images, from the unknown high-dimensional functions. In
this article, our incoherent 3D imaging method is to reconstruct the target’s 4D reflectivity
distribution using multi-aspect SAR 2D amplitude images. (Although raw SAR images are
complex-valued, the phase component of image pixels is typically considered as random
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noises. Therefore, we only utilize SAR amplitude images to realize 3D imaging, which
fundamentally differs from the TomoSAR 3D inversion problems.)

In this section, we derive a mathematical formula that accounts for the generation of
SAR 2D amplitude images. Our fundamental assumption is that the complex reflectivity of
all radar scatterers should approximately conform a certain volume scattering model [27].
Under this assumption, we establish a linear mapping relationship between the multi-
aspect SAR amplitude images and a real-valued 4D (spatial location (x, y, z) and radar
azimuth angle θ) scattered field of the target. The image formation model deduced in
this section is inspired by those used in incoherent tomography techniques [32] and multi-
master SAR tomography techniques [33,34], while the neural network in the next section is
used to solve the inverse problem of this image formation model.

The CSAR imaging geometry is illustrated in Figure 1a. We employ the sub-aperture
imaging method to segment and process the CSAR echo data into a set of 2D images.
Specifically, we divide the 360° circular aperture into a series of small sub-apertures. When
computing the range-Doppler geo-location model for radargrammetry applications, each
sub-aperture will be approximated as a straight line one, as suggested in [15]. Then, con-
ventional SAR imaging methods will be applied to each sub-aperture to create a sequence
of complex-valued SAR images I1, I2, . . . , IN .

(a)

(b)

Figure 1. CSAR imaging geometry. (a) Full aperture imaging geometry. (b) Sub-aperture imaging geometry.

As a single sub-aperture can be approximated as a straight line, the SAR imaging
geometry of a single sub-aperture can be approximated as in Figure 1b. Here, g(x, y, z) (or
g(u, v, w)) represents the 3D complex-valued reflectivity of the target. (We assume for now
that the complex scattering properties of the target are independent of the radar aspect
angles θ). In the figure, (u, v, w) is a 3D Cartesian coordinate system, where the three axes
represent the range, azimuth, and elevation dimensions of the SAR image, respectively.

We can use the direction of radar wavenumber vector k to distinguish the SAR images
collected at different aspect angles θ. In this manner, the 2D complex images can be
uniformly represented as [35]

I = I(u, v; k) = sA ⊗
{∫

w
g(r)e−j〈r−rAPC ,k〉dw

}
(1)

where r = (u, v, w) denotes the 3D spatial coordinates, ⊗ represents the convolution
operation, vector rAPC denotes the location of azimuth aperture center, vector k denotes
the round-trip radar wavenumber, 〈·, ·〉 denotes the inner product operation of two vectors,
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and sA(·) is a 2D sinc function representing the point spread function (PSF) in 2D SAR
images, with

sA(u, v) = BuBv sinc
(

uBu

2π

)
sinc

(
vBv

2π

)
(2)

Here, Bu and Bv are the bandwidth of SAR images along u and v directions, respectively.
Bu and Bv are typically close to each other. Function sA(·) is also referred to as the aperture
function, as it represents the bandwidth of the 2D synthetic aperture.

To remove the phase component from an image, we square the amplitude values of
each pixel and discard its phase component. This is actually equivalent to an autocorrelation
operation. For the sake of clarity, we temporarily ignore the impact of the aperture function
sA(·). The resulting image from this operation can be represented as

I Ī = I(u, v; k)I(u, v; k) ≈
∫∫

g(u, v, w)g(u, v, w′)e−jkw(w−w′)dw dw′ (3)

Here, the horizontal line above the variables indicates the complex conjugate operation.
The variable kw represents the wavenumber vector component along the w direction.

The double integral in the above equation may seem too complicated for a differen-
tiable rendering solver, so we adopt the following statistical assumption to simply it. We
assume that the 3D complex reflectivity function g(r) approximately follows Goodman’s
scattering model [27], which implies that each scattering unit of g(·) follows a zeros-mean
complex white Gaussian distribution:

g(r) ∼ CN
(

0,
σ2(r)

2

)
(4)

Given that g(r) is white, it follows that its power spectral density is stationary. We
now examine the expectation of the interferogram generated by the multi-looking process.
(For SAR images, multi-looking roughly performs the function of spatial averaging.) The
expectation of the interferogram, denoted as I = E[I I], can be viewed as a sample from
the autocorrelation function of I(u, v; k) evaluated at the spatial frequency location ∆k = 0.

I(u, v) = E[I(u, v; k)I(u, v; k)] = RI I(u, v; ∆k)|∆k=0 (5)

Here, RI I(u, v; ∆k) represents the autocorrelation function of Image I.
According to the Van-Cittert and Zernike theorem, RI I(u, v; 0) is equal to the Fourier

Transform of the 3D backscatter coefficient function σ(u, v, w) ∈ R+ evaluated at ∆k = 0,
which means

I(u, v) = RI I(u, v; 0) =
∫

σ(u, v, w)dw (6)

In the following content, we will use the term ‘radar scattered field’ to refer to the function
σ(·). It should be noted that σ(·) is assumed to be real-valued according to the assumption
made in Equation (2).

In above derivations, we did not consider the effect of the aperture function sA(·),
while the actual images are band-limited. For simplicity, we approximate the complete
expression of I as

I(u, v) ≈ s′A ⊗
∫

σ(u, v, w)dw (7)

Obtaining an exact formula for the aperture function s′A(·) may pose a challenge. To
simplify matters, we shall assume that s′A(·) has the same expression with the original
aperture function sA(·), i.e., s′A(·) ' sA(·).
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Furthermore, we take into account the anisotropic nature of the observed targets and
add an additional dimension to the function σ(·), making it a 4D field σ(u, v, w, θ). The
final forward image model is

Iθ(u, v) ≈ sA ⊗
∫

σ(u, v, w, θ)dw (8)

Here, σ(u, v, w, θ) is a real-valued function that is referred to as the radar scattered field
and is also the parameter of the Goodman scattering model in Equation (2). Iθ is the SAR
image obtained after squaring and multi-looking processing, collected from the azimuth
angle of θ.

Equation (8) is the final forward image formation model, and its inverse problem is a
4D inversion problem.

σ(u, v, w, θ)
Equation (8)−→ {Iθ(u, v)} inversion−→ σ̂(u, v, w, θ)

Therefore, a simple flow chart for the 3D reconstruction method proposed in this
article can be described as shown in Figure 2.

Raw data

Divide raw data into small-
angular sub-apertures

Image formation,
Amplitude-squaring, 

Multi-looking 

Training MLP

Volume rendering

Novel virtual views,

3-D images/maps,
Ortho images, etc.

Section 2 Sections 3 & 4

Figure 2. A flowchart for 3D imaging with CSAR data.

3. A NeRF-Inspired Network for CSAR 3D Inversion

In this section, we extend the NeRF method to solve the CSAR 4D inverse imaging
problem presented in the previous section. Our proposed method shares similarities
with the original NeRF method [28] in that both adopt an implicit 3D representation
and employ MLP as the optimizer. However, there are several major differences. The
volume rendering method used in the original NeRF method is not directly applicable
to SAR images. Therefore, we derive a novel volume rendering method based on our
derivation in Section 2. And, the 3D scattering energy is accumulated to the SAR image
plane along the elevation direction rather than the line-of-sight (LOS) direction. Because
SAR phenomenology and geometry differ from optical cameras, we build a new volumetric
rendering pipeline based on elevation ‘rays’.

In this section, we model the scene to be solved as a 4D scattered field σ(x, y, z, θ),
which is (1) real-valued, (2) continuous in all dimensions, and (3) penetrable by radar
waves with no energy attenuation. Here, the first condition is derived from Goodman’s
volume scattering model (cf. Section 2). The second condition is a fundamental assumption
of NeRF. And the last condition states that we will not explicitly model occlusions in the
scene. If a scatterer is not visible from a certain aspect angle, our model shall assume that
its scattering energy goes to zero, rather than being occluded by a surface that radar waves
cannot penetrate.
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3.1. Network Architecture

Our neural network, as shown in Figure 3, is developed based on Instant-NGP [36],
which is a NeRF variation with a significantly faster solving speed than the original NeRF
model. The architecture of our network is very similar to that of Instant-NGP. However,
the meanings and usages of the inputs and outputs of this network differ from those in the
original NeRF methods.

64

15

64 64





multi-resolution 
hash encoding

 ( ) g
input output

fully-conneted layer

sigmoid
ReLu

activation functions

 p 

Figure 3. Network architecture overview.

The inputs are:
-p: A 3-valued vector representing the spatial coordinates of a 3D point (on a traced ray).
-θ: θ ∈ [−π, π] is the radar aspect angle, and γ(·) in Figure 3 is the positional encoding

function proposed in the original NeRF paper [28], which generates a vector of length 2L in
the following manner:

γ(θ) =
(

sin
(

20θ
)

, cos
(

20θ
)

, . . . , sin
(

2L−1θ
)

, cos
(

2L−1θ
))

(9)

We set L = 6 in this article.
The neural network part formulates a volumetric function, which writes F : (x, θ)→

(β, a). The outputs are
-β: A scalar in range [0, 1] that is independent of radar aspect angle θ. β represents

the probability of the existence of a scatterer at spatial location p. In our methodology, we
encourage multi-view consistency by predicting β solely based on the spatial coordinate p,
as well as integrating other priors with this variable.

-α: A non-negative scalar representing the scattered energy density at 3D location p
and radar azimuth angle θ. α can be considered as the predicted energy density of the
unknown scattered field σ(p, θ).

In Figure 3, we use the multi-resolution hash encoding technique employed in the
original Instant-NGP paper to encode the vector p. The network structure of this part is
taken directly from Instant-NGP.

3.2. Volume Rendering with the Network

Given a set of multi-view images, the training of a NeRF model is based on rendering
the intensities along individual rays traced across the scene and projected onto the pixels.
In this subsection, we introduce our volume rendering strategy for SAR images. To this
end, we need to trace a ray that traverses through the 3D volume of interest, query the
NeRF model, and render the ray using a designated rendering function. This process is
illustrated in Figure 4.

Due to the distinct SAR phenomenology and geometry, our ray tracing and rendering
strategy slightly differs from that of the original NeRF method. Nevertheless, the guiding
principle behind this process still adheres to the fundamental concept of differentiable
rendering.
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Figure 4. Overview of the training process. The key difference compared to the original NeRF model
is that our forward model is built on ‘elevation’ rays.

3.2.1. Definition of a Ray

In the original NeRF model, rays are created along the line-of-sight (LOS) direction.
However, in the SAR imaging model, scatterers in 3D space are projected onto the 2D image
along the approximate elevation direction w (more specifically, the same direction with the
iso-range-iso-Doppler lines), rather than the LOS direction (cf. Equation (8). Therefore, we
adopt the Born approximation and redefine the ray r as a straight-line segment passing
through the scene along the direction of w (cf. Figure 4). The 3D coordinates of a point p
on the ray r are determined by its w-axis coordinate, i.e., p = r(w).

For tracing a ray, two different Cartesian coordinate systems are utilized. The (u, v, w)
frame is defined by the radar’s range-Doppler geometry that varies with the radar aspect
angle θ. The (x, y, z) frame is a fixed coordinate system, while the coordinate of p is taken
from this system. The transformation between the two frames is an affine transformation.
The (x, y, z) coordinate system can be chosen arbitrarily (we adopt the South-East-Up (SEU)
coordinate frame in this paper.).

PS: Unlike the original NeRF method, our method does not require setting a direction
for r. This is because, in our method, we do not consider the energy attenuation along a ray,
and all spatial locations are assumed to receive the same incident energy.

3.2.2. Rendering a Ray

For training a NeRF network, we need to redefine the manner in which the volume
rendering of a ray is performed. The rendering process will convert the network output to
the prediction of the pixel values in an SAR image:

(r(w), θ)
MLP−→ (α, β)

renderer−→ Îθ(r0)

Here, r0 = r(0) represents the coordinates of the intersection point between r and the
SAR image plane, and wmin and wmax represent the w-coordinates of the two intersection
points between the ray r and the bounding box of the interested scene.

For NeRF, the volume rendering function needs to have good differentiability proper-
ties. Based on the forward model proposed in section 2, we render the ray in the following
manner. The predicted value for the ray is generated by an integrand:

Îθ(r0) = ρrgρaz

∫ wmax

wmin

β(r(w))α(r(w), θ)dw (10)

Here, ρrg and ρaz are the range and azimuth resolutions of the SAR imagery. The above
equation integrates the energy density function α weighted by β along the w direction to
obtain an estimate of the intensity value of an image pixel. The above equation is modified
from the forward imaging model derived in Equation (8).
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We numerically estimate the continuous integral in Equation (10) using quadrature.
We divide [wmin, wmax] into M evenly-spaced bins and take one sample in each bin to
estimate the Î(r0) as

Î(r0) = ρrgρaz

M

∑
i=1

βiαiδi (11)

where δi = |wi+1 − wi| is the distance between adjacent samples.
Below, we construct the loss functions and train this model following the methods of

NeRF and its variants.

3.3. Training Loss

Our loss function is comprised of two parts. The first part is the sum of squared error
between the rendered and true pixel intensities of image I . The rendering loss is

Lint ≡∑
r

∥∥log
(
Î(r0)

)
− log(I(r0))

∥∥2
2 (12)

In the above equation, we compute the error using the logarithmic values of the pixel.
This is because the speckle noise in SAR images behaves more like multiplicative noise
rather than additive noise.

The second part of the loss function is based on our prior knowledge and is used to
encourage sparsity. We first add an `1 loss term:

Lreg1 ≡
1
M ∑

r(w)

α(r(w)) (13)

Then, we add another loss term that aims to encourage the values of α to be either 0 or 1,
which is

Lreg2 ≡ −
1
M ∑

r(w)

α(r(w)) log(α(r(w))) (14)

Hence, our final training loss term is

L = Lint + λreg 1Lreg 1 + λreg 2Lreg 2 (15)

4. Experiments
4.1. Circular SAR Campaign

The CSAR data used in this section were collected in 2020 with an experimental
W-band single-channel radar system developed by the Nanjing Research Institute of Elec-
tronics Technology (NRIET).

A photo of the radar platform and a schematic of the flight trajectory for data collection
are given in Figure 5. The radar platform is a small fixed-wing drone that is integrated with
a GPS chip, which enables a horizontal positioning accuracy of about 0.5 m.

The flight trajectory was originally designed as a complete circular path, with the
platform flying at a height of approximately 500 m above the ground level and a flight
radius of approximately 1000 m. However, due to the limitation of the on-board memory
capacity, only echoes within 3/4 of the circular path were recorded. The observed scene is
located about 200 m apart from the center of the circular path, and the diameter of the area
that is continuously illuminated by the radar beam is approximately 100 m. (It should be
emphasized that the flight trajectory does not need to strictly follow a standard circular
path, as the algorithm proposed in this paper can be applied with SAR data obtained from
most curved trajectories).
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(a)

(b)

Figure 5. Experiement setup and CSAR imaging geometry. (a) A photo of the drone, the platform,
and the radar device. (b) CSAR imaging geometry (red colored curve).

A photo of the observed scene is given in Figure 6a. The illuminated area is a school
located in Henan province, China. The radar spot center is set as a teaching building that is
approximately four stories high and has a square footprint. After data collection, we cut
the CSAR data into a series of non-overlapping sub-apertures, with the image azimuth
resolution being approximately 0.25 m. Figure 6b shows one sub-aperture image, whose
resolution is approximately 0.25 m × 0.25 m. Other parameters of the radar system and
data processing parameters are given in Table 1.

(a) (b)

Figure 6. Sample SAR image and optical photo of the imaging area. (a) Optical photo,
(b) SAR imagery.

Table 1. Acquisition and processing parameters.

Parameter Description

Center frequency 94 GHz
Radar power <0.5 watt
Bandwidth up to 900 MHz
Flight height 500 m AGL
Flight radius 1000 m
Incidence angle 65◦

sub-aperture image resolution (slant range × azimuth) 0.25 m × 0.25 m

4.2. 3D Imaging Experiments

We then used the proposed method to estimate the 4D scattered field σ(x, y, z, θ).
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Firstly, we performed the amplitude-squaring and multi-looking process for the SAR
amplitude images, following the pipeline outlined in Figure 2, to generate the training
images Iθ(x, y). We uniformly select 55 images from the total 270° azimuth aperture, with
a 5-degree azimuth angle difference between adjacent images. These 55 images were used
as training samples for the Network.

The purpose of the neural network is to learn the 4D scattered field σ(x, y, z, θ) of the
imaged scene. The axis-aligned bounding box of the observed scene is set to be centered
at the teaching building, with a size of 350 m × 350 m × 30 m (south-east-up). For the
multi-resolution hash encoding layers, we used the default parameters of Instant-NGP for
an RTX 2080 GPU. The finest resolution was set to 512, and Hash table size was set to 219.
For training our network, we considered a batch size of 1024 rays and employed M = 256
uniform samples along each ray. We depot the Adam optimizer with hyper parameters
β1 = 0.9 and ε = 1× 10−7, and we used a learning rate that started at 5× 10−4. The
training of this model takes 4 epochs to converge, resulting in ∼20 min on an NVIDIA RTX
2080 GPU with 11 GB RAM.

The 3D images obtained by the network are shown on the left side of Figure 7, where
the color map encodes the height value (along the z-direction) of the scattered energy. The
images on the left side of Figure 7 were generated using the volume rendering techniques
with a pixel resolution of 0.5 m × 0.5 m. For comparison, real SAR images obtained from
similar viewpoints are given on the right side of Figure 7 (these viewpoints were not used
as training data for the network).

Figure 7. 3D processing result. The left images are rendered by the neural network. The images on
the right are real SAR 2D images, presented for comparison with the ones on the left. The arrows in
the images indicate the radar viewing direction.
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The network can realize two different functions: one is to create virtual SAR images
from arbitrary viewpoints, and the other is to learn the 3D structures of the scene. For
generating SAR images from new viewpoints, the image on the left side of Figure 7 is
output by the neural network, while the image on the right side is the ground-truth data.
Comparing the two images, it is believed that the neural network can output highly realistic
SAR images.

The neural network can also generate new viewpoints that were not captured. For
example, in our data collection task, we only recorded data from 3/4 of the circular aperture,
and data from the other 90 degrees of azimuth aperture were not recorded due to storage
capacity limitations. Using the trained MLP, we now can make an estimation for theses
missing data. In Figure 8, we rendered an SAR image from a new viewpoint, the observation
geometry of which is given in Figure 8a. The nearest neighborhood viewpoint to this virtual
image has an azimuth angle difference of up to 45 degrees from it. However, as shown in
Figure 8b, the generated virtual image shows no significant geometric distortions (at least
in the central area), indicating that the trained NeRF may have successfully learned the 3D
structures of the scene.

(a) (b)

Figure 8. NeRF-rendered image under a virtual SAR imaging geometry. (a) Schematic diagram of the
virtual SAR viewing direction. (b) SAR image created using volume rendering with the trained NeRF.

Furthermore, as shown in Figure 9a, we used the trained model to generate an or-
thorectified SAR image, which is equivalent to projecting the scene onto the horizontal
plane. In this image, the vertical structures of the scene, such as the facades of the buildings,
are projected into the buildings’ footprints. Even real SAR cannot collect such a viewpoint
directly—it can be generated by a trained NeRF model. In Figure 9b, we provide a vertical
slice taken along the white dashed line in Figure 9a. Through the slicing operation, the
scattering energy distribution of the target along the vertical direction estimated by the
neural network can be visualized more precisely. We can observe the vertical distribution
of scattered energy from buildings, trees, cement floors, and other objects in the image.

The primary objective of NeRF is to learn the 3D structures of the scene. Therefore,
our primary concern is to evaluate the geometric accuracy of the learned 3D model. This
requires the ground truth data of this area’s 3D structure. However, we did not have
the equipment to collect such ground truth data, and we did not find any available high-
precision 3D maps of this area either. Nevertheless, in our previous work [37], we proposed
an ‘MVS’-like method for reconstructing high-precision 3D point clouds with multi-aspect
SAR images and demonstrated that this method can create 3D points with a height accuracy
better than 1 m with SAR images at a resolution of 0.3 m. According to studies on the
original NeRF method, the 3D positioning accuracy of the NeRF method is typically inferior
to MVS methods like Colmap [38] (the advantage of NeRF lies in the high visual quality
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and completeness of the reconstructed 3D model). Therefore, in this paper, we first used
the stereo SAR method to reconstruct a 3D point cloud of the scene, and then we used
the reconstructed points to evaluate the accuracy of the 3D structure learned by NeRF.
The stereo point cloud reconstruction was performed using the method proposed in [37],
with a maximum azimuth angle difference of 30° between stereo image pairs. Using this
algorithm, we reconstructed approximately 5.4 million 3D points for the scene, as illustrated
in Figure 10.
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Figure 9. Visual assessment of 3D imaging results. (a) Ortho image of the scene, created by NeRF.
(b) A vertical slice along the white dashed line in (a).

We adopted these stereo points as the test data. Here, we assumed that most areas of
the scene do not have layover pixels. Based on this assumption, we employed the following
volume rendering method to query the trained NeRF model and generate estimated heights
for these stereo points:

ĥ =
∑M

i=1 βiαiδihi

∑M
i=1 βiαiδi

(16)

Here, hi represents the height of the i-th sampling point on the ray.
We computed the difference δh between the predicted height ĥ and the true height

(stereo measurements) of the 3D points. The resulting error curve is given in Figure 11.
According to Figure 11b, the overall accuracy of the height reconstruction of the

scene can be estimated to be at the meter level. Meanwhile, we calculated the mean
deviation between the estimated value ĥ and the true value, which was calculated as
E[δh] = −0.8916 m.
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Figure 10. 3D point could be created by stereo SAR method. These points will be used to evaluate
the accuracy of NeRF reconstructed 3D structure.
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(b)

Figure 11. Evaluating height errors. (a) Histogram of height errors, (b) error-percentage curve.

At the end of this section, we add some additional comments to our accuracy evalua-
tion methods and results. Firstly, the reconstructed 3D points from the stereo SAR method
mostly correspond to pixels with strong gradients in the image domain, which generally
have non-continuous height values in the image. Therefore, the evaluation results may
have some bias for these points. Secondly, the ground truth data itself may also have errors,
according to the accuracy of the adopted stereo SAR method. Additionally, the accuracy of
3D reconstruction on some continuous surfaces in the scene may not have been evaluated
by this method. Therefore, the evaluation in this paper only provides a rough analysis of
the 3D reconstruction accuracy of the proposed method.

The general conclusion in this section is that the proposed network can learn the
3D structural information of the scene with meter-level accuracy using CSAR amplitude
images with a resolution of approximately 0.3 m.
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5. Conclusions and Future Work

In this paper, we propose a new NeRF-like neural modeling framework for CSAR 3D
inversion. Similar to NeRF, we use MLP as the solver instead of a convex optimization
method. However, unlike NeRF, we propose a ray rendering strategy along the radar’s
elevation direction and choose not to explicitly model the transparency and visibility issues
of the scene. We validate the 3D imaging performance of the proposed method with real-
world data and demonstrate its potential applications and capabilities in generating new
viewpoints and ortho-images.

As with NeRF, the final reconstructed scene corresponds to a 4D volume that is
implicitly represented by the MLPs. The 3D reconstruction results can be projected onto
any viewpoint, enabling us to generate new, uncollected observation data. This is an
attempt to achieve CSAR 3D imaging using a neural network-based solver.

Currently, airborne SAR 3D imaging is generally achieved through TomoSAR methods,
which require multiple-pass data collection or the equipment of a linear antenna array. In
contrast, using a single-channel radar and circular trajectory for data collection is much
more convenient. However, CSAR data are now more commonly only used as a video
SAR, and there are few studies demonstrating the methods or results related to CSAR
3D image formation. One possible reason for this may be that the 3D coherent imaging
pipeline for CSAR is too complex, requiring very precise motion compensation, sidelobe
suppression methods, and dedicated optimization for anisotropic targets. In this paper, we
propose a method for 3D imaging using neural networks and SAR amplitude images. The
main significance of our approach is its simplicity in forming a 3D image. In addition to
NeRF, there are many other differentiable rendering methods in the optical field whose
rendering functions can be adapted with SAR imaging mechanisms, and introducing them
into the radar field in the future may achieve better results than those from our method.
We hope that our method can reignite scholars’ enthusiasm for further studies of CSAR 3D
imaging problems.

The scenario selected for our experiment was a school area, but SAR observation
scenarios can be more intricate. For example, built-up areas with severe layover effects or
targets like tanks with strong anisotropic scattering characteristics require further exper-
imental verification to validate the effectiveness of this method. In addition, it is still an
open question whether our algorithm can work effectively on lower-frequency bands such
as the X-band. We encourage interested researchers to engage in relevant experimental
studies in the future.

There are several points where the network in this paper can be improved. Firstly, our
current model does not take into account the issue of occlusion and visibility caused by
the shadowing effect. There are several emerging variants of NeRF that have addressed
these issues, and these variants can be introduced in the future to improve the model in
this paper. Secondly, the use of a small number of viewpoints to reconstruct a NeRF is
also attractive, and it can be a future research topic for both airborne and space-borne
SAR data. Thirdly, the network and the MLP solver used in our method may also be
extend to other SAR 3D imaging problems (mainly the TomoSAR), which may improve the
speed and quality of the 3D imaging or reduce the number of repeated flights required for
tomographic 3D inversion.
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