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Abstract: The distribution of atmospheric CO2 is not homogenous, primarily due to variations
in the CO2 budgets of regional terrestrial ecosystems. To formulate a comprehensive strategy to
combat the increasing global CO2 levels and associated warming, it is crucial to consider both
the distribution of atmospheric CO2 and the CO2 budgets of ecosystems. This study focused on
analyzing the relationship between regional atmospheric CO2 and CO2 budgets in China from 2010
to 2017. Initially, a robust estimation model of net ecosystem CO2 exchange was developed to
calculate CO2 budgets using collected emission data. Subsequently, Pearson correlation, redundancy
analysis, and geographically weighted regression techniques were employed to examine the link
between atmospheric CO2 levels, CO2 budgets, and other meteorological factors at various spatial and
temporal scales. The findings from the redundancy analysis and geographically weighted regression
indicated that the atmospheric CO2 content of each province could not be solely determined by the
regional CO2 budgets. However, a significant and positive correlation between atmospheric CO2

levels and CO2 budgets was observed in non-coastal provinces for a period of six months (R2 ranging
from 0.46 to 0.83). Consequently, it is essential to promote a balance between CO2 emissions and the
CO2 uptake capacity of regional ecosystems. This balance would minimize positive CO2 budgets
and effectively mitigate the increase in atmospheric CO2 levels.

Keywords: net ecosystem exchange; CO2 emission; redundancy analysis; Pearson correlation; geo-
graphically weighted regression

1. Introduction

In order to combat global warming and fulfill the goals outlined in the Paris Agreement,
several countries, including China, have announced their commitment to carbon neutrality
or net-zero carbon dioxide emissions [1]. The Chinese government has set targets to
peak carbon emissions by 2030 and achieve carbon neutrality by 2060. One of the policy
measures employed is the carbon emission permit allocation and trade system, which
aims to gradually control and reduce carbon emissions from enterprises. In designing
such an allocation strategy, various factors such as economic growth, industrial structure
adjustment, energy structure optimization, and coordinated control of other air pollutant
emissions are commonly considered. Currently, carbon emission permits are primarily
allocated among provinces in China based on emission generation and transfer data, as
well as local economic levels, to ensure fairness and efficiency [2–4]. However, for a more
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comprehensive allocation strategy, it is essential to consider ecosystem factors related to
carbon emissions and their mitigation.

Carbon emissions encompass the total CO2 equivalent of all greenhouse gases [5].
According to the Intergovernmental Panel on Climate Change (IPCC) report in 2022, CO2
accounted for 75% of global greenhouse gas emissions, followed by methane (18%), nitrous
oxide (4%), and fluorinated gases (2%) in 2019. Different terrestrial and aquatic ecosystems
can counteract carbon emissions by sequestering carbon, primarily in the form of CO2,
through the photosynthesis of plants and algae [6,7]. On the other hand, the depletion
of methane, nitrous oxide, and fluorinated gases mainly occurs through physiochemical
reactions (e.g., oxidation, photolysis, reaction with chlorine, and precipitation) in the atmo-
sphere [8–11], rather than being influenced by land and aquatic ecosystems. While soil can
also act as a sink for nitrous oxides through microorganism activities, its overall importance
at a global scale is considered to be minimal [12]. Hence, the carbon sequestration function
of different ecosystems primarily affects variations in atmospheric CO2 concentrations.

Despite the cycling of CO2 in the atmosphere, its global distribution is not uniform.
By examining the global patterns of carbon dioxide in the mid-troposphere observed by
NASA from 1 May to 31 May 2013 (https://climate.nasa.gov/vital-signs/carbon-dioxide/,
accessed on 1 December 2022), it was evident that high concentrations of CO2 were found
in the Northern Hemisphere, while lower concentrations were observed in the Southern
Hemisphere. This disparity was mainly attributed to the limited CO2 uptake by plants
in the Northern Hemisphere during that period. In China, Fu et al. (2018) [13] found
that mid-tropospheric CO2 concentrations were higher in northern China compared with
southern China, with four high-concentration centers located in the southwest of northeast
China, west Inner Mongolia, east and west Xinjiang, and lower concentrations observed
in Yunnan and the Tibetan area. This distribution is also closely related to vegetation’s
capacity for CO2 absorption. Additionally, for a specific small area, Zhang et al. (2022) [14]
discovered that changes in CO2 source and sink characteristics jointly contributed to a
decrease in atmospheric CO2 concentration over three years in the Nanling area of China,
as determined through in situ atmospheric CO2 measurements that excluded the impact
of weather conditions. These findings raise an intriguing question: if the distribution of
carbon emissions or carbon emission permit allocation is not balanced with the distribution
of ecosystem carbon absorption capacity, could regional CO2 distribution become more
uneven?

Answering this question requires the quantification of ecosystem carbon absorption
capacity and determining the extent to which regional atmospheric CO2 concentrations are
sensitive to regional CO2 budgets. In our previous study, we developed a robust estimation
model for net ecosystem CO2 exchange (NEE) to determine NEE values for different
regions in China [15]. Building upon this, and by collecting atmospheric CO2 concentration
and CO2 emission data while determining NEE values for various regions, this study
aims to analyze the sensitivity of regional atmospheric CO2 concentrations to regional CO2
budgets at different spatial and temporal scales through correlation and regression analyses.
Furthermore, we have employed redundancy analysis (RDA) to compare the contributions
of regional CO2 budgets and climate factors to variations in atmospheric CO2. The insights
gained from this study will shed light on the extent to which regional CO2 emissions can
impact atmospheric CO2 levels in China, and whether the uneven distribution of CO2
poses a potential risk to regional ecosystems.

2. Materials and Methods
2.1. Data Collection

The data collection process for NEE estimation was extensively described in our
previous study [15].

To calculate the regional CO2 budget, monthly CO2 emission data (comprising emis-
sions from power generation, industry, residential sources, transportation, and agriculture)
for each province in China from 2008 to 2017 were collected from the Multi-resolution
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Emission Inventory for China (MEIC) database, maintained by the Department of Earth
System Science at Tsinghua University (version v2.0). Additionally, monthly atmospheric
CO2 concentrations spanning the period of 2010 to 2018 were obtained from the AIRS3C2M
database, hosted by the Goddard Earth Sciences Data and Information Services Center
(DOI: 10.5067/Aqua/AIRS/DATA336).

Climate parameters that have the potential to influence the movement of atmospheric
CO2 were also gathered. These included the eastward components of the 100 m and 10 m
winds (u100 and u10), the northward components of the 100 m and 10 m winds (v100
and v10), east turbulence surface stress (mmtss), north turbulence surface stress (mntss),
forecast surface roughness (fsr), convective available potential energy (cape), boundary layer
height and dissipation (blh and bld), and the angle of sub-grid scale orography (anor). The
climate parameter data were obtained from the ERA5 products provided by the Copernicus
Climate Change Service (C3S) Climate Data Store (CDS) (DOI: 10.24381/cds.f17050d7). The
monthly data for each grid were used to calculate the average values for each province in
China over six-month periods.

Considering the variability of wind directions, which can change significantly or
even reverse within a matter of days, we utilized the average values of u100, v100, u10,
and v10 to estimate the average wind strength (w100 and w10) in each province over
six-month intervals. These values represented the overall average horizontal movements
of atmospheric CO2. Similarly, the average mmtss and mntss values were employed to
determine the average mean turbulence surface stress (mtss), disregarding orientation. The
calculation of mtss was carried out as follows:

w1006 months =

√
u1002

6 months + v1002
6 months (1)

w106 months =

√
u102

6 months + v102
6 months (2)

mtss6 months =

√
mmtss2

6 months + mntss2
6 months (3)

2.2. NEE Estimation Model Construction

The estimation of regional NEE was carried out using the Random Forest model, with
the decision tree number (N) set to 100 and the minimum leaf size (M) set to 5. The dataset,
consisting of 16,920 collected data points, was randomly divided into 14,186 training
samples and 2734 validation samples. The randomly selected training samples were then
utilized in a supervised learning process conducted in Matlab. The model’s performance
was assessed by comparing the calculated NEE values with the observed values from
1000 validation samples. The goodness of correspondence between the calculated and
observed values was evaluated using the coefficient of determination (R2) and the root
mean square errors (RMSE), computed as follows:

RMSE =

√
∑n

i=1(ycal,i − yobs,i)
2

n
(4)

where ycal,i and yobs,i are the calculated and observed NEE values and n represents the
number of observed-calculated NEE pairs.

2.3. Sensitivity Analysis of Regional Atmospheric CO2 to Regional CO2 Budget

The sensitivity of regional atmospheric CO2 to regional CO2 budgets was examined
through Pearson correlation analysis, which involved assessing the relationship between
variations in atmospheric CO2 concentrations and CO2 budgets for each province in China.
It is important to note that the correlation analysis was limited to the available data from
the period of 2010–2017. The changes in atmospheric CO2 concentrations for each province
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were calculated on a monthly basis, as well as for two-month, four-month, six-month,
eight-month, ten-month, and twelve-month intervals. The CO2 budgets were determined
by summing the CO2 emissions and regional NEEs. However, it should be emphasized
that the calculation of CO2 budgets did not take into account CO2 cycling, resulting in what
can be referred to as theoretical static CO2 budgets. The Pearson correlation analysis of
regional atmospheric CO2 and regional CO2 budgets was conducted using Proc Corr in
SAS 9.4 (SAS Institute, Madison, WI, USA).

To analyze the multiple correlations between regional CO2 budgets, climate factors,
and regional atmospheric CO2 and its variations, redundancy analysis (RDA) was per-
formed. The RDA was implemented using the “vegan” package in R (version 4.2.2) [16].

Furthermore, geographically weighted regression was employed to investigate the
relationship between regional atmospheric CO2 variations and regional CO2 budgets,
considering spatial relationships and the non-stationarity of CO2 budgets across different
provinces [17]. The geographically weighted regression was conducted using MATLAB
software, analyzing the regional atmospheric CO2 variations and regional CO2 budgets for
each province over six-month intervals.

The entire process of data collection, model construction, and data analysis is summa-
rized in the flowchart depicted in Figure A1.

3. Results and Discussion
3.1. Regional Terrestrial NEE, CO2 Emissions, and Atmospheric CO2 Content

The estimated net ecosystem CO2 exchange (NEE) values for the 31 provinces in
China are presented in Figures 1a and A3a. The NEE values for each province exhibited
periodic fluctuations, with the greatest negative values (indicating the highest carbon
uptake capacity from the atmosphere) occurring during the summer season. Provinces
such as Xinjiang, Qinghai, Sichuan, Yunnan, Guangxi, and Tibet displayed particularly
large negative NEE values, partially attributed to their expansive land areas. Monthly NEE
estimations revealed that most provinces in China exhibited negative annual NEE values,
except for Tianjin, Shanghai, and Jiangsu, which had positive values (averaging 0.57, 0.73,
and 10.55 Mt CO2 yr−1, respectively), indicating a tendency for their terrestrial ecosystems
to release CO2 into the atmosphere. These NEE values were derived from the robust NEE
model, which demonstrated substantial performance in estimating NEE for various land
types, including arable lands (R2 = 0.63), forests (R2 = 0.75), and grasslands (R2 = 0.75).
However, the model performed less effectively for smaller land features such as water
bodies, ice, tundra, and urban areas (R2 = 0.46), owing to significant variations in carbon
absorption capacity across different land types (Figure A2). A similar NEE estimation using
the Random Forest model was conducted by Huang et al. (2021) [18], which exhibited
good performance for various forest, grassland, wetland, and cropland types (R2 ranging
from 0.57 to 0.91). In a previous study, we estimated the annual NEE for China to be
approximately −1130 Mt C yr−1 using a different database and a different Random Forest
model [15]. This estimate aligns with the NEE estimation in the current study (averaging
−4219 Mt CO2 yr−1, equivalent to −1151 Mt C yr−1), further affirming the robustness of
our NEE estimation.
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Figure 1. The variations of monthly net ecosystem CO2 exchanges (a) and monthly CO2 emissions
(b) in Mt CO2 for 31 provinces in China for the period of 2010–2017.

Analysis of the Multi-resolution Emission Inventory for China (MEIC) data revealed
that CO2 emissions across all provinces displayed periodic variations, with higher emis-
sions occurring primarily during the winter season (Figures 1b and A3b). Among the
provinces, Shandong, Jiangsu, and Hebei consistently ranked as the top three emitters
of CO2. The periodic fluctuations in both net ecosystem CO2 exchange (NEE) and CO2
emissions resulted in corresponding variations in regional CO2 budgets for each province
(Figure 2). Specifically, Shandong, Jiangsu, and Hebei had the highest positive CO2 budgets
(80.47, 60.43, and 59.60 Mt CO2 per month, respectively), while Tibet, Yunnan, and Qinghai
had the highest negative CO2 budgets (−48.28, −21.73, and −19.66 Mt CO2 per month, re-
spectively) (Figures 2a and A3c). When examining CO2 budget density, Shanghai exhibited
significantly higher CO2 budget levels (2515.08 t CO2 km−2 per month) compared with
other provinces, followed by Tianjin (1155.57 t CO2 km−2 per month) (Figures 2b and A3d).
As most provinces demonstrated positive CO2 budgets, atmospheric CO2 concentrations
displayed an increasing trend with periodic variations each year (Figures 3 and A3e). No-
tably, provinces such as Tibet, Yunnan, and Qinghai, which exhibited negative CO2 budgets,
generally displayed lower atmospheric CO2 concentrations. However, these provinces still
showed an upward trend in atmospheric CO2 levels over time. This observation suggests
that the long-term effects of atmospheric CO2 cycling can contribute to the homogenization
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of CO2 concentrations, thereby influencing the heterogeneity of regional atmospheric CO2
sensitivity to regional CO2 budgets.
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3.2. Regional Terrestrial NEE, CO2 Emissions, and Atmospheric CO2 Content

Pearson correlation analysis was conducted to examine the relationship between re-
gional CO2 budgets and changes in regional atmospheric CO2 concentrations for various
time intervals, ranging from monthly to twelve months, during the period of 2010–2017. It
was anticipated that positive CO2 budgets would correspond to an increase in atmospheric
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CO2 concentrations. As such, the Pearson correlation coefficients were predominantly
positive across most provinces, with the exception of Guangdong (Figure 4). Over time, a
similar trend emerged among the provinces, with the Pearson coefficients initially increas-
ing with longer time intervals and subsequently decreasing. Generally, the highest Pearson
coefficients were observed with a six-month interval. However, in the coastal provinces
of Fujian, Shanghai, Hainan, and Guangdong, weak correlations were found between
changes in atmospheric CO2 concentrations and CO2 budgets, with corresponding Pearson
coefficients of 0.242, 0.275, 0.117, and −0.268, respectively, for the six-month interval. It
is worth noting that these four provinces are all coastal regions. Additionally, the coastal
provinces of Zhejiang and Jiangsu exhibited relatively lower Pearson coefficients for the
six-month interval (0.543 and 0.539, respectively) compared with the other provinces, which
ranged between 0.60 and 0.80. These findings suggest that the interactions between CO2
budgets and CO2 transportation in coastal areas may influence atmospheric CO2 dynamics.
In the short term, atmospheric CO2 transportation can disperse emitted CO2 and increase
atmospheric CO2 concentrations. However, over a longer time frame, atmospheric CO2
transportation tends to homogenize regional atmospheric CO2 concentrations with those of
other regions, thereby mitigating the impact of CO2 budgets on atmospheric CO2 levels.
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variations and regional CO2 budgets of 31 provinces in China for different periods of one month, two
months, four months, six months, eight months, ten months, and twelve months.

While CO2 budgets played a significant role in explaining the variations in regional
atmospheric CO2 concentrations, they alone were insufficient to fully account for these
variations. Analysis of the collected data revealed that the atmospheric CO2 variations
across all provinces did not exceed 10 ppm over a six-month period. However, the CO2
budgets for the same period in the 31 provinces resulted in atmospheric CO2 variations
ranging from −17.32 ppm (Yunnan) to 768.12 ppm (Shanghai), with an average value of
78.24 ppm. These values take into consideration the accumulation of most CO2 within the
troposphere, at altitudes ranging from 10 to 16 km, in China. Consequently, it is evident
that other factors contribute significantly to the observed atmospheric CO2 variations.

Numerous studies have investigated the factors influencing regional atmospheric
CO2 concentrations. For instance, Zhou et al. (2022) [19] identified monthly mean daily
maximum global radiation, monthly effective accumulated temperature, monthly mean
daily maximum vapor pressure deficit, and monthly precipitation as the key meteorological
variables influencing atmospheric CO2 in forest systems. Yang et al. (2020) [20] found that
soil temperature, air temperature, photosynthetically active radiation (PAR), below-canopy
CO2 concentration, vapor pressure deficit, and soil water content at 50 cm were the main
meteorological factors influencing CO2 exchange on daily and monthly time scales. Other
meteorological factors, such as wind patterns, can also play a crucial role in atmospheric
CO2 dynamics by affecting its transport [21,22]. Although multiple factors can influence
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atmospheric CO2, they can be broadly categorized as CO2 budgets and CO2 transport
within the atmosphere.

In the previous section, we developed an NEE estimation model that incorporated
potential factors affecting atmospheric CO2, such as surface temperature, soil temperature,
surface net solar radiation, precipitation, evaporation, soil water content, NDVI index, EVI
index, canopy height, and forest age, to calculate CO2 budgets. To explore the interactive
effects of CO2 budgets and CO2 transport, including winds, surface turbulence stress,
forecast surface roughness, convective available potential energy, boundary layer height,
boundary layer dissipation, and sub-grid scale orography, on atmospheric CO2 variations
over a six-month period, a redundancy analysis (RDA) was conducted.

RDA biplots were generated to illustrate the contributions of the considered factors
to the variations in atmospheric CO2 (deltaCO2) and atmospheric CO2 content (CO2). The
projection of each factor’s arrow onto the arrow of the focused variables indicated the
direction and intensity of its effect. For example, Figure 5 depicts that, in the case of Beijing,
the factors of budgetCO2, w10, w100, mtss, bld, and fsr all positively contributed to deltaCO2,
while only parameters blh and cape had negative contributions. Conversely, in Tianjin, only
budgetCO2 had a positive contribution to deltaCO2, while the other factors had negative
contributions. Furthermore, for both Beijing and Tianjin, the considered factors appeared
to have minimal effects on atmospheric CO2 content (CO2) since their arrows were nearly
orthogonal to the CO2 arrow. RDA biplots for the other 29 provinces can be found in
Figure A4. The RDA results indicated that CO2 budgets and climatic transport parameters
directly influenced the variation in atmospheric CO2 (deltaCO2), but not atmospheric CO2
content (CO2) (Figure A3). In most cases, deltaCO2 showed a strong positive correlation
with CO2 budgets, except for the coastal provinces of Shanghai, Fujian, Guangdong, and
Hainan, which aligned with the results of the correlation analysis. Additionally, deltaCO2
tended to be predominantly influenced by parameters such as fsr (21/31 provinces), blh
(26/31 provinces), and cape (31/31 provinces), resulting in negative effects. The boundary
layer, where emitted pollutants mix [23,24], is likely to have a similar effect on emitted CO2.
Thus, a higher boundary layer favors the diffusion of emitted CO2 to the free atmospheric
layer, reducing local CO2 accumulation. Similarly, convective available potential energy
(cape), which represents the integrated work that positive buoyancy forces would perform
on air parcels rising vertically through the atmosphere, inhibits the uplift of pollutants
when it is negative [25]. Consequently, higher cape values contributed to the atmospheric
diffusion of emitted CO2. In comparison to other parameters, mtss and bld had relatively
less impact on deltaCO2.

Furthermore, the parameters of boundary layer height (blh) and convective available
potential energy (cape) primarily affected the vertical movements of atmospheric CO2,
whereas its horizontal movement was driven by winds. The RDA analysis also revealed
that wind strength at 100 m and 10 m heights (w100 and w10) were significant factors
influencing deltaCO2. However, their relationship with deltaCO2 varied, with both positive
and negative associations observed.

For the provinces of Tianjin, Liaoning, Shanghai, Jiangsu, Shandong, Henan, Guizhou,
Shaanxi, and Xinjiang, w100 and w10 exerted a negative influence on deltaCO2. As w100
and w10 represent cumulative winds for each province, this suggests that winds tend to
transport CO2 out of these provinces. It is important to note that this is not necessarily due
to higher atmospheric CO2 contents in these provinces (Figure A5a), but rather their CO2
budgets. Some of these provinces exhibited the highest annual CO2 budgets in China, such
as Shanghai, Tianjin, Jiangsu, and Shandong, with values of 20,120.66, 9244.60, 5023.94, and
4185.66 t CO2 km−2, respectively, ranking among the top four provinces (calculated from
Figure 2b). Additionally, other provinces showed significantly higher annual CO2 budgets
compared with their neighboring provinces, such as Liaoning and Henan (Figure A5b).
These findings indicate that the atmospheric CO2 variations in a particular province are
influenced not only by its own CO2 budget but also by the budgets of other provinces.
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Geographically weighted regression results demonstrated a weak linear relationship
between regional atmospheric CO2 variations and their own CO2 budgets over a six-month
period, as indicated by several negative slope factors (Figure 6a) and R2 values below 0.4
(Figure 6b).
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Figure 5. The redundancy analysis biplots of factor scores for average atmospheric CO2 contents
(CO2) and atmospheric CO2 variations (deltaCO2) for every six months during the period of 2010–
2017 for the regions of Beijing and Tianjin. The considered factors included CO2 budget (budgetCO2),
average wind strength at 100 m and 10 m heights (w100 and w10), average mean turbulence surface
stress (mtss), forecast surface roughness (fsr), convective available potential energy (cape), boundary
layer height and dissipation (blh and bld), and angle of sub-grid scale orography (anor).
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graphically weighted regression of regional atmospheric CO2 variations and regional CO2 budgets
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represent, from bottom to top, the minimum, first quartile, median, third quartile, and maximum of
the values calculated for every six-month interval, while the black points represent the outliers.
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In summary, the contents of atmospheric CO2 were influenced by a combination of
CO2 budgets and atmospheric transportation. While our findings indicate that regional CO2
budgets alone may not fully account for the variations observed in regional atmospheric
CO2, they still exert significant impacts and demonstrate meaningful positive correlations
with atmospheric CO2 variations over a relatively short-term period of six months.

3.3. Emission Allocation Policies Related to CO2 Budgets

Unlike the findings of previous studies, such as Zhang et al. (2022) [14], which sug-
gested that changes in CO2 source and sink characteristics played a joint role in decreasing
atmospheric CO2 concentration over a three-year period in the Nanling area of China,
our results indicate that regional CO2 budgets alone do not exert dominant influence on
altering regional atmospheric CO2 at the provincial scale. One possible explanation for
this disparity could be the presence of point sources emitting CO2, whereby the increase
in atmospheric CO2 resulting from positive CO2 budgets might be more pronounced in
specific localized areas within each province. Therefore, it may be necessary to analyze the
relationship between CO2 budgets and atmospheric CO2 at a smaller scale, focusing on
sub-regions or localized areas. To support this notion, we conducted a similar correlation
analysis by aggregating data from provinces into larger regions of China, namely northeast
China, north China, central China, south China, east China, southwest China, and north-
west China. The results revealed that the correlation between CO2 budgets and changes
in atmospheric CO2 content weakened at the regional and national scales compared with
the provincial level (Figure A6). Consequently, regional CO2 budgets may have a more
significant impact on atmospheric CO2 dynamics in smaller areas, contributing to both
positive and negative effects on specific microcosms such as temperature increase [26],
growth pressure on vegetation [27], and CO2 fertilization effects [28].

Furthermore, the regional sensitivity of atmospheric CO2 to CO2 budgets can lead to
an imbalanced distribution of atmospheric CO2 and variations in warming patterns. This
imbalance can potentially lead to overestimation or underestimation of the costs associated
with warming in specific areas, making it challenging to develop comprehensive carbon
emission allocation policies that ensure fairness and efficiency. In our view, an optimized
emission allocation strategy should aim to achieve a balance between carbon emissions
and uptake in each region, such as provinces or even cities, to establish an acceptable
CO2 budget. This approach would enable effective control of regional atmospheric CO2
variations and minimize potential damages to regional ecosystems. To implement such
a carbon allocation strategy, detailed information on regional emissions, the CO2 uptake
capacity of ecosystems, and CO2 transport flux needs to be obtained. Numerous efforts
have already been made to estimate gridded CO2 emissions [29,30], carbon budgets of
terrestrial ecosystems [31,32], CO2 diffusion flux [33], as well as advancements in techniques
for processing remote sensing air data [34,35]. Encouraging further research in these areas
is crucial for gaining a comprehensive understanding of regional carbon dynamics.

4. Conclusions

This study demonstrates that CO2 budgets have a considerable influence, though
not a dominant one, on the alteration of atmospheric CO2 over a six-month period in
most provinces of China. Moreover, the findings highlight the potential effects of different
regional CO2 budgets on the uneven distribution of atmospheric CO2, particularly at
smaller scales below the provincial level. Therefore, it is essential not to overlook these
effects and instead promote further monitoring research on gridded CO2 emissions and
uptake, as well as studies focusing on regional CO2 variations and their impact on local
ecosystem functions. These endeavors will contribute to the development of a more
comprehensive CO2 emission allocation strategy that takes into account both economic and
ecological factors related to CO2 generation and uptake. By doing so, potential ecological
risks can be mitigated, ensuring a balanced approach to carbon management.
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Figure A4. The redundancy analysis biplots of factor scores for average atmospheric CO2 contents
(CO2) and atmospheric CO2 variations (deltaCO2) for every six months during the period of 2010–2017.
The considered factors included CO2 budget (budgetCO2), average wind strength at 100m and 10m
heights (w100 and w10), average mean turbulence surface stress (mtss), forecast surface roughness
(fsr), convective available potential energy (cape), boundary layer height and dissipation (blh and
bld), and angle of sub-grid scale orography (anor). If the province had w100 and w10 contributing
positively to deltaCO2, it indicated atmospheric CO2 was transported into the province. On the
contrary, atmospheric CO2 was transported out from the province.
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