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Abstract: Target detection and segmentation in synthetic aperture radar (SAR) images are vital steps 
for many remote sensing applications. In the era of data-driven deep learning, this task is extremely 
challenging due to the limited labeled data. Few-shot learning has the ability to learn quickly from 
a few samples with supervised information. Inspired by this, a few-shot learning framework named 
MSG-FN is proposed to solve the segmentation of ship targets in heterologous SAR images with 
few annotated samples. The proposed MSG-FN adopts a dual-branch network consisting of a sup-
port branch and a query branch. The support branch is used to extract features with an encoder, and 
the query branch uses a U-shaped encoder–decoder structure to segment the target in the query 
image. The encoder of each branch is composed of well-designed residual blocks combined with 
filter response normalization to capture robust and domain-independent features. A multi-scale 
similarity guidance module is proposed to improve the scale adaptability of detection by applying 
hand-on-hand guidance of support features to query features of various scales. In addition, a SAR 
dataset named SARShip-4i is built to evaluate the proposed MSG-FN, and the experimental results 
show that the proposed method achieves superior segmentation results compared with the state-of-
the-art.  
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1. Introduction 
Synthetic aperture radar (SAR) is an imaging radar with high range and azimuth 

resolution, which is widely used in military and civilian fields due to its all-day and all-
weather imaging capabilities. Target detection and segmentation are important parts of 
SAR image understanding and analysis. As the main transport carrier and effective com-
bat weapon, automatic ship detection and segmentation provide important support for 
protecting inviolable maritime rights and maintaining maritime military security. There-
fore, it is of great significance to carry out research on ship detection and segmentation in 
SAR images.  

Most of the current ship detection methods [1–3] are based on the conventional object 
detection framework to achieve ship detection. These methods provide the position infor-
mation of the bounding box covering the target, but they do not provide detailed contour 
information on the target. Target segmentation refers to segmenting the target of interest 
in images at the pixel level, which simultaneously provides position information and con-
tour information of the target. Hence, ship segmentation is treated as a more accurate and 
comprehensive means to achieve ship detection. 

The segmentation algorithms based on active contour are popular in the field of im-
age segmentation, including the improved K-means active contour model [4,5], the 
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entropy-based active contour segmentation model [6], and the Chan–Vese model [7]. The 
Hidden Markov model is a commonly used method for image segmentation, which is a 
two-level structure model consisting of an unobservable hidden layer and an observable 
upper layer. Clustering analysis technology is also widely used to solve this issue, such as 
multi-center clustering algorithm [8], fast fuzzy segmentation [9], adaptive fuzzy C-means 
algorithm [10], and the bias correction fuzzy C-means algorithm [11]. As for SAR image 
segmentation, the most representative methods are the image segmentation algorithms 
[12–14] based on the constant false alarm rate (CFAR) detector [15], in which a threshold 
is determined based on the statistical characteristics of each image, and the image is seg-
mented by comparing the gray level value of each pixel against the threshold value. 
CFAR-based methods consider pixel contrast information while ignoring the structural 
features of the target, which leads to speckle noise in the segmentation results, incorrect 
target localization, and a large number of false alarms. 

With the rapid development of deep-learning technology, the convolutional neural 
network (CNN) has achieved excellent performance in the field of image processing [16–
19], such as image classification [16], object detection [17], and object segmentation [18,19]. 
Many mature deep-learning methods have also been put forward in the field of SAR im-
age processing. For example, Henry et al. [20] presented a fully convolutional neural net-
work for road segmentation in SAR images and enhanced the sensitivity toward thin ob-
jects by adding spatial tolerance rules. Bianchi et al. [21] explored the capability of deep-
learning models in segmenting the snow avalanches in SAR images at a pixel granularity 
for the first time. Deep-learning-based methods effectively improve the performance in 
data-intensive tasks, where a large amount of data is required to train the deep models. 
However, the performance of the deep-learning methods is limited or even ineffective 
when the available training dataset is relatively small. Moreover, the deep-learning-based 
methods have insufficient generalization ability in the task of SAR image processing due 
to the large imaging area and various imaging characteristics of the SAR images. Specifi-
cally, most of these methods have superior performance in the source domain data, but 
their performance is degraded in the target domain. Therefore, how to solve the problem 
of SAR ship segmentation on the cross-domain small dataset is still an extremely challeng-
ing task. 

Transfer learning is a commonly used strategy in cross-domain tasks by transferring 
knowledge learned from a source domain with sufficient training data to a target domain 
lacking training data. However, a certain scale of target domain data is still required to 
achieve better results. Such a requirement is still a burden in SAR image processing be-
cause it is expensive and time-consuming to collect SAR images and provide the label, 
especially in the task of SAR segmentation, where the pixel-level ground truth is needed. 
Few-shot learning (FSL) has the ability to learn and generalize from a small number (one 
or several) of samples, which provides a feasible solution to the above problem. As a typ-
ical few-shot learning framework, meta-learning is borrowed from the way humans learn 
a new task. Humans rarely learn from scratch but learn based on the experience gained 
from the learning process of the related tasks when they learn a new skill. Meta-learning, 
also known as learning to learn, is proposed based on this learning mechanism of the hu-
man brain. The purpose of meta-learning is to learn from previous learning tasks in a 
systematic and data-driven way to obtain a learning method or meta-knowledge so as to 
accelerate the learning process of new tasks [22]. Therefore, the meta-learning framework 
is applied to solve the problem of SAR ship segmentation on the small cross-domain da-
taset. 

The distribution of ship data in different regions is quite different due to various im-
aging modes, imaging resolutions, and imaging satellites. Ship segmentation in SAR im-
ages in different regions is considered a task originating from different domains. In this 
paper, a multi-scale similarity guidance few-shot network titled MSG-FN is proposed for 
ship segmentation in heterogeneous SAR images with few labeled samples in the target 
domain. The proposed MSG-FN adopts a dual-branch network structure, including a 
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support branch and a query branch. The support branch is used to extract the features of 
a specific domain target with a single encoder structure, while the query branch utilizes a 
U-shaped encoder–decoder structure to segment the target in the query image. These two 
branches share the same parameters in the encoder part, and the encoder is composed of 
well-designed residual blocks combined with filter response normalization (FRN). A sim-
ilarity guidance module is designed to guide the segmentation process of the query 
branch by incorporating pixel-wise similarities between the features of support objects 
and query images. Four similarity guidance modules are deployed between the support 
branch and the query branch at various scales to enhance the detection adaptability of 
targets with different scales. In addition, a challenging ship target segmentation dataset 
named SARShip-4i is built by us to evaluate the proposed ship segmentation network, 
which includes both offshore and inshore ships. 

The key contributions of this paper are as follows: 
• A multi-scale similarity guidance few-shot learning framework with a dual-branch 

structure is proposed to implement ship segmentation in heterogeneous SAR images 
with few annotated samples; 

• A residual block combined with FRN is designed to improve the generalization ca-
pability in the target domain, which forms the encoder of the support and query 
branches for domain-independent feature extraction; 

• A similarity guidance module is proposed and inserted between two branches at var-
ious scales to perform hand-on-hand segmentation guidance of the query branch by 
pixel-wise similarity measurement; 

• A ship segmentation dataset named SARShip-4i is built, and the experiment results 
on this dataset demonstrate that the proposed MSG-FN has superior ship segmenta-
tion performance. 
The remainder of this paper is organized as follows. The previous related works are 

briefly described in Section 2. The proposed MSG-FN is presented in detail in Section 3. 
Experimental results and analysis are demonstrated in Section 4. Finally, the conclusion 
is made in Section 5. 

2. Related Work 
2.1. Semantic Segmentation 

Semantic segmentation is a classic problem in the field of computer vision, which 
aims at the pixel-level classification of images, providing a foundation for subsequent 
tasks of image scene understanding and environment perception. The deep-learning 
method initially applied to image semantic segmentation is patch classification [23], in 
which the image is cut into blocks and fed into the depth model, and then the pixels are 
classified. Subsequently, the fully convolutional network (FCN) [24] was developed, 
which removes the original fully connected layer and converts the network to a fully con-
volutional model. The speed of FCN is much faster than that of the patch classification 
method, and the FCN method does not require the fixed size of the input image. However, 
the linear interpolation decoding method in the FCN leads to the loss of structure infor-
mation, and the obtained boundary is relatively coarse despite the fact that some skipping 
connections are used. SegNet [25] is proposed to solve this problem by introducing more 
skipping connections and replicating the maximum pooled index. Another issue of the 
FCN model for semantic segmentation is the unbalance between the scale of the receptive 
field and the resolution of the feature map. The pooling layer enlarges the receptive field, 
but the resolution is reduced due to the down-sampling operation of the pooling layer, 
thus weakening the position information that semantic segmentation needs to preserve.  

To keep the trade-off between the scale of the receptive field and the resolution of the 
feature map, the dilated convolutional structure and the encoder–decoder structure were 
proposed. Fisher et al. [26] designed a dilated convolutional network to realize semantic 
segmentation, which increases the respective field without decreasing the spatial 
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dimension. U-Net [27] is a typical encoder–decoder structure; the encoder gradually re-
duces the spatial dimension of the pooling layer, and the decoder recovers the details and 
spatial dimension of the target step by step. Moreover, there is a skip connection between 
the encoder and the decoder so that shallow features can assist in recovering the details 
of the target. Furthermore, RefineNet [28] was proposed based on U-Net, which exploited 
all the information available along the down-sampling process and used long-range re-
sidual connections to enable high-resolution prediction. In this way, the fine-grained fea-
tures in the early convolution are used to refine the high-level semantic features captured 
by the deeper layers. 

Accurate segmentation of targets with different scales is the focal and difficult issue 
of semantic segmentation. In order to achieve this goal, semantic segmentation methods 
need to integrate the spatial features of different scales to achieve an accurate description 
of multi-scale objects. The simple idea is to use the image pyramid [29], in which the input 
image is scaled into different sizes, and then the final segmentation result is obtained in 
an integrated way. In addition to the image pyramid, most of the current methods focus 
on how to make effective use of low-level features and high-level features. It is believed 
that the low-level features include rich location information, which is particularly im-
portant for accurate positioning, while the high-level features contain abundant semantic 
information, which is of great benefit to fine classification. In [30], a multi-scale context-
aggregated module called the pyramid pooling module (PPM) was introduced, which 
uses different large-scale pooling kernels to capture global context information. On the 
basis of this work, Chen et al. [31] proposed an atrous spatial pyramid pooling (ASPP) 
module by replacing the pooling and convolution in PPM with the atrous convolution. 
Subsequently, the DenseASPP [32] was proposed to generate features with more various 
scales in a larger range by combining the advantages of parallel and cascade expansion 
convolution.  

The above methods work well on large-scale natural images, but the performance of 
these algorithms decreases when the amount of training data is small. As for SAR images, 
the number of SAR images collected in a scene is limited due to the special imaging mode 
of the SAR images. Likewise, the amount of labeled SAR images that can be used to train 
the segmentation model is small because the pixel-level labeling of SAR images is time-
consuming and laborious. Therefore, how to use the knowledge learned in other scenes 
to make predictions with few training data is an urgent problem worthy of consideration. 

2.2. Few-Shot Learning 
Few-shot learning is a learning paradigm proposed to solve the problem of small-

scale training data, which refers to learning from a limited number of instance samples 
with supervised information. The proposal of few-shot learning has drawn lessons from 
the rapid learning mechanism of the human brain; that is, human beings quickly learn 
new tasks by using what they have learned in the past. The amount of training data de-
termines the upper limit of the algorithm’s performance. If a small-scale dataset is used to 
train a complex deep neural network in the traditional way, the over-fitting problem is 
inevitable. Due to the little demand for well-annotated training data, FSL has attracted 
wide attention and has been adopted in various image processing tasks, such as image 
classification [33–35], semantic segmentation [36–38], and object detection [39,40]. 

FSL aims at obtaining good learning performance given limited training samples, 
specifically, given a learning task and a dataset that consists of a training set and a test set. 
The number of training samples in the training set is relatively small, usually less than or 
equal to 5. The training set is also called the support set, and the test set is also called the 
query set. Suppose there is a theoretical mapping function satisfied between the input and 
the corresponding label. The purpose of few-shot learning is to find an approximate opti-
mal mapping function in the mapping space by learning from other similar tasks so as to 
achieve accurate prediction on the test set. Few-shot learning is mainly reflected in the 
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number of samples in the support set, which is the number of well-annotated samples 
required when learning a new task. 

Taking the most classic task of image classification as an example. The training set 
contains training data belonging to different categories. 𝑁  is the number of categories 
contained in the training set;  𝐾 is the number of images corresponding to each category, 
and the number of the training samples is 𝐼 = 𝑁 × 𝐾. This kind of few-shot learning is 
called N-way K-shot learning. In particular, it is called one-shot learning, when 𝐾 = 1. 

2.3. Few-Shot Semantic Segmentation 
Currently, there are some researchers trying to use few-shot learning to achieve im-

age semantic segmentation. The most widely adopted technical route is to use the guid-
ance information in the support set and guide the segmentation of the target in the query 
set by cleverly designing the network structure. The generally adopted network is a dou-
ble-branch structure, as shown in Figure 1. The support image and its corresponding label 
are fed into the support branch to provide guidance for the query branch, and then the 
prediction result of the query image is obtained. From the perspective of the way to 
achieve guidance, the existing few-shot segmentation methods can be divided into three 
types [36], namely, matching-based methods [37,38], prototype-based methods [41], and 
optimization-based methods [42]. 

 
Figure 1. Typical structure of the few-shot semantic segmentation. 

The typical matching-based method is SG-One [37], in which a similarity-guided one-
shot semantic segmentation network was proposed. SG-One uses the dense pairwise fea-
ture to measure the similarity and a specific decoding network to generate segmentation 
results. On this basis, CANet [38] adds a multi-level feature comparison module to the 
dual-branch network structure and improves the segmentation performance through 
multiple iterations of optimization.  

The prototype-based methods extract the global context information to represent 
each semantic category and use the overall prototype of the semantic category to match 
the query image at the pixel level. PANet [41] learns class-specific prototype representa-
tions by introducing prototype alignment regularization between the support branch and 
the query branch. Both the prototype-based methods and the matching-based methods 
use a metric-based meta-learning framework to compare the similarity between the sup-
port image and query image. 

The optimization-based methods regard the few-shot semantic segmentation prob-
lem as a pixel classification problem. There are a few related works. Among them, Meta-
SegNet [42], which uses global and local feature extraction branches to extract meta-
knowledge and integrates linear classifiers into the network to deal with pixel classifica-
tion problems. MetaSegNet mainly focuses on N-way K-shot (N > 1) problem to realize 
the multi-objective segmentation problem. 
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The above methods mainly focus on the few-shot semantic segmentation of natural 
images. In the field of SAR image processing, it is not feasible to directly use the few-shot 
segmentation method in natural image scenes because of the large distribution difference 
of SAR images under different imaging conditions. Therefore, we remodel the few-shot 
segmentation method of SAR images and propose a multi-scale similarity guidance net-
work to achieve ship segmentation in heterogeneous SAR images with limited annotation 
data. 

3. Method 
3.1. Problem Setup 

In the few-shot semantic segmentation of natural images, segmenting targets of dif-
ferent classes is considered a different segmentation task. Different from this setup, ship 
segmentations in SAR images collected in various scenarios are treated as different seg-
mentation tasks because there are large differences in the data distribution of SAR images 
due to the different imaging satellites, various imaging resolutions, and so on. Therefore, 
in this paper, the problem of SAR ship segmentation on the small cross-domain dataset is 
described as follows: the ship segmentation model is trained on SAR images collected in 
several regions, which is called a meta-training set, and our goal is to use the trained 
model to predict SAR images in the meta-testing set, i.e., SAR images collected from the 
target region with few annotated samples. There is no intersection between the regions of 
SAR image data used in the meta-training set and the meta-testing set. 

For better understanding, there is an example to illustrate the definition of meta-
training and meta-testing, as shown in Figure 2. The SAR images in the meta-training set 
are collected from Aswan Dam, Barcelona, Houston, and Singapore, while the SAR images 
in the meta-testing set are collected from Qingdao and Strait Gibraltar. Both the meta-
training set 𝐷௧௥௔௜௡ = ሼሺ𝑆௜ ,𝑄௜ሻሽ௜ୀଵே೟ೝೌ೔೙ and the meta-testing set 𝐷௧௘௦௧ = ሼሺ𝑆௜ ,𝑄௜ሻሽ௜ୀଵே೟೐ೞ೟ consist 
of several episodes. The episode (𝑆௜ ,𝑄௜) is the sample unit, which is composed of a sup-
port set 𝑆௜ and a query set 𝑄௜. The support set consists of several support images 𝐼ௌ೔ and 
their corresponding segmentation annotation mask 𝑀ௌ೔.The query set consists of the in-
put query images 𝐼ொ and their labels 𝑀ொ. In the training phase, the support–query pair (𝑆௜ ,𝑄௜)  in the meta-training set is used to train the model. In the test phase, ൛𝑆, 𝐼ொൟ =൛𝐼ௌభ ,𝑀ௌభ , 𝐼ௌమ ,𝑀ௌమ , … , 𝐼ௌೖ ,𝑀ௌೖ , 𝐼ொൟ forms the input batch to the model, and the ground truth 𝑀ொ is used to evaluate the segmentation performance on the query image in each episode. 

 
Figure 2. Schematic diagram of the meta-training set and the meta-testing set defined in the task of 
one-shot SAR ship segmentation. The red dotted box indicates the sample unit, i.e., an episode.  
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3.2. MSG-FN Architecture 
A multi-scale similarity guidance network (MSG-FN) is proposed to perform ship 

segmentation in heterogeneous SAR images with few labeled data in the target domain. 
The MSG-FN is a matching-based few-shot learning framework with two main modules, 
i.e., residual block combined with FRN (Res-FRN) and multi-scale similarity guidance 
module (SGM), which are introduced in the following Sections 3.3 and 3.4. The well-de-
signed Res-FRN Block is proposed to capture robust and domain-independent features, 
and the multi-scale SGM is designed to conduct multi-scale hand-on-hand segmentation 
guidance. 

The proposed MSG-FN is a dual-branch network, and its diagram is shown in Figure 
3, where the support branch contains a convolutional layer and four Res-FRN blocks, and 
the query branch contains an input convolutional layer, four Res-FRN blocks, three de-
convolution blocks, and an output convolutional layer. The support input is obtained by 
directly multiplying the support image with the support mask, which effectively removes 
the background and retains the target feature of the ship, avoiding interference caused by 
the complex and changeable background. Four SGMs are embedded between these two 
branches at various scales to better play the guiding role of the support branch to the query 
branch. The parameter-sharing mechanism is used between the support branch and the 
query branch. The support branch extracts the multi-scale features of the ship target from 
the limited support images and their corresponding support masks. Then, the features of 
the target are fused with the query features obtained by the query branch through the 
multi-scale SGM. The similarity map is obtained and used to realize the segmentation of 
the ship target in the query image by multiplying it with query features.  

 
Figure 3. Schematic diagram of the proposed MSG-FN. 

3.3. Residual Block Combined with FRN 
The residual network (ResNet) is the most commonly used feature extraction net-

work, which effectively reduces the difficulty of deep network training, making it possible 
to train networks with hundreds or even thousands of layers. There are two typical resid-
ual modules of ResNet: the basic block and the bottleneck. Batch normalization (BN) is a 
commonly used normalization method both in the basic block and the bottleneck, which 
is designed to alleviate the problem of internal covariate shifting. However, BN introduces 
dependence among samples, which leads to performance degradation when the source 
domain and the target domain have different distributions. More specifically, BN first 
standardizes each feature in a mini-batch and learns a common slope and bias for each 
mini-batch in the training phase, and then the global statistics of all training samples are 
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used to normalize each mini-batch of test data during the test. The statistics of the BN 
layer contain the traits of the source domain [43]. If the global statistics obtained from the 
training samples are used to normalize the test data on the new domain, performance 
degradation occurs due to differences in distribution between the source domain and the 
target domain. Moreover, the batch size set in BN may cause correlation among samples, 
affecting the training process. In the task of few-shot segmentation, the batch size during 
training is often set relatively small due to its special problem setting, so the network may 
have poor convergence if BN is used. 

Filter response normalization (FRN) [44] is another normalization method, which op-
erates on each activation map of each batch sample independently, eliminating the de-
pendency of samples in the same batch. Therefore, we propose a residual block combined 
with FRN, namely, the Res-FRN block, to extract the domain-independent features for 
stronger generalization performance in target domains. As shown in Figure 4, FRN layers 
replace the BN layers in the designed Res-FRN block.  

 
Figure 4. Schematic diagram of the designed Res-FRN block. (a) Res-FRN block (basic). (b) Res-FRN 
block (bottleneck). 

In the FRN layer, assuming that the shape of the input tensor 𝑋 is [𝐵,𝐶,𝑊,𝐻], in 
which B is the batch size during training; 𝐶 is the number of channels, and 𝑊 and 𝐻 
represent the width and height of the input tensor, respectively. Let 𝑣ଶ = ଵெ෌ 𝑥௜ଶ௜  be the 
mean squared norm of 𝑥, where 𝑀 = 𝑊 × 𝐻. The FRN is calculated as follows: 𝑥ො = 𝑥√𝑣ଶ + 𝜀 (1)

where 𝑥 = 𝑋௕,௖,∶,∶ ∈ ℝே; 𝜀 is a small constant to avoid the denominator being zero. Then, 
FRN performs affine transformation after normalization, as computed in Formula (2).  𝑦 = 𝛾𝑥ො + 𝛽 (2)

where 𝛾 and 𝛽 are both learnable parameters. This transformation guarantees that the 
input distribution of each layer remains unchanged across different mini-batches.  

The bias term is fixed as a constant in the commonly used activation function rectified 
linear unit (ReLU), making the output value of the network lack some flexibility. Here, the 
threshold linear unit (TLU) activation function is selected as the activation function in the 
FRN layer, as computed in Formula (3), where a threshold 𝜏 is set as an optimizable pa-
rameter, which increases the flexibility of the network.  𝑧 = max(𝑦, 𝜏) (3)
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In addition, FRN is carried out on a per-channel basis, which ensures that all convo-
lution kernel parameters have the same relative importance in the final model. 

3.4. Multi-Scale Similarity Guidance Module 
Most of the existing few-shot semantic segmentation methods [37,38] fuse the ex-

tracted support features with the query features at a single scale to achieve guidance. The 
features extracted from the support branch are precious, as they determine the final cate-
gory the network will segment. However, inefficient support feature utilization has oc-
curred in the above methods. Specifically, one single-scale guidance only considers the 
single output from the end of the network, which does not take full advantage of the 
multi-scale context features. Furthermore, ship targets have the characteristics of multiple 
scales, and the sizes of ships in the SAR images have significant differences. The fusion of 
support features and query features at a single scale is not enough to achieve the segmen-
tation of ships of various scales. For example, if only the deepest features of the network 
are used to perform guidance, the segmentation of small targets will be greatly affected 
and even lead to a complete loss of information because the small-scale targets may lose 
location information as the depth of the network increases. Therefore, a multi-scale simi-
larity guidance module is proposed to apply sufficient hand-on-hand guidance of support 
features to query features of different scales, which also enhances the adaptability of the 
algorithm to ship targets of different scales. 

The architecture of the designed multi-scale SGM embedded in the proposed MSG-
FN is illustrated in Figure 3. There are four residual blocks (Res-FRN1, Res-FRN2, Res-
FRN3, Res-FRN4) in the encoder part of both the support branch and the query branch. 
Four SGMs are embedded between the support feature and the corresponding query fea-
ture with multi-scale sizes. The internal structure of the SGM is shown in Figure 5. The 
inputs are the support feature and the query feature, which are extracted by the residual 
blocks from the support branch and the query branch. The support feature contains se-
mantic category information of the target, and the feature vector of the target is obtained 
through global average pooling, which contains global context semantic features of the 
ship target. Then, the cosine function is used to measure the similarity between the target 
feature vector obtained from the support image and the feature vector at each pixel in the 
query feature. Finally, a similarity matrix is generated as the guidance map to activate the 
target ship area in the query image by using the prior information in the support feature.  

 
Figure 5. The internal structure of the similarity guidance module. 

The guidance map, which is the output of the SGM, is calculated as follows: 𝑠௫,௬ = 𝑢 ⋅ 𝐹௫,௬௤௨௘௥௬‖𝑢‖ଶ ⋅ ฮ𝐹௫,௬௤௨௘௥௬ฮଶ (4)
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where  𝑠௫,௬ represents the similarity value between the query feature and the feature vec-
tor at the pixel position of (𝑥,𝑦), and the value range is [−1,1]. 𝐹௫,௬௦௨௣௣௢௥௧ and 𝐹௫,௬௤௨௘௥௬ are 
the support feature vector and query feature vector at the pixel position of (𝑥,𝑦), respec-
tively. 𝑢 is the target feature vector, and 𝑢௜ is the 𝑖௧௛ element of 𝑢. 𝑢௜ is calculated as 
follows, which is the average of all the pixels on the 𝑖௧௛ support feature map: 

𝑢௜ = ෍ 𝐹௜,௫,௬௦௨௣௣௢௥௧௪,௛௫ୀ଴,௬ୀ଴෍ 𝐹௫,௬௦௨௣௣௢௥௧௪,௛௫ୀ଴,௬ୀ଴
 (5)

The multi-scale guidance maps are visualized for better understanding of the de-
signed multi-scale similarity guidance module, as shown in Figure 6. The first row is the 
support image, query image, and ground truth of ship segmentation. The second to fourth 
rows are support features, query features, and the generated guidance maps, respectively. 
Each column in the second to fourth rows is feature maps at different scales with the size 
of 256 × 256,128 × 128,64 × 64, and 32 × 32, and they are zoomed into a uniform scale for 
display. It is observed that the guidance maps contain the contour semantic information 
of the ship target learned from the support features, in addition to query features. Guid-
ance maps at different scales contain complementary information, with shallower ones 
being able to focus on small targets, and deeper ones capturing more precise target loca-
tion information. The multi-scale guidance maps provide sufficient hand-on-hand guid-
ance, which allows the proposed MSG-FN method to be adaptable to ship targets at vari-
ous scales. 

 
Figure 6. Visualization of multi-scale guidance maps (zoomed into a uniform scale for display). 

3.5. Training and Inference 
The whole training and inference procedures of the proposed MSG-FN on few-shot 

ship segmentation are summarized in Algorithm 1. 
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4. Experiment 
4.1. SARShip-4i Dataset 

This paper aims at ship segmentation in SAR images under the condition of a few 
annotated samples in the target domain, and the proposed MSG-FN should be evaluated 
on the few-shot ship segmentation dataset consisting of SAR images. However, there is 
no SAR dataset available so far to evaluate the performance of the few-shot ship segmen-
tation algorithms. Therefore, we built a SAR dataset named SARShip-4i with reference to 
current COCO-20i [45] and Pascal-5i [46] datasets used for few-shot natural image seg-
mentation to evaluate the proposed MSG-FN method for few-shot ship segmentation. 

The SAR images in SARShip-4i dataset consist of two parts, one is the self-collected 
SAR images, whose segmentation labels are provided by the pixel-by-pixel manual anno-
tation, and the other is the SAR images in the dataset HRSID [47], whose segmentation 
labels are generated based on the segmentation polygons provided in HRSID. SARShip-
4i dataset contains 139 high-resolution real-world SAR images with resolutions ranging 
from 0.3 m to 3 m. There are several examples in the SARShip-4i dataset, as shown in 
Figure 7. It is obvious that all samples have different noise levels, especially since the first 
SAR image in the first row has severe noise. There are occlusions in the second and third 
SAR images in the first row, which are caused by the close proximity of multiple ships. 
The SAR images in the SARShip-4i dataset are captured under different conditions, such 

Algorithm 1 The Training and Test Procedures of the Proposed MSG-FN 
Input: Meta-training set 𝐷௧௥௔௜௡ and meta-testing set 𝐷௧௘௦௧. 
Output: Network parameters 𝜃. 
Initialization: Initialize MSG-FN with Kaiming uniform 
for each episode (𝑆௜ ,𝑄௜) in 𝐷௧௥௔௜௡ do 

1. Extract feature from the support branch and query branch to obtain support 

features F1
 s, F2

 s, F3
 s, F4

 s and query features F1
 q, F2

 q, F3
 q, F4

 q; 

2. Get the similarity guide map s1, s2, s3,  s4 for the query image;  

3. Obtain the guided query features F1
 qs, F2

 qs, F3
 qs, F4

 qs by multiplying s1 and F1
 q, 

 s2 and  F2
 q,  s3 and  F3

 q,  s4 and  F4
 q, respectively; 

4. Fuse feature at different scale: 

(1) Concatenate the  F3
 qs  with up-sampled  F4

 qs  and then feed it into the 

Res-FRN block to get  F3
 'qs; 

(2) Concatenate the  F2
 qs with up-sampled  F3

 'qs and then feed it into the 

Res-FRN block to get  F2
 'qs; 

(3) Concatenate the  F1
 qs with up-sampled  F2

 'qs and then feed it into the 

Res-FRN block to get  F1
 'qs; 

5. Predict the segmentation mask of query image by feeding the  F1
 'qs to a Con-

vout layer; 

6. Update 𝜃 to minimize the cross-entropy loss via SGD. 
End 
for each episode (𝑆௜ ,𝑄௜) in 𝐷௧௘௦௧ do 

1. Put forward the 𝑆௜ and 𝑄௜ into the well-trained MSG-FN; 

2. Predict the segmentation mask of the query image. 
End 
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as satellite, resolution, imaging mode, polarization, and incident angle. The detailed in-
formation is shown in Table 1. Note that the resolution of SAR images mentioned in Table 
1 refers to the actual distance represented by one pixel in the SAR images. Furthermore, 
in the SARShip-4i dataset, the distortion introduced by incidence angles is relatively small, 
and most of the ship target information is abundant. 

 
Figure 7. SAR images in the SARShip-4i dataset (image patches cropped from the original high-
resolution SAR images are displayed here due to the limited space). 

Table 1. The detailed information of SAR images in the SARShip-4i dataset. 

Region Imaging 
Satellite 

Resolution 
(m) 

Num. of 
Images 

Imaging 
Mode 

Polarization Incident An-
gle (°) 

Min. Size of 
Ships (Pixel) 

Qingdao TanDEM-X 0.3 1 ST HH - 68 
Shanghai TanDEM-X 0.3 1 ST HH - 66 

Hong Kong TerraSAR-X 1.0 1 HS HH - 761 
Istanbul TerraSAR-X 0.3 1 ST VV - 54 
Houston Sentinel-1B 3 40 S3-SM HH 27.6~34.8 11 

Sao Paulo Sentinel-1B 3 21 S3-SM HH 27.6~34.8 24 
Sao Paulo Sentinel-1B 3 20 S3-SM HV 27.6~34.8 15 
Barcelona TerraSAR-X 3 23 SM VV 20~45 26 

Chittagong Sentinel-1B 3 18 S3-SM VV 27.6~34.8 23 
Aswan Dam TerraSAR-X 0.5 2 ST HH 20~60 3478 

Shanghai TerraSAR-X 0.5 2 ST HH 20~60 167 
Panama Canal TanDEM 1 1 HS HH 20~55 86 

Visakhapatnam TerraSAR-X 1 1 HS VV 20~55 182 
Singapore TerraSAR-X 3 4 SM HH 20~45 47 

Strait Gibraltar TerraSAR-X 3 2 SM HH 20~45 179 
Bay Plenty TerraSAR-X 3 1 SM VV 20~45 43 

The size of the ship targets in the SARShip-4i varies greatly, which poses a challenge 
for the design of the segmentation algorithm. Moreover, the appearance of ship targets 
with similar actual sizes in SAR images of different resolutions and different modes looks 
different, as shown in the second row in Figure 7. The pixel size of the ship targets in these 
three SAR images are 4685, 1344, and 475, respectively, and the resolution of these three 
SAR images are 0.3 m, 1 m, and 3 m, respectively. The actual size, which equals the pixel 
size multiplied by the image resolution of these three ship targets, is similar, but the ships 
in the three images look quite different due to the different SAR image resolutions and 
imaging modes. 

The high-resolution SAR images are cropped to several image patches and rescaled 
to the same size of 512 × 512, and there is a total of 6961 image patches in the SARShip-4i 
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dataset. As mentioned in Section 3.1, SAR ship segmentations in different regions are 
treated as different segmentation tasks. The meta-training set and meta-testing set are set 
as SAR data from different regions considering different imaging modes and regional fac-
tors, and there is no intersection between the regions of SAR data used in the meta-train-
ing set and those predicted in the meta-testing set. The cross-validation strategy is applied 
here to evaluate the proposed MSG-FN. The SAR image patches in the SARShip-4i dataset 
are divided into four folds according to imaging regions, as shown in Table 2. In each fold, 
the SAR image patches in a fold form the meta-testing set, and the SAR image patches in 
the other three folds form the meta-training set. To the best of our knowledge, SARShip-
4i is the first dataset that can be used to evaluate the few-shot ship segmentation methods 
in the SAR images.  

Table 2. Details of the fold partition used for cross-validation in the SARShip-4i dataset. 

Fold Test Regions 
SARShip-40 Visakhapatnam, Hong Kong, Barcelona, Chittagong 
SARShip-41 Shanghai-HH, Singapore, Shanghai, Sao Paulo-HV 
SARShip-42 Panama Canal, Bay Plenty, Istanbul, Sao Paulo-HH 
SARShip-43 Aswan Dam, Strait Gibraltar, Qingdao, Houston 

4.2. Implementation Details 
In the setting of few-shot ship segmentation in the SAR images, the training process 

is carried out in a meta-learning manner, and the fundamental unit for training and testing 
is the episode. Each episode is composed of a support set and a query set. Each support 
set consists of several image patches; for example, the support set contains five image 
patches in the 1-way 5-shot, and the query set contains one image patch in this paper. 
Before training and testing, the image patch in the dataset should be organized into epi-
sode-based data. That is, an episode is generated by randomly selecting several image 
patches as support–query pair, and it is necessary to ensure that there are no duplicate 
image patches between the support set and the query set in an episode. 

The backbone of the proposed MSG-FN is selected as the lightweight ResNet-18. Be-
cause of the large difference between the SAR images and natural images, the parameter 
of pre-trained on large-scale natural image datasets, such as ImageNet or COCO, cannot 
be used to initialize our model, and our model is trained from scratch. In the training 
phase, the network is optimized with stochastic gradient descent (SGD); the batch size is 
set as 3, and the momentum and weight decay are set as 0.9 and 0.0001, respectively. The 
learning rate linearly increases from 0 to 0.001 in the first 2000 steps and then decays ex-
ponentially to 300,000 steps with a decay rate of 0.9. The network is implemented using 
PyTorch, and all networks are trained and tested on an NVIDIA GTX 1080 GPU with 8 
GB Memory. 

4.3. Evaluation Metrics 
There are four evaluation metrics used to evaluate the performance of the proposed 

MSG-FN, i.e., Precision, Recall, F1, and intersection over union (IoU). Precision and Recall 
are a pair of contradictory evaluation matrices, neither of which can fully measure the 
segmentation performance. F1 is a more comprehensive evaluation criterion, which main-
tains a trade-off between Precision and Recall. IoU is used to measure the degree of over-
lap between the segmentation result and the ground truth. These four evaluation metrics 
are calculated as follows: 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = ௣ೕೕ෍ ௣೔ೕೖ೔సబ , 𝑅𝑒𝑐𝑎𝑙𝑙 = ௣ೕೕ෍ ௣ೕ೔ೖ೔సబ , (6)
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𝐹1 = 2 × ௉௥௘௖௜௦௢௡ೕ×ோ௘௖௔௟௟ೕ௉௥௘௖௜௦௢௡ೕାோ௘௖௔௟௟ೕ, 𝐼𝑜𝑈 = ௣ೕೕ෍ ௣೔ೕೖ೔సబ ା෍ ௣ೕ೔ೖ೔సబ ି௣ೕೕ. (7)

where 𝑘 is the number of categories of the target to be segmented, and 𝑘 is set as 1 here 
because only that ship is the target in this paper. 𝑝௜௝ is the number of pixels that are in-
ferred to belong to class 𝑗 with the ground truth of class 𝑖. In other words, 𝑝௜௜, 𝑝௜௝ , and 𝑝௝௜ represent the numbers of true positives, false positives, and false negatives, respec-
tively.  

4.4. Comparison with the State-of-the-Art 
The proposed MSG-FN is evaluated against some state-of-the-art few-shot semantic 

segmentation methods under two experimental settings, namely, 1-way 1-shot and 1-way 
5-shot. 1-way 1-shot means that only one annotated support image is used to guide the 
ship segmentation when making predictions on the query image of the unseen test data, 
and 1-way 5-shot refers to using five support images to guide the segmentation of the 
query image. In the setting of 1-way 5-shot, the final segmentation result 𝑌 is the average 
ensemble of the predicted masks generated with the guidance from the five support im-
ages, which is calculated as follows: 𝑌௠,௡ = 𝑎𝑣𝑔(𝑌௠,௡ଵ ,𝑌௠,௡ଶ , . . . ,𝑌௠,௡ହ ) (8)

where 𝑌௠,௡௜ , 𝑖 = {1,2, . . . ,5}  is the predicted semantic label of the pixel at (𝑚,𝑛),  corre-
sponding to the support image Si. 

There is no work specifically designed for few-shot SAR ship segmentation, and thus, 
we modify the state-of-the-art few-shot semantic segmentation approaches [37,48] on nat-
ural images to fit our settings for algorithm comparison. SG-One [37] predicts the segmen-
tation mask of a query image by referring to one densely labeled support image of the 
same category, where only the deepest support features are used to provide guidance for 
the segmentation. PMMs [48] correlate various object parts with multiple prototypes esti-
mated via an expectation–maximization algorithm to enhance few-shot semantic segmen-
tation. RPMMs [48] are assembled by multi-PMMs using a residual structure. In the ex-
periments, the training and testing settings specified in Section 4.1 are adopted. The ex-
perimental results of the proposed MSG-FN and three comparison methods on the set-
tings of 1-way 1-shot and 1-way 5-shot are shown in Table 3 and Table 4, respectively. 

Table 3. Segmentation results of the proposed MSG-FN and three state-of-the-art methods under 
the setting of 1-way 1-shot. 

Metric Method SARShip-40 SARShip-41 SARShip-42 SARShip-43 Mean 

Precision 

SG-One [37] 0.4075 0.5777 0.5632 0.5507 0.5248 
PMMs [48] 0.6018 0.8717 0.6827 0.7973 0.7384 

RPMMs [48] 0.6023 0.7252 0.7477 0.7805 0.7139 
MSG-FN (ours) 0.6822 0.6890 0.8453 0.8221 0.7597 

Recall 

SG-One [37] 0.5208 0.6013 0.7093 0.6673 0.6247 
PMMs [48] 0.7512 0.6469 0.8667 0.8526 0.7794 

RPMMs [48] 0.6940 0.7692 0.8246 0.8295 0.7793 
MSG-FN (ours) 0.6699 0.7939 0.7889 0.8471 0.7750 

F1 

SG-One [37] 0.4204 0.5266 0.5865 0.5710 0.5261 
PMMs [48] 0.6264 0.7265 0.7232 0.8132 0.7223 

RPMMs [48] 0.6129 0.7297 0.7538 0.7930 0.7224 
MSG-FN (ours) 0.6422 0.7026 0.8011 0.8282 0.7435 

IoU 
SG-One [37] 0.3038 0.3790 0.4359 0.4287 0.3869 
PMMs [48] 0.5081 0.5853 0.6035 0.7068 0.6009 
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RPMMs [48] 0.4897 0.6027 0.6320 0.6784 0.6007 
MSG-FN (ours) 0.5314 0.5962 0.6927 0.7236 0.6360 

Table 4. Segmentation results of the proposed MSG-FN and three state-of-the-art methods under 
the setting of 1-way 5-shot. 

Metric Method SARShip-40 SARShip-41 SARShip-42 SARShip-43 Mean 

Precision 

SG-One [37] 0.4135 0.6830 0.6175 0.5722 0.5716 
PMMs [48] 0.6066 0.8731 0.6840 0.7967 0.7401 

RPMMs [48] 0.6264 0.7544 0.7528 0.7980 0.7329 
MSG-FN (ours) 0.6821 0.6891 0.8451 0.8225 0.7597 

Recall 

SG-One [37] 0.5191 0.5741 0.6926 0.6594 0.6113 
PMMs [48] 0.7494 0.6456 0.8674 0.8526 0.7788 

RPMMs [48] 0.5938 0.6664 0.7246 0.7023 0.6718 
MSG-FN (ours) 0.6705 0.7938 0.7892 0.8469 0.7751 

F1 

SG-One [37] 0.4234 0.5748 0.6186 0.5822 0.5498 
PMMs [48] 0.6292 0.7263 0.7234 0.8131 0.7230 

RPMMs [48] 0.5783 0.6922 0.7028 0.7360 0.6773 
MSG-FN (ours) 0.6425 0.7027 0.8012 0.8282 0.7437 

IoU 

SG-One [37] 0.3065 0.4214 0.4661 0.4390 0.4083 
PMMs [48] 0.5106 0.5849 0.6037 0.7067 0.6015 

RPMMs [48] 0.4418 0.5497 0.5590 0.5983 0.5372 
MSG-FN (ours) 0.5319 0.5963 0.6929 0.7237 0.6362 

The segmentation results on the four folds, as well as the mean results, are given in 
Tables 3 and 4. We pay more attention to the mean results, which comprehensively evalu-
ate the performance of the segmentation algorithm. The proposed method has superior 
performance than the SG-One method [37] in terms of precision, recall, F1, and IoU under 
the settings of both 1-way 1-shot and 1-way 5-shot. This is because only the deepest se-
mantic features of the supporting image are used for segmentation guidance in the SG-
One method, and this single-scale feature guidance tends to ignore small ship targets, re-
sulting in poor segmentation performance. The performance of the proposed MSG-FN is 
better than that of the PMMs and RPMMs methods [48] in terms of precision, F1, and IoU 
under both settings. The recall of the proposed MSG-FN is a little bit lower than that of 
the PMMs [48]. Overall, the proposed method achieves the best results for SAR image ship 
segmentation. In particular, the F1 and IoU of our method are 74.35% and 63.60% on the 
setting of 1-way 1-shot and 74.37% and 63.62% on the setting of 1-way 5-shot. The results 
on the setting of 1-way 5-shot are better than those on the setting of 1-way 1-shot because 
there are more images provided in the target domain on the setting of 1-way 5-shot. 

The segmentation results on several samples are presented in Figure 8 to visually 
illustrate the superiority of the proposed MSG-FN. The first three rows are samples of ship 
segmentation in the off-shore scenes, and the last three rows are samples in the inshore 
scenes. The first and second columns are the SAR image and the ground truth of ship 
segmentation, and the third to sixth columns are the segmentation results of the SG-One 
[37], PMMs [48], RPMMs [48], and the proposed MSG-FN methods, respectively. It is ob-
vious that the segmentation results of the proposed MSG-FN are more consistent with the 
ground truth compared with the other three methods. SG-One [37] has missing segmen-
tation for some small-scale ship targets, as shown by the dashed yellow circles in the third 
and fifth rows. Meanwhile, there are many false alarms in the segmentation result of SG-
One in complex inshore scenes, as shown by the dashed red circles in the fourth and sixth 
rows. The reason for the above phenomenon is that SG-One uses only a single-scale guid-
ance module, and its applicability to ship targets of various scales is inferior to our 
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method. The segmentation results of the PMMs [48] and RPMMs [48] in the off-shore 
scene are similar to our method because the background in the off-shore scene is relatively 
simple. As for the inshore ship segmentation with a more complex and changeable back-
ground, there are many false alarms appearing in the segmentation results of PMMs and 
RPMMs, as shown by the dashed red circles in the fourth and sixth rows. This is because 
PMMs and RPMMs use a simple up-sampling interpolation method in the decoder part, 
while the proposed MSG-FN utilizes a U-shaped encoder–decoder structure. In conclu-
sion, the experiments demonstrate that the segmentation results of the proposed MSG-FN 
are superior to other state-of-the-arts in terms of both quantitative metrics and qualitative 
visualization.  

 
Figure 8. Visualization of segmentation results of the proposed MSG-FN and three comparison 
methods. The yellow circle represents a missed detection and the red circle represents a false alarm. 
(a) Original SAR image. (b) Ground truth. (c) Prediction results of SG-One [37]. (d) Prediction results 
of PMMs [48]. (e) Prediction results of RPMMs[48]. (f) Prediction results of MSG-FN. 
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4.5. Analysis of the Learning Strategy 
In this section, we analyze three kinds of learning strategies, which are typically used 

to migrate models from the source domain to the target domain and validate the effective-
ness of the few-shot strategy used in the proposed MSG-FN. The comparison results are 
reported in Table 5. U-Net [27] and PSPNet [30] are two classic segmentation methods, 
where the model trained on the source domain is directly used to perform inference on 
the target domain. U-Net (TL) and PSPNet (TL) are applied with a transfer learning strat-
egy, which utilizes 40% of data from the target domain to fine-tune the model trained on 
the source domain. MSG-FN (1-shot) and MSG-FN (5-shot) are the proposed few-shot 
methods on the settings of the 1-way 1-shot and 1-way 5-shot. 

Table 5. Comparison of different learning strategies used in the ship segmentation methods. 

Method IoU Precision Recall F1-Score 
U-Net [27] 0.5085 0.6461 0.7527 0.6411 

PSPNet [30] 0.4481 0.5086 0.8009 0.5659 
U-Net (TL) 0.5562 0.7129 0.7516 0.6886 

PSPNet (TL) 0.6071 0.7704 0.7380 0.7301 
MSG-FN (1-shot) 0.7236 0.8221 0.8471 0.8282 
MSG-FN (5-shot) 0.7237 0.8225 0.8469 0.8282 

As reported in Table 5, the performance of segmentation is poor when the trained 
model is directly used for prediction in the target domain. The performance has improved 
after utilizing the transfer learning strategy because a large amount of target information 
is learned to narrow the gap between the source domain and the target domain. Although 
transfer learning brings performance improvement, this strategy requires a certain num-
ber of annotated samples to be available for training in the target domain, which is not 
feasible in practical applications. It is noted that the proposed few-shot MSG-FN method 
has achieved the best performance. This is because the few-shot MSG-FN obtains meta-
information about each domain data over a series of episodes of training, and it utilizes 
meta-information for the prediction of unseen data. Furthermore, the amount of the re-
quired labeled data in the target domain has been greatly reduced compared with the 
transfer learning methods. The experiment results have verified that the few-shot learning 
strategy in the proposed MSG-FN is effective in solving the problem of semantic segmen-
tation of SAR images with few labeled training data available in the target domain. 

4.6. Ablation Study 
In this section, ablation experiments are carried out to verify the effectiveness of the 

two main modules in the proposed MSG-FN. The fourth fold, SARShip-43, defined in Table 
2, is selected randomly to perform the ablation study under the setting of a 1-way 1-shot. 
The results of the ablation experiments are shown in Table 6. W/o Res-FRN represents a 
simplified version of MSG-FN, in which the Res-FRN block is replaced by the plain resid-
ual block. W/o multi-scale SGM represents another simplified version of MSG-FN, in 
which the multi-scale similarity guidance module is removed, and only a single similarity 
guidance module is deployed at the end of the encoder part. 

Table 6. Results of ablation experiments. 

Method Precision Recall F1-Score IoU 
W/o Res-FRN 0.6925 0.8357 0.7269 0.6127 

W/o Multi-scale SGM 0.8201 0.8654 0.8319 0.7337 
MSG-FN (ours) 0.8400 0.8513 0.8353 0.7398 
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Res-FRN block. As shown in Table 6, the experiments demonstrate that MSG-FN 
with the proposed Res-FRN block achieves significant improvements by 10.84% and 
12.71% in terms of F1 and IoU over the W/o Res-FRN method, which indicates that the 
Res-FRN block extracts the domain-independent features and has stronger generalization 
performance in target domains than the plain residual block. 

Multi-scale SGM. In the proposed MSG-FN, a multi-scale similarity guidance mod-
ule is used to perform hand-on-hand guidance of support features to query features of 
various scales. Its performance has been improved by 0.34% and 0.61% in terms of F1 and 
IoU compared to using a single similarity guidance module, which illustrates the ade-
quacy of the hand-on-hand guidance, especially for the segmentation targets with various 
scales. 

4.7. Robustness Analysis 
The samples contained in the SARShip-4i dataset are real-world SAR images with 

different noise levels and actual occlusions. Several representative samples in the SAR-
Ship-4i dataset and their corresponding segmentation results are shown in Figure 9 to 
qualitatively illustrate the robustness of the proposed MSG-FN method for real-world 
SAR images with noise or occlusion. In Figure 9, the first row is the original SAR images 
in the SARShip-4i dataset. The second and third rows are the corresponding ground truth 
and segmentation results, respectively. It is obvious that all five SAR images have different 
noise levels; the first two SAR images especially have severe noise. There are occlusions 
in the last three SAR images, which are caused by the close proximity of multiple ships. 
The proposed method has good segmentation performance even under these real-world 
SAR images with different noise levels and actual occlusions, which illustrate the robust-
ness of the proposed MSG-FN model. 

 
Figure 9. Real-word SAR images with noise or occlusions in the SARShip-4i dataset and their cor-
responding segmentation results of the proposed MSG-FN method. 

4.8. Running time 
In this section, the number of parameters, training time, and test time of the proposed 

method are reported. There are 15.82 M parameters in the proposed MSG-FN model. Tak-
ing the example of testing on the first fold (SARShip-40) and training on the other three 
folds (SARShip-41, SARShip-42, SARShip-43), the training time of the proposed method 
is 62.11 h, with 300,000 steps. The average test time for a single sample is 0.31 s on an 
NVIDIA GTX 1080 GPU with 8 GB Memory. 
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5. Conclusions 
In this paper, a multi-scale similarity guidance network (MSG-FN) is proposed to 

perform the segmentation of ship targets in heterologous SAR images with few labeled 
data in the target domain. The proposed MSG-FN is a matching-based few-shot learning 
framework that has two main innovations. The first one is the well-designed Res-FRN 
block, which is proposed to capture robust and domain-independent features. The second 
one is a multi-scale similarity guidance module, which is proposed to provide sufficient 
hand-on-hand guidance of support features to query features of different scales, enhanc-
ing the adaptability of the algorithm to ship targets of different scales. In addition, a SAR 
ship segmentation dataset named SARShip-4i was built by us to evaluate the performance 
of the few-shot ship segmentation methods in SAR images. The proposed MSG-FN 
achieves superior segmentation results compared with other methods with only a few 
annotated data in the target domain, which provides a practical and feasible solution to 
the ship segmentation task in heterologous SAR images. Meanwhile, the proposed 
method establishes a new baseline for few-shot segmentation models, which can be ap-
plied to other few-shot segmentation problems after targeted improvement. At present, 
the inference speed of the proposed MSG-FN is less satisfactory, which will be addressed 
in future work. 
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Abbreviations 
The following abbreviations and mathematical symbols are used in this manuscript: 

SAR Synthetic aperture radar; 
MSG-FN Multi-scale similarity guidance few-shot network; 
CFAR Constant false alarm rate; 
CNN Convolutional neural network; 
FSL Few-shot learning; 
FRN Filter response normalization; 
FCN Fully convolutional network; 
PPM Pyramid pooling module; 
ASPP Atrous spatial pyramid pooling; 
Res-FRN Residual block combined with FRN; 
SGM Similarity guidance module; 
ResNet Residual network; 
BN Batch normalization; 
TLU Threshold linear unit; 
ReLU Rectified linear unit; 
SGD Stochastic gradient descent; 
IoU Intersection over union; 𝑁 The number of categories in the training set; 
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𝐾 The number of samples of each category in the training set; 𝐼 The number of training samples; 𝐷௧௥௔௜௡, 𝐷௧௘௦௧ The meta-training set and the meta-testing set; 𝑆௜ ,𝑄௜ The support set and the query set; 𝐼ௌ೔ ,𝑀ௌ೔  The support image and its segmentation label; 𝐼ொ ,𝑀ொ The query image and its segmentation label; 𝑋 The input tensor of the FRN layer; 𝐵 The batch size during training; 𝐶 The number of channels; 𝑊,𝐻 The width and height of 𝑋; 𝜀 A small constant; 𝛾, 𝛽 Learnable parameters; 𝑠௫,௬ The similarity value; 𝐹௫,௬௦௨௣௣௢௥௧ The support feature vector; 𝐹௫,௬௤௨௘௥௬ The query feature vector; 𝑢 The target feature vector; 𝑝௜௜ The number of true positives; 𝑝௜௝  The number of false positives; 𝑝௝௜ The number of false negatives; 𝑌௠,௡ The predicted semantic label of pixel at (𝑚,𝑛). 
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