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Abstract: Frequency-diverse radar imaging is an emerging field that combines computational imaging
with frequency-diverse techniques to interrogate the high-quality images of objects. Despite the
success of deep reconstruction networks in improving scene image reconstruction from noisy or
under-sampled frequency-diverse measurements, their reliance on large amounts of high-quality
training data and the inherent uninterpretable features pose significant challenges in the design and
optimization of imaging networks, particularly in the face of dynamic variations in radar operating
frequency bands. Here, aiming at reducing the latency and processing burden involved in scene
image reconstruction, we propose an adaptive sampling iterative soft-thresholding deep unfolding
network (ASISTA-Net). Specifically, we embed an adaptively sampling module into the iterative
soft-thresholding (ISTA) unfolding network, which contains multiple measurement matrices with
different compressed sampling ratios. The outputs of the convolutional layers are then passed
through a series of ISTA layers that perform a sparse coding step followed by a thresholding step.
The proposed method requires no need for heavy matrix operations and massive amount of training
scene targets and measurements datasets. Unlike recent work using matrix-inversion-based and data-
driven deep reconstruction networks, our generic approach is directly adapted to multi-compressed
sampling ratios and multi-scene target image reconstruction, and no restrictions on the types of
imageable scenes are imposed. Multiple measurement matrices with different scene compressed
sampling ratios are trained in parallel, which enables the frequency-diverse radar to select operation
frequency bands flexibly. In general, the application of the proposed approach paves the way for the
widespread deployment of computational microwave and millimeter wave frequency-diverse radar
imagers to achieve real-time imaging. Extensive imaging simulations demonstrate the effectiveness
of our proposed method.

Keywords: adaptive sampling; deep unfolding; data driven; ASISTA-Net; model driven; frequency
diverse; radar imaging

1. Introduction

With the ability to penetrate most optically opaque materials and achieve non-ionizing
radiation, microwave imaging [1,2] has many advantages over other modalities of imaging,
such as CT [3], X-ray [4], MRI [5], particularly in security screening scenario [6]. Despite the
superiority, there is still a challenge, that is, the need to synthesize composite apertures to
scan the scene and acquire high resolution either mechanically or electronically. Specifically,
scene information acquisition with mechanical scanning is relatively time consuming and
not suitable for real-time operation, while electronic scanning with phased arrays can be
complex and power intensive. To overcome this challenge, researchers have explored
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various approaches that leverage advances in computational methods and component
technologies. One promising approach is the compressed sensing (CS) technique [7,8],
which uses optimization algorithms to reconstruct an image from the under-sampled
measurements that would normally be required, thus yielding a significantly reduced data
acquisition time and achieving near real-time operation. In terms of antenna hardware
platform, the compact and low-profile metasurface antennas without complex phase-
shifting circuits or power amplifiers are capable of manipulating the electromagnetic waves
and achieving beam steering and have received considerable research attention.

Typically, frequency-diverse radar imaging is a highly effective computational imag-
ing technique that employs frequency-diverse antennas to capture and reconstruct scene
information. The radiation fields of a frequency-diverse antenna exhibit quasi-random or
quasi-orthogonal variation over a given frequency bandwidth. Frequency-diverse imaging
attains an advantage by encoding scene information onto quasi-random field patterns,
which are obtained by stepping through several frequency points within the radar operat-
ing frequency band. These field patterns are unique to each frequency, and by capturing the
full set, the complete information of the scene can be reconstructed. The effectiveness of this
technique is well documented in several works [1,9-12]. This means that data acquisition
can be performed in an all-electronic manner, without the need for mechanical scanning
or complex phase-shifting components. To reconstruct an image of the scene from the
acquired data, computational techniques are used to interact the measurements with the
transfer function of the frequency-diverse imaging system. Direct algorithms, such as the
matched-filter technique [13], least-square technique [14,15], and other sparsity-driven
optimization methods [16] are commonly used to reconstruct a high-quality image of
the scene.

In recent years, the deep neural reconstruction network has rapidly been emerging in
radar imaging literature as an extremely powerful technique for solving high-complexity re-
construction and imaging problems with unprecedented computational efficiency without
sacrificing accuracy and reliability [17-20]. With the abilities to learn and extract features
from large datasets in combination with the mighty non-linear fitting capabilities, deep
reconstruction networks have been widely used in image restoration [21], super-resolution
imaging [22], image denoising [23], and medical imaging fields [24]. Specifically, there are
mainly two representative types of deep reconstruction network:

(1) Data-driven deep reconstruction network: By training on large datasets of high-quality
scene targets and measurements, the underlying non-linear relationship between the
acquired measurements and the reconstructed scene targets can be directly learned
by the deep neural network. The model-driven algorithm employs the network
architecture’s feedforward capabilities to format images, removing iterations from the
imaging process. Adaptive network parameter adjustments take place through the use
of training data. The trained networks can thus be used to obtain scene targets given
the echo signal, among which, particularly, the fully convolutional neural networks
(FCNis) [25] and UNet [26] and deep residual networks [27] have been well utilized
for image formation in sparse SAR and ISAR imaging [28-30].

(2) Model-driven approach: Aiming at avoiding iterations optimization and sophisticated
regularization parameters turning, model-driven methods [31-33] are built based on
deep unfolding techniques that stem from the standard linear optimization algorithms,
including IHT/IST [31] and ADMM networks [32] and AMP networks [33]. Each
iteration of the algorithm is represented as a layer in the neural network, creating a
deep network that performs a finite number of algorithm iterations when passing
through. During backpropagation training, a number of model parameters of the
algorithm can be converted to network parameters, resulting in a highly parameter-
efficient network. In general, model-driven methods provide a promising direction
for interpreting and optimizing iterative algorithms in combination with deep neural
networks [34,35]. Overall, data-driven deep reconstruction neural networks are highly
dependent on the abundance and multiplicity of training data, while, in comparison,
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data-driven methods with the unfolding technique could effectively use the training
data and still maintain preferable image formation performance with limited amounts
of training data.

With the collected training echo data and scene images, data-driven reconstruction
neural networks aim at learning the optimal mapping relations corresponding to the
measurement matrix (radiation or illumination patterns), which is highly task specific and
requires retraining when the radar working frequency band changes.

Data-driven reconstruction neural networks leverage collected training echo data
and scene images to learn optimal mapping relations specific to the measurement matrix
(radiation of illumination patterns) [10]. However, these networks often require retraining
when the radar working frequency band is changed, as the mapping relations are highly
task specific. To address this limitation, in this paper, we aim to reduce the computational
complexity of real-time imaging while achieving flexible radar working frequency usage.
Drawing inspiration from the recent advancements in beyond deep unfolding reconstruction
techniques [34-37], we introduce the adaptive sampling iterative soft-thresholding deep
unfolding network (ASISTA-Net). By leveraging the ISTA unfolding layer as the backbone
reconstruction network, we replace each iterative process with end-to-end convolution
layers. Additionally, we incorporate an adaptive sampling module into the reconstruc-
tion network. Our approach offers the ability to train measurement matrices at different
sampling ratios in parallel, enabling frequency-diverse radar to utilize various working
frequency bands through a single training. Unlike traditional linear optimization meth-
ods, our proposed method effectively handles high correlation in sensing matrices, even
at extremely low scene sampling ratios. Notably, our approach eliminates the need for
sequential training when the sensing matrix is changed. To validate the effectiveness and
robustness of our method, we conduct extensive imaging simulations using synthesis
radiation field data. The results demonstrate the superior performance of ASISTA-Net in
handling real-time imaging with reduced computational complexity, flexible frequency
utilization, and adaptability to different scene-sampling ratios.

2. Imaging Principle

By developing a series of subwavelength resonant units with simple structures, the
integrated antenna with frequency diversity can successfully manipulate the polarization
properties of the electric and magnetic dipoles, thereby enabling the precise measurement
and analysis of the target. In this near-field computational imaging framework, the mea-
surement matrix is established by calculating the product of electric fields at each position in
the scene from both the transmitting antenna and the receiving probe, and then correlating
the resulting frequency measurements with the target scattering coefficients.

In principle, frequency-diverse computational imaging is actually a process of the
traditional inverse scattering problem. The receiving antenna collects frequency measure-
ments which are related to the scattering coefficient of the target area by a transfer function.
This transfer function is determined by the transmission and receiving properties of the an-
tennas at each position in the target area. The ratio of the total field in the open waveguide
is determined by this transfer function:

g(f) = /TUoTX(f';f)UoRx(?/;f)U(?/)dZF’ 1)

where the transmit and receive fields at frequency f generated by the transmit and receive
apertures at scene location 7 are represented by U,rx (f’ i f ) and Uorx (7; f), respectively.
The scene target scattering coefficient is represented by ¢. Given the imaging system’s
constrained bandwidth, we express Equation (1) as a more general and compact matrix
equation:

g=Ho+n 2)
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Equation (2) describes the imaging measurement process for a frequency-diverse
antenna. Here, g € CM*! represents the received echo vector of the probe antenna, with M
denoting the number of effective radiation direction maps. The scattering coefficient of the
scene to be resolved is represented by o € CN*1, where N is the number of discrete units in
the scene. The measurement noise term is included as n € CM*!. The measurement matrix
or measurement mode is represented by H € CM*N and describes the relationship between
the transmitting and receiving antenna fields. In practice, a first-order Born approximation
model is typically used to accurately represent the propagation process of the incident and
scattered fields. In this paper, we propose new imaging methods that leverage this imaging
measurement equation to improve upon existing techniques.

In Equation (2), once the discomfort problem has been solved by recovering the original
scene target scattering coefficient, o, from the collected echo g, a sparse representation of
the echo signal can be employed to solve the reconstruction problem using the parametric
minimization method:

rr}finH(TH,1 st. g=Ho (©)]

Further, the above Equation (3) can be transformed into an L1 regularized minimiza-
tion model based on a convex relaxation algorithm:

N .1
(7:argm(}n§||g—HU||§—O—AH‘I’UHl (4)

where o denotes the frequency-diverse target scene to be solved, A denotes the regularized
coefficients, ¥ denotes the sparse transformation of ¢, and the regularization containing
the 1 parametrization constrains ¥, to some extent, converting the original pathological
inverse problem into an approximate fitness problem to be solved.

Using ¢(0) to represent a generic regularization term, the above equation can be
described as

i 1
& = argmin 7 |Ho — g3+ ¢(0) 5)

The traditional iterative soft thresholding algorithm ISTA generally solves the above
reconstruction problem iteratively by the following steps:

=l - pHT(HU(k_l) -y) (6)

_ 1 k||?
ot = argn}lniHa— r Hz + Al ¥, (7)

where k denotes the iteration index value and p denotes the iteration step length. In the
whole iterative solution process, the sparse transform base phi and the parameters A and
p are set manually in advance, and are continuously updated and adjusted according
to the reconstruction results during the iterative solution process, which leads to the
disadvantages of the traditional ISTA algorithm, such as high computational complexity
and redundancy of iterative update steps.

3. Imaging Network Model
3.1. Imaging Network Framework

Deep imaging networks that currently exist are generally composed of several layers
and require large amounts of data to be able to train the model effectively. These networks
are constructed without incorporating algorithm-driven physical models, and thus, pos-
sess disadvantages, such as poor generalization ability, slow network convergence, and
dependence on a large amount of data for network training. Thus, we propose a parametric
adaptive sampling frequency fractionated imaging network (ASISTA-Net) in this paper.
Based on a model-driven depth unfolding network, each reconstructed fraction in the
imaging model is mapped by employing the specific iterative process of the traditional
soft threshold iterative method. To significantly enhance the network’s reconfiguration
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performance, expand its capacity and its data-processing capabilities, the deep network
architecture incorporates a sparse transformation step. The sparse transformation of the
radar echo data in ASISTA-Net is performed by the use of the sparse transform base ¥
to yield a sparse optimal solution for frequency-diverse antenna imaging. We denote the
sparse transform process as 7 (-), and it replaces the original manually defined transform
base ¥.

After replacing the sparse basis ¥ with 7(-), a new linearly transformed sparse
regularization problem can be obtained as follows:

5 1
UIargm;HQHHU—gH%+)\||7'(U)H1 ®)

Thus, the iterative solution step of the above equation can be obtained by ISTA:

= o1 — pHT (Ho V) — g) )

ot = argmin o — [+ AT ()] (10)

where (8) represents a mathematical model that transforms the solution method of the
CS-based convex relaxation algorithm into an /; regularized minimization model, which is
used to obtain the imaging result &. This imaging model replaces the linear transformation
¥ with the nonlinear transformation 7 using the convolution operation, and the proposed
network incorporates the concepts and principles from (8), using them as a foundation
to design the network’s structure, connectivity, and training methodology. The network
aims to effectively capture the essence of (8)—(10) and apply it in a practical, trainable
framework.

3.2. Imaging Reconstructed Algorithm

The ability of CNN to extract and characterize data features allows us to design 7 (0)
by combining two convolutional layers and using an activation layer as a separator between
them. The convolutional layer conducts a local correlation scanning process on the forward
input data, which completes feature extraction and removes redundant information. An
activation function called Leaky_ReLU is used in the activation layer. This function corrects
the results of the convolutional layer by preventing the network from overfitting, while
simultaneously mapping information to the next convolutional layer for further processing.

Figure 1 demonstrates our proposed ASISTA-Net imaging network framework. The
proposed imaging model is composed of two modules: the adaptive sampling module and
the reconstruction imaging module. The adaptive sampling module first obtains the target
scattering coefficient o after column-wise quantization of the scene target. It obtains the
echo measurement value by the forward imaging model from the obtained measurement
matrix corresponding to different sampling compression ratios and then initializes to
obtain the estimated value of the target scattering coefficient ¢*. The reconstruction module
divides the obtained ¢¥ into real and imaginary parts for optimization training, respectively.
After N convolution optimization modules, the reconstructed real and imaginary parts
of the target are obtained, and a reconstructed assigned target is obtained through the
adhesion function, which is the imaging result of the network.

To achieve the specific iterative update process for the mapping of the convolutional
layers, the specific solution of * and ¢* in (6) and (7) is chosen to be implemented in two
parts, which constitute each layer of the imaging network reconstruction module. This
module contains two convolutional layers: a Leaky_ReLU activation layer and a BN layer.
To enhance the effectiveness of the imaging network, the number of convolutional kernel
channels in the convolutional layer is set to 32, and the convolutional kernel size is 3 x 3.
The batch_size is 16 as expressed in detail in Figure 1 for this part.
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In the L-th layer of the imaging network, the r* module corresponding to equation
(1) is the corresponding preliminary reconstruction result t*, and the H (Ho*~1) — g) is
obtained by calculating the gradient of 4 ||Ho — gl In addition, the step size p changes
with the continuous iterative process of the network. This operation can increase the
flexibility and versatility of the network. When the input is ¢*~, the r* input of the module
can be obtained:

k—1 kygT k—1
= ok — oFHT(Ho D) — g) (11)
Reconstructed Block
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Figure 1. ASISTA-Net system structure diagram.

Typically, in the process of solving computational imaging problems, it can be assumed
that each element of c* — ¥ obeys an independent normal distribution and has a common
mean and variance 2. Further assuming that 7 (*) and r* are the means of 7 (¢*) and o*,
respectively, the following relationship can be obtained:

HT(Uk)_T(rk>H§ %sHa—rkHz (12)

2

Substituting the above equation into the o* solving process of Equation (10) yields
o = ar minluﬂak) —T(rk)H2+7H7'(0k)H (13)
& c 2 2 1
where A and e can be combined into a single parameter y = Ae so that the closed form of

T (f*) can be obtained as
T(0") = soft(T(F"),7) (14)

Second, since the invertibility property of the sparse transform leads to a closed
solution for o, 7 (-) is introduced to act as the left inverse of 7 (-) while always satisfying
that the two can be combined into a constant operator denoted as 7 o 7 = Z. In the
network framework, since 7 (-) is the left inverse of 7(-), it is designed as a symmetric
structure with respect to 7°(-), then 7(-) and 7 (-) are modeled as two symmetric linear
operators, and the linear operator can be efficiently derived by the following closed form:

= T (soft(T ("), 7)) (15)

In the network training, -y as the shrinkage threshold is a learnable parameter in this
module; accordingly, in order to extend the network capacity and increase the network
processing power, it is not required that 7 (-), 7(-) and 1 are the same for each layer, that
is, each layer of the network has its corresponding 7 (-), 7, <. Therefore, at the L-th layer
of the network, for all learnable parameters, the output ¢ of the module should be

= TH(soft(T (¢),7%)) (16)
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In Figure 1, ASISTA-Net consists of an N-layer network, and the forward transform
T (-) is designed as a combination of two convolutional layers separated by an activation
layer and a BN layer, while the structure of the backward transform 7 is symmetric with it
and always satisfies 7 o 7 = Z.

The learnable parameters set in the ASISTA-Net imaging network are 8, which include
the step size p¥ in the r* module, the parameters of the 7 (-) and 7 forward and backward
transforms, and the shrinkage threshold ’yk in the ¢ module, and thus 6 = pk, where N
is the total number of network layers in ASISTA-Net, and these parameters are learned
during the network training. In addition, both 7 (-) and 7 are also learnable throughout the
network training process, and the sparse transformation process is automatically defined
by these two learnable operators. Algorithm 1 shows the specific training update process
of ASISTA-Net network.

Algorithm 1 ASISTA-Net training algorithm.

Input: H: measurement matrix; T: maximum training epochs; {g;, >, .. .§&,,} : Echo signal
testing dataset; {o,02,...0,} : Scene target training dataset; ¥: Sparse transform
basis; p: step size ; A: optimization parameter.

1: Initialize the network weights parameter 6;
2: Iteration via a gradient descent scheme:

3: for T do
4 Sampling a batch of s training samples {1, 03,... 05}
5: For the i-th training sample, calculate t* = ¢~ — pHT(Hok-1) — g); ok =

argming 3| #||” + 4|7 0)1l;
6: The gradient is optimally updated by Adam’s algorithm and the loss function is
calculated as follows:1 Y, ||6; — ;.
7: end for
Output: The target reflection coefficient estimate ¢

4. Numerical Tests
4.1. Data Pre-Processing

The experimental dataset is preprocessed using MATLAB 2022a. The imaging tech-
nique builds upon the TensorFlow?2.6 deep learning network framework, with the Keras
deep learning framework and TensorFlow backend platform used to construct the model
within a Python programming environment. Training involves the utilization of a machine
equipped with an NVIDIA 4070 GPU, with CUDA version 11.8 installed. The ADAM gradi-
ent optimizer adjusts the entire image network to a learning rate of 1 x 10~%. The imaging
network has a 7-layer convolutional module with a 3 x 3 kernel size, and a step size of
1. The leaky_relu function activates each convolutional layer, allowing back-propagation
for negative input, which re-balances the complexity and enhances the imaging network’s
reconfiguration performance. All image reconstruction results are run on a computer with
an Intel(R) Core(TM) i7-12700 CPU, with batch preprocessing of the dataset performed on
the MATLAB platform. Without a GPU, it takes 15 h to train the model for 200 epochs with
the given dataset. However, it takes nearly 2.5 h on a GPU.

4.2. Imaging Parameters

In this section, we verify the effectiveness of the proposed ASISTA-Net imaging
network by utilizing an uneven dataset. The training dataset consists of 1000 samples,
each sample having a dimension of 33 x 33. The testing set aims to evaluate the matured
imaging network’s performance on targets such as letters, planes, clothes, and other
complex scene targets.

Moreover, the ASISTA-Net’s effectiveness was established by measuring the radiated
field data. To demonstrate its near-field CI capability, we constructed a two-dimensional
parallel-plate waveguide super-surface antenna with a waveguide slit-feed mechanism. To
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obtain backscattered signals from all directions and frequencies, we employed an open-
end waveguide (OEWG) probe as a receiving antenna. The antenna’s panel size was
250 x 250 mm?. The waveguide’s panel-to-probe configuration had a dielectric constant of
3.66, a loss tangent of 0.003, and a substrate thickness of 0.5 mm between the copper ground
plane and the conductive copper metamaterial hole. The top conductor of the waveguide
had 125 x 125 cELC metamaterial resonators, each with a Q factor ranging from 50-60.
Table 1 lists the antenna’s system parameters. We performed imaging experiments on
the simulated directional maps and imaging scenarios of the superlattice surface antenna
radiation field, operating within a 5 MHz frequency sampling interval of 33-37 GHz. The
directional maps were sampled along a two-dimensional spherical coordinate system of
elevation and azimuth, with a field-of-view (FOV) size of (—60°-60°) in elevation and
azimuth, respectively, using a sampling interval of 2°. The resulting sampling intervals
produced the original pattern T of size 800 x (61 x 61).

Table 1. Main system parameters of frequency-diverse antenna.

Parameters Values
Operation bandwidth 33-37 GHz
Antenna panel size 250 x 250 mm?
Number of resonance units 125 x 125
Frequency sampling interval 5MHz
Field of view (Azimuth) —60°-60°
Field of view (Elevation) —60°-60°
Azimuth sampling interval 2°
Elevation sampling interval 2°
Dimensions of T 800 x 3721

Additionally, we utilized the mean squared error (MSE), peak signal-to-noise ratio
(PSNR), and structural similarity index (55IM) to evaluate the imaging performance of the
network. The formulas for these metrics are detailed below:

A2
MSE = Z?;M 17)
m
MAX?
PSNR = 101log;p(— ") (18)
2us g + C1)(204.45 + C
SSIM = ( HU’VUI + 1)( Jivi + 2) (19)

(u; + 13+ C1)(85, + 63 + C2)

where it is assumed that the maximum possible pixel value of the images is 1 since the pixel
values MAX? of the target image are normalized to the range of 0-1. Moreover, MSE, SSIM
and PSNR formulas involve the means (ji,; and p,), variances (65, and és,), and covariance
(00,6,) between the original target and reconstructed target, as well as two constants (C; and
C,) to prevent division by zero.

4.3. Numerical Tests

In order to verify the effectiveness of the proposed ASISTA-Net imaging network,
we carefully selected several different scene targets for imaging simulation experiments,
and the imaging results are shown in Figure 2. What can be seen is that the proposed
ASISTA-Net can reconstruct the original targets well in several scene targets, whether they
are simple sparse targets or surface targets with complex structures, and the reconstructed
feature information is very obvious.

To investigate the reconstruction performance under various compression ratios, a set
of “airplane” test targets is chosen to reconstruct images using different imaging methods.
The ADAM algorithm is selected to train the gradients, with a learning rate of 1 x 10~4
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to enable better control over the weight update rate and achieve superior performance
when the training converges. The number of learning cycles is 200 epochs, as an increase
in the number of training sessions promotes more thorough network training, leading
to better imaging performance. The proposed algorithm is further evaluated by testing
with compression ratios ranging from 0.05, 0.1, 0.15, and 0.2. Comparison experiments are
performed using various methods, including the traditional ISTA method, sparse Bayesian
learning (SBL) algorithm, VAE [38], CCU-Net methods [26], and the proposed ASISTA-Net,
all under the same conditions as the proposed algorithm to identify targets. The imaging
simulation results are presented in Figure 3.

Figure 2. Reconstructed results from ASISTA-Net with different scene target.

ISTA SBL VAE CC-Unet ASISTA-Net

Figure 3. Reconstructed results in five imaging algorithms with different scene information sam-
pling ratio.

The experimental results demonstrate that the proposed ASISTA-Net effectively re-
constructs the target image at a scene information sampling rate of 0.1. Moreover, even as
the scene information sampling compression ratio decreases, our algorithm still produces
satisfactory reconstructions of the basic shape of the scene target, even at a much lower
sampling rate of 0.05. On the other hand, at the scene information sampling rate of 0.1, the
ISTA and SBL algorithms perform inadequately, with the reconstructed target image being
unacceptable. The overall contour shape of the target is not completely reconstructed, and
the reconstructed image exhibits poor quality and accuracy. These observations show the
limitations of ISTA and SBL algorithms when working with very low scene information
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compression ratios, with the imaging results lacking details of the original target. In Figure 3,
while the reconstructed imaging results of VAE and CCU-Net approximate the shapes
of the targets, they are unable to capture specific features of the target in detail. Overall,
when compared against conventional algorithms, the proposed algorithm performs more
robustly and efficiently, particularly for low scene compression ratios and high coherence
measurement modes. Consequently, the reconstructed target images demonstrate high
quality and can withstand challenges encountered in complex scene conditions.

Quantitatively, the MSE and PSNR values of the different methods under different
scene information compression ratios were recorded simultaneously during the above
imaging process, and these results are plotted in Figure 4a,b. As expected, the conventional
ISTA and SBL methods performed poorly when compared to other methods in terms of the
two sets of metric values, regardless of the scene information compression ratio, and the
results were worse. For VAE and CCU-Net, the performance of these two methods is better
under each set of compression ratios but still lower than that of our proposed ASISTA-Net.
In general, as the compression ratio changes, the proposed ASISTA-Net imaging algorithm
shows greater imaging capability than several other methods.

324
" / \\
—— ASISTA-Net . —_
0.006 - e | I —
84| Ny -
= Z —a— ASISTA-Net
2 . gj =e— CC-Unet
2 —— VAE
e ~v— SBL
00021 e 9 o
A . . ol ' . .
0.025 0.050 0.075 0.100 0.025 0.050 0.075 0.100
M/N .
(a) o)

Figure 4. Imaging results with different scene information sampling ratio. (a) MSE performance.
(b) PSNR performance.

Ten imaging tests using different imaging methods were performed on the same set
of test targets. The average MSE, PSNR, SSIM, and imaging runtime for each imaging
method are presented in Table 2. Additionally, to exploit the parallelizability of neural
network-based methods, the reconstruction time was monitored while performing the
proposed method on a GPU. According to Table 2, the proposed algorithm of ASISTA-Net
outperforms several other methods. This is mainly because the end-to-end model-driven
unfolding network can directly convert the amplitude value of the echo signal into the target
after compression. In contrast, traditional imaging methods require multiple iterations to
predict viable solutions. Data-driven neural network-based methods depend on a vast
amount of data to achieve the desired imaging results. In comparison, the proposed deep
unfolding imaging network of ASISTA-Net is model driven and uses a convolutional
module to learn the physical mapping relationship between the measurement signal and
the target scattering coefficient. This approach enables the ASISTA-Net to achieve excellent
imaging results with a small training dataset.

Table 2. Imaging parameters.

Methods MSE PSNR SSIM Run Time
ISTA 0.0035 24.08 0.65 3.14
SBL 0.0029 24.55 0.67 2.37
VAE 0.0011 29.58 0.83 0.35
CC-Unet 0.0009 30.45 0.85 0.27
ASISTA-Net 0.0006 32.21 0.91 0.10
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5. Discussion

Compared with classical iterative optimization imaging and data-driven end-to-end
neural networks, algorithmic unfolding networks can better learn the mapping relation-
ships embodied in the imaging model and boost the imaging error adaptively during the
imaging process, thereby ensuring the stability and robustness of such imaging networks.
Since the previous simulation was performed in the noiseless case, we trained the proposed
network ASISTA-Net with different datasets to study the effects of noiseless and noisy
training data on the imaging performance of the network.

The simulation conditions are set to compress the sampling ratio at 0.1 with SNR
values of 0 dB, 5 dB, 10 dB, and 20 dB. The noise immunity performance analysis was
carried out. In the simulation test, three test scenarios of the same size as the original targets
in Figure 5 were selected. The learning rate of the ADAM algorithm was setto 1 x 1074,
and the network was trained for 200 epochs.

Figure 5. Imaging results with different SNR.

To provide more information on network training, we plotted the error curve (loss
function) during training iterations to demonstrate the performance of the trained network.
Specifically, we showed target 1 in the 20 dB conditions with the training error and vali-
dation error as a function of the number of training iterations, which can demonstrate the
model convergence, overfitting, and effectiveness of the selected optimization algorithm,
among other things. The network loss curve’s iterations during the training procedure is
depicted. The loss error value exhibits a declining trend and tends to converge quickly,
as shown in the figure, further demonstrating the effectiveness of the proposed imaging
network.

The qualitative and quantitative analysis of the dataset and imaging reconstructed
results under different noise conditions are shown in Figure 6. From the results, the ASISTA-
Net can reconstruct targets with high precision and detailed feature information even at
a very low SNR of 0 dB. In addition, we recorded and plotted the MSE and PSNR metric
values during the imaging reconstruction under these sets of SNR conditions in Figure 7a,b.
From the curves, we observed that our imaging network can withstand training data tests
regardless of the presence of noise, with insignificant effects on the accuracy of the target
reconstruction. In summary, ASISTA-Net is recognized for its excellent noise immunity
and robustness.
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Figure 7. Imaging results with different SNR. (a) MSE performance. (b) PSNR performance.

6. Conclusions

This paper introduces ASISTA-Net, a deep unfolding frequency-diverse radar imaging
network that incorporates adaptive sampling and an end-to-end model-driven approach.
The proposed method shows favorable flexibility and compatibility, enabling reconstruction
with the multi-compressed sampling ratio and the reconstruction of multi-scene targets.
Through extensive experiments, we demonstrate the robust and effective performance of
ASISTA-Net in practical frequency-diverse radar imaging applications. In future research,
we intend to improve the quality of our imaging results by further optimizing the model.
Additionally, in future research, we focus on evaluating the network’s performance using
measured datasets and extending the method to imaging 3D scene targets.
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Abbreviations

The following abbreviations are used in this manuscript:

OEWG Open Waveguide

CS Compressed Sensing

SBL Sparse Bayesian Learning

ISTA Iterative Soft Thresholding Algorithm
VAE Variational Autoencoders

MSE Mean Squared Error

PSNR Peak Signal-to-Noise Ratio

SSIM Structure Similarity Index Measure
SNR Signal-to-Noise Ratio

FCNN Fully Convolutional Neural Network
BM3D Block Matching and 3D Filtering

PnP Plug-and-Play

ADAM Adaptive Momentum Estimation

ASISTA-Net  Adaptive Sampling Iterative Soft-Thresholding Network

References

1. Luo, Z,; Cheng, Y.; Cao, K.; Qin, Y.; Wang, H. Microwave computational imaging in frequency domain with reprogrammable
metasurface. |. Electron. Imaging 2018, 27, 063019. [CrossRef]

2. Wu, ZH,; Zhang, L,; Liu, HW. Enhancing microwave metamaterial aperture radar imaging with rotation synthesis. In
Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10-15
July 2016; pp. 3683-3686.

3.  Wang, S,; Li, X.; Chen, P. ADMM-SVNet: An ADMM-Based Sparse-View CT Reconstruction Network. Photonics 2022, 9, 186.
[CrossRef]

4. Liu, Z,; Bicer, T,; Kettimuthu, R.; Gursoy, D.; De Carlo, E; Foster, I. TomoGAN: Low-Dose Synchrotron X-ray Tomography with
Generative Adversarial Networks:discussion. J. Opt. Soc. Am. A 2020, 37, 422-434. [CrossRef] [PubMed]

5. Yang, Y; Sun, J; Li, H.; Xu, Z. Deep ADMM-Net for Compressive Sensing MRI. In Proceedings of the 30th International
Conference on Neural Information Processing Systems(NIPS), Barcelona, Spain, 5-10 December 2016; pp. 10-18.

6. Han, ].Y. Research of Human Security Holographic Radar Imaging Algorithm. Master’s Thesis, University of Electronic Science
and Technology of China, Chengdu, China, 2019.

7. Donoho, D. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289-1306. [CrossRef]

8. Nguyen, T.V,; Jagata, G.; Hegde, C. Provable Compressed Sensing With Generative Priors via Langevin Dynamics. IEEE Trans.
Inf. Theory 2022, 68, 7410-7422. [CrossRef]

9. Dong, Y. Frequency diverse array radar signal and data processing. IET Radar Sonar Navig. 2018, 12, 954-963. [CrossRef]

10. Fromenteze, T.; Yurduseven, O.; Del Hougne, P.; Smith, D.R. Lowering latency and processing burden in computational imaging
through dimensionality reduction of the sensing matrix. Sci. Rep. 2021, 11, 3545. [CrossRef]

11.  Imani, M.E; Gollub, J.N.; Yurduseven, O.; Diebold, A.V.; Boyarsky, M.; Fromenteze, T.; Pulido-Mancera, L.; Sleasman, T.; Smith,
D.R. Review of Metasurface Antennas for Computational Microwave Imaging. IEEE Trans. Antennas Propag. 2020, 68, 1860-1875.
[CrossRef]

12.  Mait, J.N.; Euliss, G.W.; Athale, R.A. Computational imaging. Adv. Opt. Photonics 2018, 10, 409-483. [CrossRef]

13.  Dauwels, J.; Srinivasan, K. Improved compressed sensing radar by fusion with matched filtering. In Proceedings of the 2014 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 4-9 May 2014; pp. 6795-6799.

14. Tuo, X.; Zhang, Y.; Huang, Y. A Fast Forward-looking Super-resolution Imaging Method for Scanning Radar based on Low-rank
Approximation with Least Squares. In Proceedings of the 2020 IEEE Radar Conference (RadarConf20), Florence, Italy, 21-25
September 2020; pp. 1-6.

15.  Yue, Y.; Liu, H.; Meng, X.; Li, Y,; Du, Y. Generation of High-Precision Ground Penetrating Radar Images Using Improved Least
Square Generative Adversarial Networks. Remote Sens. 2021, 13, 4590. [CrossRef]

16. Fromenteze, T.; Decroze, C.; Abid, S.; Yurduseven, O. Sparsity-Driven Reconstruction Technique for Microwave/Millimeter-Wave

Computational Imaging. Sensors 2018, 18, 1536. [CrossRef] [PubMed]


http://doi.org/10.1117/1.JEI.27.6.063019
http://dx.doi.org/10.3390/photonics9030186
http://dx.doi.org/10.1364/JOSAA.375595
http://www.ncbi.nlm.nih.gov/pubmed/32118926
http://dx.doi.org/10.1109/TIT.2006.871582
http://dx.doi.org/10.1109/TIT.2022.3179643
http://dx.doi.org/10.1049/iet-rsn.2018.0031
http://dx.doi.org/10.1038/s41598-021-83021-6
http://dx.doi.org/10.1109/TAP.2020.2968795
http://dx.doi.org/10.1364/AOP.10.000409
http://dx.doi.org/10.3390/rs13224590
http://dx.doi.org/10.3390/s18051536
http://www.ncbi.nlm.nih.gov/pubmed/29757241

Remote Sens. 2023, 15, 3284 14 of 14

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Shi, J.; Hu, G.; Zhang, X.; Sun, F; Zhou, H. Sparsity-Based Two-Dimensional DOA Estimation for Coprime Array: From
Sum-Difference Coarray Viewpoint. IEEE Trans. Signal Process. 2017, 65, 5591-5604. [CrossRef]

Cheng, Q.; Ihalage, A.; Liu, Y.; Hao, Y. Compressive Sensing Radar Imaging with Convolutional Neural Networks. IEEE Access
2020, 8, 212917-212926. [CrossRef]

Wu, Z.; Zhao, F.; Zhang, M.; Huan, S.; Pan, X.; Chen, W.; Yang, L. Fast Near-Field Frequency-Diverse Computational Imaging
Based on End-to-End Deep-Learning Network. Sensors 2022, 22, 9771. [CrossRef]

Jin, K;; McCann, M. T.; Froustey, E.; Unser, M. Deep Convolutional Neural Network for Inverse Problems in Imaging. IEEE Trans
Image Process. IEEE Trans. Image Process. 2017, 26, 4509-4522. [CrossRef] [PubMed]

Li, J.; Kobayashi, R.; Muramatsu, S.; Jeon, G. Image Restoration with Structured Deep Image Prior. In Proceedings of the 2021
36th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC), Jeju, Republic of
Korea, 27-30 June 2021; pp. 1-4.

Dong, C.; Loy, C.C.; He, K.; Tang, X. Image Super-Resolution Using Deep Convolutional Networks. IEEE Trans. Pattern Anal.
Mach. Intell. 2016, 38, 295-307. [CrossRef]

Tian, C.; Fei, L.; Zheng, W.; Xu, Y.; Zuo, W.; Lin, C.W. Deep learning on image denoising: An overview. Neural Netw. 2020, 131,
251-275. [CrossRef]

Liu, S.; Wang, Y.; Yang, X.; Lei, B.; Liu, L.; Li, 5.X.; Ni, D.; Wang, T. Deep Learning in Medical Ultrasound Analysis: A Review.
Engineering 2019, 5, 261-275. [CrossRef]

Hu, C.; Wang, L.; Li, Z.; Zhu, D. Inverse Synthetic Aperture Radar Imaging Using a Fully Convolutional Neural Network. IEEE
Geosci. Remote Sens. Lett. 2020, 17, 1203-1207. [CrossRef]

Luo, E; Wang, J.; Zeng, J.; Zhang, L.; Zhang, B.; Xu, K,; Luo, X. Cascaded Complex U-Net Model to Solve Inverse Scattering
Problems With Phaseless-Data in the Complex Domain. IEEE Trans. Antennas Propag. 2022, 70, 6160-6170. [CrossRef]

Yao, H.; Dai, F; Zhang, S.; Zhang, Y.; Tian, Q.; Xu, C. DR2-Net: Deep Residual Reconstruction Network for Image Compressive
Sensing. Neurocomputing 2019, 359, 483-493. [CrossRef]

Yang, T.; Shi, H.Y.; Lang, M.Y.; Guo, ].W. ISAR imaging enhancement: Exploiting deep convolutional neural network for signal
reconstruction. Int. . Remote Sens. 2020, 41, 9447-9468. [CrossRef]

Wu, Z.; Zhao, E; Zhang, M.; Qian, J.; Yang, L. Real-Time Phaseless Microwave Frequency-Diverse Imaging with Deep Prior
Generative Neural Network. Remote Sens. 2022, 14, 5665. [CrossRef]

Li, X.; Bai, X.; Zhang, Y.; Zhou, F. High-Resolution ISAR Imaging Based on Plug-and-Play 2D ADMM-Net. Remote Sens. 2022,
14, 901. [CrossRef]

Wang, M.; Wei, S.; Liang, J.; Zeng, X.; Wang, C.; Shi, J.; Zhang, X. RMIST-Net: Joint Range Migration and Sparse Reconstruction
Network for 3-D mmW Imaging. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5205117 . [CrossRef]

Li, R,; Zhang, S.; Zhang, C.; Liu, Y,; Li, X. Deep Learning Approach for Sparse Aperture ISAR Imaging and Autofocusing Based
on Complex-Valued ADMM-Net. IEEE Sens. J. 2021, 21, 3437-3451. [CrossRef]

Zhang, Z.; Liu, Y;; Liu, J.; Wen, E; Zhu, C.; Feng, X. AMP-Net: Denoising-Based Deep Unfolding for Compressive Image Sensing.
IEEE Trans. Image Process. 2021, 30, 1487-1500. [CrossRef] [PubMed]

You, D.; Zhang, J.; Xie, J.; Chen, B.; Ma, S. COAST: COntrollable Arbitrary-Sampling NeTwork for Compressive Sensing. IEEE
Trans. Image Process. 2021, 30, 6066—-6080. [CrossRef] [PubMed]

You, D.; Xie, J.; Zhang, J. ISTA-NET++: Flexible Deep Unfolding Network for Compressive Sensing. In Proceedings of the 2021
IEEE International Conference on Multimedia and Expo (ICME), Shenzhen, China, 5-9 July 2021; pp. 1-6.

Song, ].; Chen, B.; Zhang, J. Memory-Augmented Deep Unfolding Network for Compressive Sensing. In Proceedings of the 29th
ACM International Conference on Multimedia (ACM MM), Chengdu, China, 20-24 October 2021; pp. 4249-4258.

Chen, B.; Zhang, J. Content-Aware Scalable Deep Compressed Sensing. IEEE Trans. Image Process. 2022, 31, 5412-5426. [CrossRef]
[PubMed]

Kingma, D.P,; Welling, M. Auto-Encoding Variational Bayes. arXiv 2013, arXiv:1312.6114.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


http://dx.doi.org/10.1109/TSP.2017.2739105
http://dx.doi.org/10.1109/ACCESS.2020.3040498
http://dx.doi.org/10.3390/s22249771
http://dx.doi.org/10.1109/TIP.2017.2713099
http://www.ncbi.nlm.nih.gov/pubmed/28641250
http://dx.doi.org/10.1109/TPAMI.2015.2439281
http://dx.doi.org/10.1016/j.neunet.2020.07.025
http://dx.doi.org/10.1016/j.eng.2018.11.020
http://dx.doi.org/10.1109/LGRS.2019.2943069
http://dx.doi.org/10.1109/TAP.2021.3102032
http://dx.doi.org/10.1016/j.neucom.2019.05.006
http://dx.doi.org/10.1080/01431161.2020.1799449
http://dx.doi.org/10.3390/rs14225665
http://dx.doi.org/10.3390/rs14040901
http://dx.doi.org/10.1109/TGRS.2021.3068405
http://dx.doi.org/10.1109/JSEN.2020.3025053
http://dx.doi.org/10.1109/TIP.2020.3044472
http://www.ncbi.nlm.nih.gov/pubmed/33338019
http://dx.doi.org/10.1109/TIP.2021.3091834
http://www.ncbi.nlm.nih.gov/pubmed/34185643
http://dx.doi.org/10.1109/TIP.2022.3195319
http://www.ncbi.nlm.nih.gov/pubmed/35947572

	Introduction
	Imaging Principle
	Imaging Network Model
	Imaging Network Framework
	Imaging Reconstructed Algorithm

	Numerical Tests
	Data Pre-Processing
	Imaging Parameters
	Numerical Tests

	Discussion
	Conclusions
	References

