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Abstract: Semiarid Tunisia is characterized by agricultural production that is delimited by water 
availability and degraded soil. This situation is exacerbated by human pressure and the negative 
effects of climate change. To improve the knowledge of long-term (1980 to 2020) drivers for Land 
Use and Land Cover (LULC) changes, we investigated the semiarid Rihana region in central Tunisia. 
A new approach involving Google Earth Engine (GEE) was used to map LULC using Landsat im-
agery and vegetative indices (NDVI, MSAVI, and EVI) by applying a Random Forest (RF) classifier. 
A Rapid Participatory Systemic Diagnosis (RPSD) was used to consider the relation between LULC 
changes and their key drivers. The methodology relied on interviews with the local population and 
experts. Focus groups were conducted with practicians of the Regueb Agricultural Extension 
Services, followed by semi-structured interviews with 52 households. Results showed the following: 
(1) the RF classifier in Google Earth Engine had strong performance across diverse Landsat image 
types resulting in overall classification accuracy of ≥0.96 and a kappa coefficient ≥0.93; (2) rainfed 
olive land increased four times during the study period while irrigated agriculture increased sub-
stantially during the last decade; rangeland and rainfed annual crops decreased by 58 and 88%, 
respectively, between 1980 and 2021; (3) drivers of LULC changes are predominately local in nature, 
including topography, local climate, hydrology, strategies of household, effects of the 2010 revolu-
tion, associated increasing demand for natural resources, agricultural policy, population growth, 
high cost of agricultural input, and economic opportunities. To summarize, changes in LULC in 
Rihana are an adaptive response to these various factors. The findings are important to better un-
derstand ways towards sustainable management of natural resources in arid and semiarid regions 
as well as efficient methods to study these processes.
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1. Introduction
Land Use and Land Cover (LULC) changes are important for identifying long-term 

landscape effects caused by natural processes and anthropogenic pressure [1]. These pro-
cesses have important impacts on the fragile ecology of semiarid regions. Due to increas-
ing human pressure, scarce resources in semiarid Tunisia are frequently overexploited. 
The pressure has been increasing in recent decades due to a higher occurrence rate of 
extreme climatic events such as droughts and heavy rainfall, which may force local pop-
ulations to change crop systems [2]. LULC in semiarid regions has an impact on both local 
socioeconomic development and the environment, as well as global environmental 
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change [3]. As a result, accurate and long-term information on LULC is a critical tool in 
natural resource management. 

In this regard, Remote-Sensing (RS) imagery is a viable option for detecting changes 
at various spatial–temporal scales due to detailed resolution and widespread availability 
[4]. Despite the importance of using RS in long-term change detection analysis, problems 
arise as data volumes increase and the need to modify and homogenize images from var-
ious sensors with varying quality and periods escalates [5,6]. To overcome these problems, 
Google Earth Engine (GEE) can be used as a cloud-computing platform together with ma-
chine-learning algorithms for the analysis of satellite images [7–9]. This tool has recently 
been recognized as a potential platform for RS analysis [10,11]. Indeed, GEE is a large 
geospatial, cloud-based platform that provides a powerful tool to process, analyze, and 
visualize extensive amounts of remote-sensing data [12,13]. 

As mentioned above, Machine-Learning (ML) techniques can greatly help in the anal-
ysis of large data sets, such as in LULC mapping [14]. Common ML techniques include 
Random Forests (RF), Artificial Neural Networks (ANN), Decision Trees, and Support 
Vector Machines (SVM) [15,16]. Among these, RF has gained popularity for LULC map-
ping due to its high accuracy, which has proven to be very efficient in circumstances of 
large inputs of information, relatively low cost, and the need for a limited number of var-
iables [17,18]. Furthermore, indices such as the Normalized Difference Vegetation Index 
(NDVI), Normalized Difference Water Index (NDWI), Modified Soil-Adjusted Vegetation 
Index (MSAVI), Soil-Adjusted Vegetation Index (SAVI), Enhanced Vegetation Index (EVI), 
and the Normalized Difference Soil Index (NDSI) are effective for mapping of LULC 
changes [19,20]. 

Recent studies have demonstrated the effectiveness of using GEE within the RF clas-
sifier for automated, long-term, and accurate LULC mapping. For example, [21] utilized 
Landsat data, an RF classifier in the GEE platform, to map LULC in Côte d’Ivoire for the 
year 2020, achieving an overall accuracy of over 90%. Another study [22] employed GEE 
and RF classifiers to monitor annual LULC change in the Tucson Metropolitan Area from 
1986 to 2020 using Landsat imagery. Their results consistently demonstrated satisfying 
classification accuracy, ranging from 90% to 95% for most years. The authors of [23] ana-
lyzed spatiotemporal changes in forest cover in the Ashanti region of Ghana for the years 
2006, 2011, 2015, and 2020 using GEE and the two classifiers RF and SVM. The RF classifier 
showed an overall accuracy of 98% and a kappa index of 0.97, while SVM achieved an 
overall accuracy and a kappa index of 90% and 0.88, respectively. This highlights the su-
perior performance of the RF classifier with low overfitting tendencies. The authors of [24] 
compared the performance of three machine-learning algorithms, SVM, RF, and CART, 
for LULC classification for the years 2016, 2018, and 2020. Their findings revealed that RF 
classifiers in the GEE platform consistently outperformed SVM and CART classifiers in 
terms of accuracy for both Landsat-8 and Sentinel-2 imagery. 

Scholars using satellite imagery data have, to some extent, studied LULC changes in 
Tunisia [25]. For instance, [26] used Landsat imagery and maximum likelihood classifica-
tion to examine the changes in LULC between 2007 and 2017. In another study, [27] em-
ployed the Normalized Difference Vegetation Index (NDVI) derived from the Very High-
Resolution Radiometer (AVHRR) to assess the spatial and temporal patterns of land use 
change in North and West Africa spanning the period from 1985 to 2015. The authors of 
[28] focused on mapping irrigated and rainfed areas in semi-arid regions of Tunisia be-
tween 2015 and 2017 using Sentinel 1 and Sentinel 2 data. The authors of [29] analyzed 
vegetation dynamics over the central region of Tunisia during drought events by utilizing 
a multi-temporal series of NDVI derived from SPOT-VEGETATION and TERRA-MODIS 
satellite data. However, there has been a lack of studies conducted in Tunisia that specif-
ically employ the GEE platform to accurately map and analyze LULC changes. Also, there 
is a lack of research that integrates local knowledge to understand the factors that influ-
ence farmers’ land use decision making at a local scale during a long period corresponding 
to decades. 
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In view of the above, we investigated the long-term changes in LULC for a repre-
sentative region in central semiarid Tunisia to improve the knowledge of possible natural 
and socioeconomic drivers. Hence, we assessed the decade-wise changes in LULC be-
tween 1980 and 2021 using Landsat imagery and RF classifier on the GEE platform. The 
NDVI, EVI, and SAVI indices were selected to characterize LULC, see, e.g., [30]. Rapid 
Participatory Systemic Diagnosis (RPSD) was used to clarify the relationships between 
LULC changes and their drivers. The objectives were the following: Firstly, to investigate 
whether the GEE and RF methods can provide automated, long-term, and improved ac-
curacy of LULC mapping. Secondly, to examine the spatiotemporal patterns of LULC 
change in semi-arid central Tunisia. Thirdly, to identify the major natural socioeconomic 
drivers that influence LULC changes. 

2. Study Area 
The focus of this study was the Rihana region located in central Tunisia (Regueb del-

egation, Sidi Bouzid governorate) and one of the involved sites of the PACTE program « 
Climate change adaptation program for vulnerable rural territories of Tunisia» (PACTE: 
https://pacte.tn/) (accessed on 15 January 2019)). The Rihana region covers about 10,000 
ha (Figure 1) with an annual average temperature of about 20 °C and a summer tempera-
ture that can reach 47°C. The annual rainfall is irregular, with a mean of 225 ± 129 mm 
(Figure 2). Rihana agriculture is characterized by small farms, often less than 10 ha, with 
low economic productivity. The landscape is dominated by rainfed olive production in 
the up- and middle stream parts and irrigated crops in the downstream plain. Rihana is 
among Tunisia’s environmentally and socioeconomically most vulnerable territories [31]. 
The vulnerability is essentially characterized by degrading natural resources, such as the 
loss of a large part of its production potential and the overexploitation of hydro-agricul-
tural resources and rangelands. The vulnerability is worsened by large temporal and spa-
tial variability of rainfall, which results in alternating periods of drought, flooding, and 
erosion. The risk of flooding is high, and heavy rains lead to significant surface runoff, 
resulting in floods in almost all wadis in the region [32]. Figure 2a,b display the annual 
rainfall depth as well as the annual average together with mean, maximum, and minimum 
temperature. The data were obtained from the General Directorate of Water Resources [33] 
covering the period between 1980 and 2021. Historical rainfall data since 1980 show sev-
eral annual extremes, e.g., the wet year 2013/2014 (395.5 mm). About ten deficit years, with 
a minimum of 50 mm for the year 2000/2001, occurred in the period (Figure 2). 
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Figure 1. Geographic location of the Rihana study area in Tunisia. 

 

 

Figure 2. (a) Average annual rainfall; (b) temperature (mean, maximum, and minimum) observed 
at the Regueb climate station. 

  

a 
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3. Data and Methods 
3.1. Datasets 
3.1.1. Satellite Imagery 

Landsat 3/5/7/8 data archived by the United States Geological Survey (USGS) 
(http://glovis.usgs.gov/ (accessed on 15 October  2022)) for mapping LULC changes were 
used in this study. Table 1 presents all details of the selected images. Surface Reflectance 
data were utilized from Landsat-5 TM, Landsat-7 ETM+, and Landsat 8 OLI between 1 
September and 31 August (hydrological year) corresponding to the years 1990, 2000, 2010, 
and 2020. All datasets were used and directly integrated into the GEE platform. For Land-
sat 3 MSS, images were corrected before being used because available corrected images 
for the year 1980 did not cover our area of interest. 

Table 1. Used satellite imagery description. 

Data Sets Acquisition Date Resolution (m) 
USGS Landsat 3 MSS  01 September 1980/31 August 1981 60 
USGS Landsat 5 Tier 1 Surface
Reflectance 01 September 1990/31 August 1991 30 

USGS Landsat 7 Tier 1 Surface
Reflectance 

01 September 2000/31 August 2001 
01 September 2010/31 August 2011 30 

USGS Landsat 8 Tier 1 Surface
Reflectance 01 September 2020/31 August2021 30 

3.1.2. Training and Validation 
Training and validation are critical steps in LULC mapping. Thus, data were col-

lected via field observations, farmer surveys, and use of Google Earth Pro. Field observa-
tions were performed in the study area during 2020 (September, October, and December) 
and 2021 (January, March, June, and July), where 320 polygons were selected. For 1980, 
1990, 2000, and 2010, samples of polygons were collected via farmer surveys. Together 
with stakeholders, we identified polygons that cover the period for each LULC class. For 
example, field visits were performed to areas that were covered by olive trees in 1980, 
1990, 2000, and 2010, and similar field visits were conducted for other classes. In general, 
240 ground-truth polygons were collected. For 2010, we also used Google Earth Pro. For 
reference data collection, true and false color composites of Landsat imagery were used. 
The generated polygons were evenly distributed over the Rihana area and had a homo-
geneous spatial distribution. It is worth noting that former studies [34], as well as the local 
population, helped to define the four classes, as shown in Table 2, representing the overall 
land cover of the study area except for the most upstream part. The latter, which repre-
sents a nature reserve and scrubland, is considered a stable class that has not changed 
over the past 40 years. Table 3 displays the number of polygons for each year and LULC 
class, along with the average surface area. 

Table 2. Description of Land Use and Land Cover classes. 

LULC Category Description 
Rangeland Grazed land characterized by natural vegetation. 

Rainfed olive Olives cultivated in solely rainfed areas. 

Rainfed annual crops 
Annual crops that rely on rainfall for water, specifically 

cereals and forage crops 

Irrigated crops 
Includes areas with at least one crop cycle using 

irrigation as a water source 
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Table 3. Training and validation data. 

 Rangeland 
Rainfed 

Olive 
Rainfed Annual 

Crops 
Irrigated 

Crops 

1980 
(Landsat 3) 

Polygons 16 10 18 - 
Surface 
(pixels) 75 42 92 - 

1990 
(Landsat 5) 

Polygons 15 7 10 - 
Surface 
(pixels) 

233 67 89 - 

2000 
(Landsat 7) 

Polygons 21 23 16 - 
Surface 
(pixels) 444 689 144 - 

2010 
(Landsat 7) 

Polygons 23 67 8 6 
Surface 
(pixels) 

756 2644 311 111 

2020 
(Landsat 8) 

Polygons 92 76 6 146 
Surface 
(pixels) 1156 2433 233 633 

3.2. Methodology 
We utilized the GEE platform to classify and detect changes in LULC. The adopted 

approach is shown in Figure 3. Further explanation follows below. 

3.2.1. Classification and Post-Processing 
The input data (Landsat images) were processed using the GEE platform, as shown 

in Figure 3. It is preferable if the imagery used for LULC change detection contains as few 
clouds as possible. As a result, images were filtered with 10% cloudiness for the selected 
years 1990, 2000, 2010, and 2020. For 1980, images were filtered with 25%, which repre-
sents the low-cloudiness percentage available for the study area. Then, we combined each 
year’s dataset (Landsat imagery) based on the median reducer function to produce one 
single image from the image collection. For the entire stack of images, a median value was 
used for each pixel.  

To improve the classification accuracy, NDVI, MSAVI, and EVI indices were derived 
and calculated from all data used. The definitions for these are as follows [35]: 

NDVI = (nir − red)/(nir + red) (1)

MSAVI = (2 ∗ nir + 1 − sqrt ((2 ∗ nir + 1)2 − 8 ∗ (nir − red)))/2 (2)

EVI = 2.5 ∗ (nir − red)/(nir + 6.0 ∗ red − 7.5 ∗ blue+ 1) (3)

where nir, red, and blue represent spectral reflectance in the near-infrared, red, and blue 
bands, respectively. 
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Figure 3. Description of the methodology used in this present study. 

After that, and as mentioned before, we used RF machine-learning algorithm to train 
the classification for Landsat images. Once the classification was completed, an evaluation 
was carried out to determine the accuracy level of each classified image using a confusion 
matrix. This algorithm built on GEE depicts the relationship between ground truth and 
classification results [36]. We trained and validated the algorithm with 80% and 20%, re-
spectively. To validate classification, both kappa coefficient and overall accuracy were 
adopted [37]. The final product was chosen based on the RF with the highest overall ac-
curacy and kappa value. We used post-classification corrections based on the neighbor-
hood algorithm in GEE to replace isolated pixels with surrounding values to guarantee 
smoother appearance of the classified results. 

3.2.2. Drivers of LULC Change Based on the RPSD Methodology 
To comprehend the main LULC transitions that occurred in Rihana over the past four 

decades and to investigate the key drivers behind these changes, a Rapid Participatory 
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Systemic Diagnosis (RPSD) was conducted with local farmers and experts. The RPSD is a 
participatory and multi-actor method. It is based on semi-open interviews with the local 
population, either individually or collectively, complemented by interviews with local ex-
perts. Together, it allows for the co-construction of a common understanding of the func-
tioning and development issues of territory with local actors [34,38]. Initially, focus groups 
were initiated with the help of experts from the Regueb Agricultural extension for differ-
ent specialties: crop production, water resources, soil resources, and water and soil con-
servation. During these discussions, local experts provided valuable insights and analysis 
of the local context of Rihana dynamics and the changing availability and use of water 
and soil resources. Furthermore, these groups reviewed the main changes in LULC over 
time. We then had detailed discussions with farmers to better understand these changes 
and the underlying factors that drove them in both current and historical situations. The 
discussions were conducted in two focus groups and via field surveys with 52 farmers. 
Participants were selected from various locations in Rihana, including the upstream, mid-
stream, and downstream basin parts (Figure 4). The participating farmers had an average 
age of 59 years, with a majority between the ages of 41 to 64 years. Only 11% of them were 
below the age of 40. They owned an average farmland area of 18 ha, which is usually 
composed of 3 parcels. The surveyed farms were asked to list the LULC changes they had 
observed. In addition, participants were also asked to identify the drivers behind these 
changes and rank them from most to least significant. This approach allowed for a deeper 
understanding of the LULC dynamics and the factors contributing to them, as explained 
by local population and experts. During the fieldwork, a variety of tools was utilized; 
among them were satellite images of the region and a tablet equipped with GPS. Coordi-
nation with the local authorities and involvement of researchers, associations, and practi-
tioners were ensured. 

 
Figure 4. Geographic distribution of surveyed farms. 

4. Results and Discussion 
4.1. Classification Performance 

An accuracy assessment was considered for the five classified maps to verify that 
mapped content corresponds to ground truth in the study area. The overall accuracy (OA), 
kappa index (K), and user and producer’s accuracy were performed to identify class 
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performance and misclassifications. Results show that the use of the RF classifier in GEE 
provided an OA ≥ 0.96 and a K ≥ 0.93. For Landsat 3 (1980), Landsat 5 (1990), and Landsat 
7 (2000), the mean OA and K were 0.99 and 0.98, respectively. The OA for Landsat 7 (2010) 
and Landsat 8 (2020) was 0.96 and 0.97, respectively, with individual K equal to 0.93 and 
0.95, respectively. Thus, results were generally of high quality and adequate for the sub-
sequent analysis and change detection [39]. 

The classification accuracy results obtained for the different classes for every date are 
shown in Table 4. UA and PA did not show a big difference between rangeland and rain-
fed olive. They were classified with higher accuracies for all years, with producer accuracy 
(PA) and user accuracy (UA) ≥ 95%. For rainfed annual crops, they also showed a good 
performance for the first three years, unlike for 2010 (PA = 96%) and 2020 (PA = 94%). This 
can be explained by the confusion between rainfed annual crops and irrigated crops, 
which could be explained as a seasonal effect. For irrigated crops, the performance was 
better for the year 2020 than for 2010, with PA = 97% and 71%, respectively. The relatively 
lower classification shows that irrigated areas are more easily detected with Landsat 8 
than with Landsat 7. Refs. [40,41] note that the low accuracy for some classes is due to the 
reduced samples of training that significantly affects the classification results, which is 
true, especially for the irrigated crops class for the year 2010. 

Table 4. Accuracy assessment of the different LULC classes. 

 Rangeland Rainfed Olive 
Rainfed Annual 

Crops 
Irrigated 

Crops 

1980 
(Landsat 3) 

PA 0.98 0.96 0.98 _ 
UA 0.97 0.97 0.99 _ 
OA 0.98 
K 0.97 

1990 
(Landsat 5) 

PA 0.99 0.96 0.99 _ 
UA 0.98 0.98 0.99 _ 
OA 0.99 
K 0.98 

2000 
(Landsat 7) 

PA 0.98 0.99 0.97 _ 
UA 0.99 0.98 0.98 _ 
OA 0.99 
K 0.98 

2010 
(Landsat 7) 

PA 0.97 0.99 0.96 0.71 
UA 0.95 0.96 0.98 0.99 
OA 0.96 
K 0.93 

2020 
(Landsat 8) 

PA 0.97 0.97 0.94 0.97 
UA 0.95 0.97 0.97 0.99 
OA 0.97 
K 0.95 

PA: Producer’s Accuracy, UA: User’s Accuracy, OA: Overall Accuracy, K: Kappa index. 

4.2. LULC Classification Analysis 
Multi-temporal LULC for 1980, 1990, 2000, 2010, and 2020 are shown in Figure 5. 

Figure 6 shows the areal statistical distribution of LULC and their ratios for the respective 
period. Results indicate that in 1980, most of the study area was rangeland, and rainfall 
annual/cereal crops covered about 36.2% and 28.1%, respectively. Rainfed olive covered 
an area of 1507.7 ha (15.4%). Rangeland is distributed across the territory, with significant 
presence in the upstream and piedmont parts. As for rainfed annual crops, they have 
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mainly been concentrated in the riverbed of wadi Rihana and in the spreading basin. On 
the other hand, in 1990, the most dominant land classes were rainfed olive and rangeland, 
which covered 38.8% and 30.1%, respectively. Rainfed olive cultivation was widespread 
across the entire study area, while rangeland was primarily concentrated in the upstream 
and midstream regions. The least aerial coverage was rainfed annual crops, which ac-
counted for only 10.8%, mainly located in the spreading basin. The analysis of LULC for 
the year 2000 revealed that rainfed olive cultivation occupied approximately 47% of the 
total area, with a notable increase observed in the midstream and downstream regions. 
Rangeland, on the other hand, experienced a decrease and accounted for 25.8% of the area. 
Rainfed annual crops also decreased in various parts of the study area, except for the 
spreading basin, where they remained dominant, covering 6.3% of the area. In the year 
2010, notable changes occurred in the LULC of Rihana. The introduction of irrigation was 
observed in the downstream plain, covering approximately 13.2 hectares (0.13%) of the 
total area. Rainfed olive cultivation continued to expand and emerged as the dominant 
land cover, encompassing more than 53% of the study area. Rangeland experienced a fur-
ther decline, representing 22.7% of the total area, primarily in the midstream region. Rain-
fed annual crops witnessed a significant decrease, particularly in the spreading basin, ac-
counting for only 3.2% of the total area. Looking at the year 2020, the most remarkable 
change was observed in the expansion of irrigated crop areas, which covered approxi-
mately 6.4% of the total area. Rainfed olive cultivation continued to constitute the largest 
proportion, although with a slight increase compared to previous years, accounting for 
55%. Conversely, rangeland experienced a further decline, representing 15% of the total 
area. However, there was an increase in rainfed annual crops, which now accounted for 
3.4% of the area. 

4.3. Drivers of LULC Change 
The participating local farmers provided insights into the various factors driving the 

changes in LULC. They reported that topography, soil type, accessibility, hydrology, local 
climate, population growth, individual and collective farmer strategies, socio-economic 
conditions of farmers, new policies, high cost of agricultural inputs, economic opportuni-
ties/financial incentives, the Jasmin revolution, and cultural factors all play significant 
roles in LULC dynamics in the study area. They indicated that each decade of LULC 
change had its unique drivers (Figures 6 and 7). Table 5 shows the main drivers of LULC 
changes, and their ranking as considered by the local population.  
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Figure 5. LULC change in Rihana for the years 1980, 1990, 2000, 2010, and 2020. 



Remote Sens. 2023, 15, 3257 12 of 18 
 

 

 
Figure 6. Successive LULC changes in Rihana from 1980 to 2020 (%). 

 
Figure 7. LULC change detection during 1980–2021. 

Table 5. Drivers of LULC change and their relative ranking according to the local population. 

Period Drivers Rank 

1980–1990 

Sedentarization policy 1 
Decreased sheep grazing 2 
Severe droughts 3 
Increased implementation of SWC techniques by 
the local population 

4 

Seasonal migration 5 
Land registration operation 6 
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1990–2000 
the implementation of the first national strategy of 
SWC 

1 

2000–2010 

Severe droughts 1 
The widespread use of irrigation in Regueb 2 
Topography and soil fertility 3 
Availability of larger farms 4 

2010–2020 

The revolution resulting in the weak administrative 
control 

1 

Topography and soil fertility 2 
Occurrence of larger farms 3 
Extended drought periods 4 
High cost of forage grass 5 
Increased cost of fuel and electricity 6 
Tradition of cultivating rainfed olive  7 

From 1980 to 1990, major changes were observed for the rainfed annual crops and 
rainfed olive classes. Indeed, the annual rainfed crops experienced a massive decline in 
the area corresponding to 61%. This decline was a result of expanding the rainfed olive 
area, which increased by 152% throughout the study area. Moreover, the rangeland area, 
particularly in the upstream part, declined by about 17%. There were no differences 
among the interviewees in their responses regarding the LULC change that occurred in 
this period. They all indicated that there was a significant decline in rainfed annual 
croplands and a corresponding significant increase in rainfed olive lands. According to 
the local population of Rihana, the consequences of the rapid increase in the population 
since independence in 1956 had a significant impact on the change of LULC. This has re-
sulted in an increase in the number of douars (small nomadic villages), with populations 
varying greatly from one locality to another. The main activity of this population was 
based on grazing sheep resulting in the large use of rangelands and cereal crops. Rainfed 
agriculture usually gives low yields [42]. A total of 89% of the participants indicated that 
the sedentarization policy led to the growth of rainfed olive crop areas between 1980 and 
1990. This policy consisted of the promotion of olive and almond plantations and the cre-
ation of the first Soil and Water Conservation (SWC) techniques [43]. Consequently, the 
settling of nomadic populations led to a major change in their relationship with the land. 
The prospects of privatization made them attribute a value to the land for its own sake, 
whereas previously, it had only been used as a support for livestock feeding. Additionally, 
60% of the interviewed local population mentioned that seasonal migration plays a sig-
nificant role in the changes that occurred. These additional incomes allowed them to con-
tinue to invest in rainfed orchards and livestock. Furthermore, all farmers stressed the 
considerable influence of the 1987 and 1988 droughts (Figure 2). They caused the destruc-
tion of many almond trees, which were later replaced by more drought-resistant olive 
trees. Farmers have long developed their own SWC techniques like the mgoud and tabias 
for floodwater harvesting and distribution [44]. Investment in rainfed olives was favored 
by the operation of land registration organized by the state between 1980 and 1990. Finally, 
the evolution of the production system in this period is the result of the local climate, the 
local population strategies, and the agricultural policies [45], which were confirmed by 
local experts.  

For the period from 1990 to 2000, results show that the rainfed olive area continued 
to increase by about 21%. On the other hand, rangeland and rainfed annual crops contin-
ued to decrease by 14% and 42%, respectively. The decrease in rangeland was specifically 
observed in the midstream part, while the decrease in the rainfed annual crops was par-
ticularly obvious in the upper areas of the downstream part. However, these crops are 
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still cultivated in the spreading basin. All interviewees pointed out that the main driving 
force behind these changes is closely linked to state policies and strategies. These changes 
are likely to be associated with the implementation of the first national strategy of SWC 
in Tunisia (1990–2000). The strategy relied on different techniques of SWC designed to 
limit erosion and gullying. In 1990, different techniques were implemented in Rihana, 
such as tabias, flood spreading, and recharging wells in the wadi’s upstream part. Under 
this strategy, the Ministry of Agriculture continued to provide Rihana farmers, landown-
ers with which these techniques were implemented, with olive plants between 1990 and 
1995. This encouraged them to plant rainfed olives that are better adapted to the soil and 
water availability.  

During the period 2000–2010, a continuously increasing rainfed olive crop area by 
about 13% is observed. Rainfed annual crops experienced a massive decline of about 49%. 
They covered 625.2 ha of the study area in 2000 and decreased to 319 ha in 2010. The 
decline was primarily observed in the spreading area. Additionally, the rangelands wit-
nessed a decrease of 12% throughout the study area. In 2010, we noticed the introduction 
of irrigation covering about 13.2 ha (0.13%) in the plain area. A total of 98% of the inter-
viewees stated that these LULC changes may be primarily due to extreme climatic events 
observed in this specific period. Most of the territory falls under high exposure to drought, 
especially from 2000 to 2007 (Figure 2). The local population responded to droughts by 
cultivating rainfed olives. It was already mentioned [46] that drought poses the most sig-
nificant threat to the socioeconomic stability of small farmers. In addition, all local experts 
indicated that the irrigation from drilled wells which became widespread in Regueb, mo-
tivated the local population to start the irrigation of crops. The local population situated 
in the plain opts for irrigation agriculture due to favorable topography, convenient access 
to water through wells, and the occurrence of larger farms (5 to 50 ha) compared to the 
upstream part. The topography of these areas is characterized by steep slopes and rocky, 
shallow soils and low fertility with farms that are smaller than 5 ha. Additionally, farmers 
consider irrigation a viable adaptation strategy to cope with the impact of climate change 
[47].  

Considering the LULC changes between 2010 and 2020, we note the extension of the 
irrigated areas in the plain. They increased from 13.2 ha in 2010 to 634 ha in 2020. In addi-
tion, rainfed annual crops increased from 319 ha in 2010 to 335 ha in 2020; this trend is 
especially evident in the spreading basin area. During the same period, rainfed olives 
showed a small increase of 3.38%, particularly in the midstream part. In contrast, range-
land showed a reverse trend, decreasing by 40%. It is worth noting that since the outbreak 
of the Tunisian revolution in 2011, the region, as well as the country, experienced a period 
of transformation that induced significant environmental changes [48]. These changes are 
marked by the weakening of administrative control that has led to an increase in the num-
ber of illicit drillings, as reported by the experts. The local population has reported an 
increase in the number of illicit well drilling in Rihana, which has risen from 35 in 2019 to 
70 in 2020. We also notice that the use of solar panels has recently soared in Rihana and in 
the semiarid region of Tunisia in general due to the increasing costs of fuel and electricity 
[49]. About 25% of the farmers who practice irrigation use solar panels. Additionally, an-
other important factor reported by 90% of the interviewees is the extended drought period 
followed by wet years that lead to a decrease in the rangeland area (Figure 2). Moreover, 
83% of the respondents mentioned that with the high cost of forage grass, they returned 
to cultivating rainfed annual crops for the feeding of their livestock. Furthermore, 60% of 
the farmers indicated that the expansion of rainfed olive lands is due to the long-standing 
tradition of cultivating rainfed olives, which has become an integral part of their culture 
and livelihoods. 

Finally, it is worth noting that Sidi Bouzid, and particularly Rihana, have experienced 
a significant transformation regarding its agrarian system. Over the 40 past years, rainfed 
olive land and irrigated land increased in area by 4 times between 1980 and 2021 and 60 
times between 2010 and 2021 (Figure 7). The rangeland and rainfed annual crop area 
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decreased by 58% and 88%, respectively. It is mainly the transition from a system domi-
nated by pastoralism based on breeding, transhumance, and rangeland to an agricultural 
system dominated based on irrigated and rainfed olive crops in dry conditions associated 
with episodic cereal cultivation and decreasing rangeland area [50]. These changes are 
influenced by a variety of factors, such as economic opportunities and policies, etc., but 
they are also highly dependent on the local context and directly linked to the livelihoods 
of the local population. The changes in LULC can be explained as an adaptive response to 
these various factors. As a result, even in small areas, there is a great diversity of agricul-
tural situations.  

5. Conclusions 
Accurate and long-term LULC data are crucial for the natural resources’ sustainable 

management in the semiarid regions of Tunisia. In this study, we started with the analysis 
of the LULC changes in Rihana from 1980 to 2020 using the Random Forest algorithm (RF) 
in Google Earth Engine (GEE) platform, along with Landsat 3, 5, 7, and 8 imageries. We 
characterized the dynamic LULC change using RPSD. We used time series of satellite im-
ages with an RF classifier in the GEE platform for the semiarid region. Change detection 
analysis enabled us to compare the spatial-temporal patterns of LULC changes. The con-
venience of the used approach can be considered in the future as a reference for conduct-
ing similar studies in other regions. We found that the Rihana study area has undergone 
major LULC changes during the past 40 years. The observed trend is an increase in rainfed 
olives, especially in the upstream part, and a corresponding fluctuating trend in irrigated 
crops in the downstream part. We noted a decrease in rangeland and annual rainfed crops 
over the same period. In general, the observed landscape transformations are mainly 
linked to local factors followed by economic opportunities and political factors. These 
changes increased the pressure on groundwater resources. Hence, there is a risk of a de-
cline in rangeland and rainfed land area soon. Finally, the findings of this research have 
shown the necessity for raising awareness toward implementing a comprehensive assess-
ment of human activities along with LULC management practices within the Rihana 
study area. Therefore, it is crucial to embrace the management and sustainability of these 
LULC practices, water and soil conservation measures, participatory approaches, and of-
fering alternative livelihoods to reverse the non-desired consequences related to LULC 
changes in semiarid regions of Tunisia. 
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