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Abstract: Ground-penetrating radar (GPR) is a well-respected, effective, and efficient geophysical
technique. However, for underwater engineering detection and underwater archaeology, the mea-
sured B-scan profiles typically contain surface-related multiple waves, which can reduce the signal
to noise ratio and interfere with the interpretation of results. SRME is a feedback iteration method
based on wave equation, which is frequently utilized in marine seismic explorations but very rarely
in GPR underwater engineering detection. To fill this gap, we applied SRME to suppress multiples
that appear in GPR underwater images. When we compared the effectiveness of the underwater
horizontal layered model and the underwater undulating interface model, we found a high match
rate between the predicted and the real-world multiples. In addition, the addition of the Gaussian
random noise level with a 4% maximum amplitude to the B-scan profile of the horizontal stratified
model yielded satisfactory multiple suppression results. Finally, we applied this method to the B-scan
GPR section of actual underwater archaeological images to achieve multiple suppression, which can
more effectively weaken and inhibit the surface-related multiples. Both numerical simulations and
actual field data show that the SRME method is highly suitable for interpreting waterborne GPR data,
and more accurate interpretation can be obtained from the GPR profile after multiples suppression.

Keywords: waterborne GPR; multiples; surface-related multiples elimination; underwater detection

1. Introduction

Ground-penetrating radar (GPR), a near-surface geophysical method, is frequently
utilized in many fields including geological prospecting [1], engineering detection [2,3], and
archaeological prospecting [4,5]. Underwater engineering exploration focuses on underwa-
ter topography, silt layer, and riprap [6–9]. GPR has been evaluated as a tool for mapping
lake bottoms and ice-thickness [10–15]. For example, Moorman and Michel [16] were able
to measure water depths and lacustrine sediment thickness of Artic lakes with precisions of
±3% and ±15, respectively, via bathymetric mapping with this method. They found that
lake bottom multiples could only affect interpretations with good sub-bottom penetration
or shallow water depth. Dugan et al. [17] used GPR and airborne transient electromagnetic
(AEM) surveying to map the ice stratigraphy and ice-bed contact of Lake Vida and locate
and delineate a confined aquifer with a porosity of 23–42%. Bandini et al. [18] found that
water coupled and a drone borne GPR antenna were both effective for bathymetry of inland
bodies of water. Due to its high resolution and adaptability, GPR has also been success-
fully applied in underwater archaeology by providing researchers with accurate spatial
distribution information of underwater cultural relics [19]. These application studies and
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experiments on real world data using various water detection methods indicate that GPR
can effectively reveal underwater targets in freshwater environments. However, according
to the results of real-world exploration, multiple waves in the underwater profiles detected
by GPR can reduce the signal-to-noise ratio and severely interfere with the identification of
effective waves, and even lead to false imaging [20,21].

Currently, studies of multiples suppression of GPR data mainly emphasize detection
on land. Zhao et al. [22] tested predictive deconvolution, F-K transformation, and the ability
of Karhunen–Loeve transformation to suppress multiple diffraction waves of steel bars
in shield tunnel lining segments to observe the effect of grouting behind the wall, which
yielded unsatisfactory results. Xie et al. [23] utilized the predictive deconvolution method
to suppress the multiple waves in the GPR profiles of reinforced concrete structures, and
the result indicates that the multiple waves from steel bars have been obviously removed.
Zhang and Slob [24] proposed a one-dimensional method based on the electromagnetic
Marchenko equation for eliminating multiples hierarchically, which would allow conven-
tional imaging methods to obtain imaging results without interval multiples. The method
works well for a sample in a synthetic waveguide.

Presently, the surface-related multiples elimination (SRME) method has rarely been
applied to underwater GPR data. To fill this gap, only a small number of researchers have
used this method in marine seismic explorations. Berkhout [25] proposed a feedback tech-
nique for complex multiple wave systems that uses a multidimensional iterative inversion
algorithm to eliminate free surface multiple waves. This model can be adapted to any
complex underground medium and considers the characteristics of the source and detector.
Thus, it lays the theoretical foundation for feedback iterative multiple suppression methods.
Inspired by the pre-stacked inversion theory, Verschuur et al. [26] successfully eliminated
the predicted free surface multiples according to the principle of minimum energy and was
the first to utilize the adaptive subtractive surface operator calculation method, allowing
SRME to be applied to the processing of real-world data. As the estimation of surface
operators is a nonlinear problem, Berkhout and Verschuur [27] further proposed an itera-
tive algorithm for predicting multiples, of which the iterative process converges quickly,
and the errors generated by one iteration will affect data in the next iteration. For further
elimination of surface-related multiples, Verschuur and Berkhout [28] found that the SRME
method can also perform local elimination within the local window after global elimination
has taken place. Jakubowicz [29] proposed a data-driven interval multiples suppression
(IMP) technique based on the SRME method that does not require reconstruction of the
model reference plane. Berkhout and Verschuur [30] extended the free surface multiples
to the interval multiples and proposed the generalized SRME method depending on the
velocity model.

In this paper, we first used the SRME method to process waterborne GPR data. Two
numerical model experiments were carried out to verify its ability to suppress surface-
related multiples. In order to determine the effectiveness of multiple suppression by SRME,
we compared it to the prediction deconvolution method.

2. Materials and Methods
2.1. Principles of the SRME Method

According to Verschuur [31], a source signal s(t) propagates downwards vertically.
The primary wave y0(t) is calculated by the equation below:

y0(t) = s(t) ∗ x0(t) (1)

where x0(t) represents the formation responses. When the primary wave y0(t) is reflected
at the surface, the first-order surface-related multiple can be expressed as:

m1(t) = −y0(t) ∗ x0(t) (2)
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for which the minus denotes the total reflection. Similarly, the n-order surface-related
multiple can be written as follow:

mn(t) = −mn−1(t) ∗ x0(t) (3)

Therefore, the total responses can be calculated by the equation below:

y(t) = y0(t)− y0(t) ∗ x0(t) + y0(t) ∗ x0(t) ∗ x0(t)− · · · (4)

Equation (4) means that all responses are the result of repeated multiples. This equation
can be also expressed as follows:

y(t) = [s(t)− y(t)] ∗ x0(t) = y0(t)− y(t) ∗ x0(t) = s(t) ∗ x(t) (5)

where x(t) is the total of all the formation responses. In practice, x(t) is unknown. To
estimate the formation responses, a deconvolution operator is defined as

a(t) ∗ s(t) = δ(t) (6)

where a(t) is the deconvolution operator and δ(t) is a pulse signal. According to Equations
(1), (5) and (6), the frequency domain of the primary wave can be expressed by the following
equation:

Y0( f ) =
Y( f )

(1 − X( f ))
(7)

Equation (7) can be transformed through polynomial expansion as follows:

Y0( f ) = Y( f ) + A( f )Y2( f ) + A2( f )Y3( f ) + · · · (8)

According to Berkhout and Verschuur [27], Equation (8) can be changed into the
equation below:

Y0
i+1( f ) = Y( f )− A( f )Y0

i( f )Y( f ) (9)

where the superscript i denotes the iterations. Usually, the first iteration input is the
total responses Y(f ). The deconvolution operator A(f ) or a(t) must be calculated at every
iteration according to the principle of minimum energy. In the time domain, Equation (9) is
expressed as follows:

yi+1
0 (t) = y(t)− a(t) ∗ yi

0(t) ∗ y(t) = y(t)− a(t) ∗ mi(t) (10)

in which mi(t) represents the predicted multiples throughout the i iterations. According to
the principle of minimum energy, the energy can be calculated using the equation below:

E =
M

∑
n=0

{
y(n)−

N

∑
k=0

a(k)m(n − k)

}2

(11)

where M and N are the length of the signal and the length of the deconvolution operator a(t),
respectively. Energy (E) can be regarded as the function of a(k). The differential derivative
of E with respect to each a(k) is zero so that E reaches the minimum. Finally, the equation of
a(t) can be written as

N

∑
k=0

φmm(j − k)a(k) + ε2a(j) = φym(j); j = 0, 1, 2, . . . , N (12)

where φmm denotes the autocorrelation of the predicted multiples, φym represents the cross-
correlation of the total of input responses and the predicted multiples, ε2 is the stability
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coefficient. The left side of Equation (12) can be considered a Toeplitz matrix. Levinson [32]
proposed an efficient recursive algorithm for solving such a matrix.

2.2. Workflow

The flowchart of SRME is shown in Figure 1. The first step consisted of pre-processing
procedures including correcting for time-zero, muting of direct waves, establishing an
automatic gain control (AGC), filtering, and denoising. Filtering methods were used to
suppress ambient noise, which usually includes removing the global background and
filtering the finite impulse response (FIR) filter. In this paper, we utilized the denoising
method to eliminate the influence of residual noise in bodies of water. These data were
substituted by weak random noise. The second step was to obtain the surface-related
multiples prediction model through autocorrelation of the input signal, i.e., the surface-
related multiples prediction model. The third step was to obtain self-adaptive surface
matching operators based on the principle of minimum energy within the global time
window. The critical parameters include the global operator length, the iteration time,
and the white noise coefficient, i.e., the stability coefficient. For our study, the best global
operator length was not fixed and was no more than half the time window. There were
generally no more than five iterations. The value of the white noise coefficient varies from
0.1% to 1%, and had very little impact on the SRME results. Finally, we utilized the iterative
subtraction method to obtain the surface-related multiples elimination results.
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2.3. Synthetic Datasets
2.3.1. Underwater Horizontal Layered Model

Two groups of synthetic datasets testing were carried out to validate the effectiveness
of the SRME method within an FDTD algorithm [33]. Figure 2a shows a simple underwater
horizontal four layer model, the parameters of which are shown in Table 1. The excitation
and reception antennas were placed at the top in the air layer, 0.01 m away from the
surface of the water. We also used the Ricker wavelet and the 100 MHz center frequency
of the electromagnetic wave. Each grid of the model was 2 mm, and the PML absorption
boundary was set to 40 grid widths or 8 cm. The excitation and receiving antennas moved
2 cm to the right at a horizontal step of 2 cm from 0.1 m and 0.14 m, respectively. A total of
88 channels of data were collected, within the 85 ns recording window. Figure 2b shows
the raw B-scan profile. Figure 2c illustrates the processed version in which the direct waves
were muted. Figure 2d shows the B-scan profile with a Gaussian random noise level of 4%
of the maximum amplitude based on Figure 2c.
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Table 1. Material parameters of the horizontal layered model.

Layer Thickness (m) Relative Permittivity εr

Air 0.1 1
Water 0.4 81

Silt 0.3 25
Bedrock 0.8 5

2.3.2. Underwater Undulating Interface Model

Figure 3a shows a 9 m × 3 m underwater undulating interface model with a grid
width of 5 mm. The excitation antenna was set at the horizontal location of 0.3 m, the
receiving antenna at 0.4 m, and both were 0.05 m away from the surface of the water.
The horizontal step was 0.1 m. A total of 84 channels of data were recorded during a
window of 145 ns with a center frequency of 100 MHz. The model parameters are given
in Table 2, in which the material characteristics correspond with those in Table 1. The
maximum and minimum depths of the water layers were 1.1 m and 0.7 m, respectively. The
maximum and minimum thicknesses of the silt layer were 1.5 m and 0.5 m, respectively.
Figure 3b,c show the raw B-scan profile and the processed version. Figure 3d shows the
B-scan profile with a Gaussian random noise level of 4% of the maximum amplitude based
on Figure 3c. According to the identification characteristics and periodicity of multiples,
the corresponding event, indicated by the yellow arrow, is a result of the second-order
surface-related multiples of the primary reflection at the bottom. The dip angle of the
multiple in the curved section increased compared to that of the primary wave. The blue
arrow in the middle represents the short-range surface-related multiples in the silt at the
bottom, of which the travel time is identical to that of the two yellow arrows in the middle.
A relatively insubstantial event occurred near the concave center at 100 ns. According
to the travel time, there were multiple intervals between the water-subsurface and the
silt-subsurface.

Table 2. Material parameters of the underwater undulating model.

Layer Thickness (m) Relative Permittivity εr

Air 0.3 1
Water 0.7 (thinnest)/1.1 (thickest) 81

Silt 0.5 (thinnest)/1.5 (thickest) 25
Bedrock 1.1 5

2.4. Real Case Datasets

The real case datasets came from an underwater archeological site at Shanglin Lake in
Cixi City, Zhejiang Province, featuring ancient Yue kilns that were in use for over 1000 years
from the Eastern Han Dynasty to the middle of the Southern Song Dynasty. Nearly 200 sites
have been discovered, 179 of which have been numbered. It is currently the largest group
of celadon firing sites and the most concentrated distribution of kilns in China. Figure 4
shows Shanglin Lake and its surroundings, particularly the water-covered Houshi’ao site,
indicated by the red circle. This site is located in the southern region of the west bank of the
Shanglin Lake Reservoir, which has one of the highest distributions of kilns. However, due
to the limited excavation area and lack of underwater archaeological investigations, the
exact range, shape, and accumulation of these underground objects cannot be accurately
defined, and the submerged remains have not yet been explored.
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Based on prior detection results, Shanglin Lake can reach a maximum depth of 8 m.
The GSSI SIR-4000 GPR with a center frequency of 100 MHz was chosen for Houshi’ao
site, as shown in Figure 5. The average relative dielectric constant and conductivity of
the water in this area were 83 and 0.003 S/m, respectively. Therefore, the propagation
speed of electromagnetic waves was estimated to be about 0.033 m/ns. Similarly, the
estimated velocity of electromagnetic wave propagation in the bottom layer medium of
the lake was 0.055 m/ns. The length of this survey line was 184 m. The measurement
carrier is a diesel-powered wooden boat, of which the thickness of the bottom plate is
5 cm. We used the common offset acquisition method based on the time-sequence with
a scanning rate of 24 scan/s, a sampling rate of 2048, and a time window of 800 ns. The
raw datasets contain 4459 channels of A-scan data. The raw and pre-processed B-scan
profiles are shown in Figure 6a,b, respectively. The pre-processing procedures included
Dewow and FIR filtering, AGC, time zero correction, the removal of DC components and
direct waves as well as water noise suppression. Compared to Figure 6a, the data that
was collected above the underwater reflection interface in Figure 6b was filled with weak
random noise, which can reduce the impact of water noise. The B-scan profile contained
well-developed multiples and four distinct rises. The flat bottom is mainly located at about
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200 ns, and the multiples at 400 ns are the first order surface-related multiples. Due to the
attenuation of electromagnetic waves during propagation, the events of the flat formations
at around 300 ns are blurry.
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3. Results
3.1. Synthetic Datasets
3.1.1. Underwater Horizontal Layered Model

It is crucial to select an appropriate global operator length and a white noise coefficient.
Based on trials, these were set to 40 ns and 0.1%, respectively. Figure 7a shows the B-scan
profile without the predicted multiples based on those in Figure 2c. Figure 7b illustrates
the predicted surface-related multiples and Figure 7c shows the 10th A-scan data with
and without the elimination of multiples. As seen in Figure 7a, primary waves from the
water-layer subsurface and silt-layer subsurface were well developed and surface-related
multiples were suppressed effectively. However, there were some residual multiples
approximately 10 ns away from the primary wave in the silt-layer subsurface, which is
equal to the travel time of this layer. Therefore, they are interval multiples. In Figure 7c,
suppressed multiples were located mainly at 48 ns, 58 ns, and 68 ns. According to the
suppressed multiples result, residual interval multiples were located at 44 ns.
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Figure 7. The SRME results: (a) The B−scan profile without the predicted multiples; (b) The B−scan
profile containing predicted multiples; (c) A comparison of the 10th A−scan data with and without
the elimination of multiples, in which the solid and dashed lines indicate the raw data and the
processed data, respectively.

To validate the SRME method’s effect on noise, the B-scan profile adds a Gaussian
random noise level of 4%, as illustrated in Figure 2c. The length of the operator and the
white noise coefficient were 40 ns and 0.1%. Figure 8a shows the multiples-eliminated
B-scan profile from Figure 8c. Figure 8b presents the predicted surface-related multiples.
Figure 8c compares the 10th A-scan signals. It indicates that Gaussian random noise had
very little impact on the SRME results.
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In order to further verify the effect of SRME, we used the predictive deconvolution
method to suppress surface-related multiples. Figure 9 shows the results of this method
under the same conditions. The prediction operator had a length of 35 ns, a white noise
coefficient of 0.1%, and a prediction step of one reflection time at the underwater interface.
Figure 10 shows the 10th A-scan data through the predictive deconvolution method.
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Figure 10. A comparison of the A−scan data: (a) without the Gaussian random noise level of 4%;
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In order to quantitatively evaluate the SRME results, these single channel results and
predictive deconvolution are represented by the signal to noise ratio (SNR), as shown in
Table 3.

Table 3. Comparisons of SNR.

Method Noise SNR (dB)

SRME None 11.1235
Predictive deconvolution None 11.5178

SRME 4% Gaussian random noise 11.1853
Predictive deconvolution 4% Gaussian random noise 11.4822

3.1.2. Underwater Undulating Interface Model

The length of the global operator was set to 30 ns, while the white noise coefficient was
identical to that of the horizontal layered model, 0.1%. Figure 11 shows all the SRME results
including those determined under the Gaussian random noise level of 4% and without
noise. As Figure 11a indicates, the interval multiple at 100 ns can be clearly delineated
from the few residual multiples. In Figure 11b, the slope of the predicted multiples is not
continuous. Figure 12 shows predictive deconvolution results similar to those in Figure 11,
which had a predictive operator length of 80 ns and a white noise coefficient of 0.1%. In the
same way, suppressions of multiple waves at 1 m and 4.5 m were evaluated by SNR, as
seen in Table 4.

Table 4. Comparisons of SNR at 1 m and 4.5 m.

Method Location Noise SNR (dB)

SRME

1 m None 12.6812
4.5 m None 13.5961
1 m 4% Gaussian random noise 12.4715

4.5 m 4% Gaussian random noise 13.1093

Predictive
deconvolution

1 m None 18.9891
4.5 m None 13.857
1 m 4% Gaussian random noise 17.5618

4.5 m 4% Gaussian random noise 12.7906
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Figure 12. The predictive deconvolution results: (a) The B−scan profile without the predicted
multiples; (b) The B−scan profile including the predicted multiples; (c) The B−scan profile without
the predicted multiples with a Gaussian random noise level of 4%; (d) The B−scan profile including
the predicted multiples with Gaussian random noise level of 4%.

3.2. Real Case Datasets

As shown in Figure 13a, the B-scan profile was processed to suppress multiples.
Figure 13b displays the predicted multiples. The length of the global operator was set to
150 ns while the white noise coefficient was 0.1%. We found that the residual multiples,
shown in Figure 13a, were mainly located in the undulating strata which correspond to the
four increases. Moreover, some residual multiples ranged from 60 m to 70 m and came close
to 400 ns in relatively flat terrain; thus, they should be interval multiples. We compared
the pre-eliminated to the post-eliminated A-scan signals at 63 m, as seen in Figure 14a. We
found multiples ranging from 390 ns to 430 ns and from 600 ns to 630 ns, respectively. The
latter was slightly weaker. Similarly, we compared A-scan signals at 94 m, as shown in
Figure 14b. The predicted multiples were found in the 40 ns from 340 ns to 380 ns, and the
suppressing effect was significant; see Figure 15 for a more comprehensive comparison of
all the predicted deconvolution results.

The SNR results of SRME and the predictive deconvolution method are presented in
Table 5.

Table 5. Comparisons of SNR.

Method Location SNR (dB)

SRME 63 m 0.8394
Predictive deconvolution 63 m 0.3683

SRME 94 m 1.2340
Predictive deconvolution 94 m 0.2646
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represent the raw and the processed data, respectively.
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processed data, respectively.

4. Discussion

The prediction deconvolution method and SRME have been utilized extensively in
seismic research. However, the role of multiple suppression in GPR studies, especially in
regard to water detection, has been largely ignored by scholars. Furthermore, compared to
the predictive deconvolution method, SRME has received less attention in the field of water
exploration. Tables 3 and 4 show that these techniques have similar suppression effects
on multiple waves in water located in simple terrain; Table 5 further illustrates that for
real world data, and SRME has a more suppressive effect on multiple waves generated by
complex underwater terrain. This may be because real world underwater terrain is often
more complex, and the predictive deconvolution method relies on prediction step size and
prediction operators. This terrain makes it more difficult for the predictive deconvolution
method to suppress multiple waves. For SRME, the relevant parameters include iteration
number, global operator length, and white noise coefficient. The number of iterations and
the white noise coefficient usually do not have a significant impact on the results of SRME.
After analyzing the results of the experiments, we found that the optimal global operator
length should be near the time of the first arrival of the underwater interface reflection. The
Shanglin Lake site has simple underwater terrain, so GPR for sounding and mapping in
this area has been successful. Due to the rapid attenuation of electromagnetic waves in
underwater formations and deep water, sometimes multiple waves have very little impact
on the processing and interpretation of actual data. In Figure 6, the water depth of flat
stratum and the Penetration depth of electromagnetic wave are estimated to be 3.3 m and
2.7 m, respectively. The shallow underwater strata and anomalous bodies buried in the
strata are not greatly affected by multiple waves. However, wave suppression is essential
when researching real world complex and diverse underwater environments. Thus, it
deserves more attention.

5. Conclusions

For this study, the SRME method was first utilized for GPR data processing because it
can adaptively subtract and suppress predicted multiples by iteratively obtaining surface
matching operators based on the principle of minimum energy. Compared to the predicted
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deconvolution method, SRME is more effective at suppressing underwater free surface
multiples from real world data. In addition, GPR can play an essential role in underwater
sounding and underwater terrain mapping. Development of multiple waves is commonly
found in underwater radar profiles. In areas with deep water depths, the impact of
multiple waves on underwater strata and buried anomalous bodies is limited. However,
to more extensively investigate complex underwater terrain and different water depths,
research on multiple suppression is necessary. This paper provides a methodological basis
for using GPR in underwater detection and for solving difficult problems in the field of
water engineering.
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