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Abstract: Sea clutter is a kind of ubiquitous interference in sea-detecting radars, which will definitely
influence target detection. An accurate sea clutter prediction method is supposed to be beneficial
while existing prediction methods are based on the one-step-ahead prediction. In this paper, a sea
clutter prediction network (SCPNet) is proposed to achieve the k-step-ahead prediction based on
the characteristics of sea clutter. The SCPNet takes a sequence-to-sequence (Seq2Seq) structure as
the backbone, and a simple self-attention module is employed to enhance the ability of adaptive
feature selections. The SCPNet takes the normalized amplitudes of sea clutter as inputs and is
capable of predicting an output sequence with a length of k; the phase space reconstruction theory
is also used to find the optimized input length of the sea clutter sequence. Results with the sea-
detecting radar data-sharing program (SDRDSP) database show the mean square error of the proposed
method is 1.48 × 10−5 and 8.76 × 10−3 in the one-step-ahead prediction and the eight-step-ahead
prediction, respectively. Compared with four existing methods, the proposed method achieves the
best prediction performance.

Keywords: sea clutter prediction; seq2seq structure; gated recurrent unit (GRU); k-step-ahead
predictions; neural-network applications

1. Introduction

Real-time and accurate marine surveillance plays a significant role in both military
and civil fields, such as early warning and marine rescue [1]. Radar, which served as a
full-weather and full-time sensor, is a ubiquitous solution to provide reliable range and
Doppler resolutions. However, back-scattering echoes received by radar systems contain
not only targets under test but also echoes from the sea surface. These echoes from the sea
surface, i.e., sea clutter, are supposed to interfere with the observation of targets of interest.
Once the sea wave becomes sufficiently wild, it will introduce the probability of a false
alarm, which is almost inevitable in many kinds of radar systems [2,3]. In addition, owing
to its physical property, the Doppler spectrum of sea clutter is prone to being wide. The
wide Doppler spectrum then tends to cover targets under test [4], especially those dim
targets with a relatively low velocity. Thus, it is of significance to suppress sea clutter while
preserving the information of targets of interest.

There are lots of classical clutter-suppression algorithms based on transform domain
cancellation, such as the moving target indicator (MTI) method and root loop cancellation.
Nevertheless, targets with a low velocity are likely to be suppressed along with sea clutter
by the MTI method. In addition, the spectrum center of sea clutter will not always be
consistent with the zero Doppler frequency due to the relative motion of the sea surface,
which is prone to performance degradation of these cancellation methods [5]. In addition,
subspace projection methods also provide solutions to suppress clutter, such as the singular-
value decomposition method [6]. Based on the multiresolution analysis and reconstruction
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theory, a series of clutter-suppression approaches are proposed via many kinds of wavelet
transforms [7]. Empirical mode decomposition is also introduced into the sea clutter-
suppression method [8]. Although these suppression methods have improved the clutter-
suppression ability, sea clutter has obvious nonlinear, non-Gaussian, and nonstationary
characteristics [9], which may cause performance degradation.

Except for the typical suppression methods mentioned above, another viable way to
achieve robust clutter suppression is to predict the amplitude of sea clutter by learning its
natural inner rules. Then, a simple cancellation in the time domain between received echoes
and extrapolated clutter sequences can be employed to highlight targets of interest. A large
number of references focused on clutter characteristics are proposed. For the characteristic
of amplitude distribution, the Rayleigh distribution is designed for radar systems with low
resolutions. The log-normal distribution is proposed for sea clutter with large dynamic
ranges. The Weibull distribution and the K distribution are also widely used in clutter
models. Later, more and more elaborate models are proposed to describe sea clutter [10].

As for the change rule with the time of sea clutter, it has been viewed as a stochastic
process for a long time. In 1990, Haykin and Leung calculated and analyzed the correla-
tion dimension of sea clutter, which first indicates that sea clutter is basically a chaotic
process [11]. Furthermore, they have proposed a chaotic signal-processing method and a
small-target detection method based on the chaotic characteristic [12,13]. Fortunately, the
chaotic process of sea clutter actually provides a theoretical basis for clutter prediction. Le-
ung has proposed a memory-based predictor to achieve nonlinear clutter cancellation [14].
A multimodel prediction approach is designed for sea clutter modeling in [15], and different
radial basis neural networks are utilized to predict the peak of sea clutter.

With the development of machine learning, the support vector machine (SVM) is
employed to predict real-life sea clutter data [16]. A sea clutter sequence prediction method
based on a general-regression neural network (GRNN) and the particle-swarm optimization
algorithm is proposed in [17]. Results with one dataset from the IPIX database [18] verify
the feasibility of sea clutter prediction by a regression model, and the mean square error
(MSE) of the proposed method is about 0.4754. In [19], the Volterra filter is employed to
predict sea clutter and then detect low-flying targets and results with one dataset of the
IPIX database indicating the MSE is about 3.24 × 10−3. A weighted grey Markov model is
constructed for quantitative prediction of sea clutter power in [20]. Results with measured
data show the proposed model has better prediction accuracy.

Recently, modern neural networks (NNs) and deep learning (DL) have gained great
popularity and improvement in lots of fields, such as computer vision and natural language
processing. Hence, more and more researchers are making efforts to combine radar signal
processing algorithms and DL-based methods [21–23]. As for the prediction of sea clutter,
since the amplitude of sea clutter can be described as a sequence varying with time, the
clutter prediction problem can be viewed as a sequence prediction problem in the natural
language processing society. Recurrent neural networks (RNNs), equipped with hidden
states, are capable of catching and preserving short-term information in sequences [24].
Nevertheless, plain RNNs are prone to the gradient exploding problem and the vanishing
gradient problem.

Long short-term memory networks (LSTMs) are designed to deal with the above
problems by introducing the gate mechanism [25]. LSTMs are consequently utilized to
solve the clutter prediction problem. To obtain higher prediction accuracy at a farther
distance, an LSTM model is proposed, and its hyperparameters are discussed in [26].
Simulations demonstrate that the optimized LSTM model has better prediction accuracy
compared with the backpropagation network. Further, a clutter amplitude prediction
system based on an LSTM is designed in [27]. Results from three real-life databases show
that the mean MSE of the proposed system is lower than that of the artificial neural network
(ANN) and radial basis function network.

Except for the LSTM structure, a deep neural network (DNN) is employed to predict
sea clutter characteristics via marine environmental factors in [28]. Results verify that the
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DNN model can effectively predict important characteristics of sea clutter in the South
China Sea. In [29], a gated feedback RNN (GF-RNN) is designed to predict sea clutter
amplitude. Two measured databases, namely the IPIX database and a P-band database,
are used to evaluate the prediction performance. Results show that the GF-RNN has better
prediction ability than the SVM and ANN.

Although existing RNN-based methods have achieved high prediction accuracy or
low MSE with several real-life databases, these methods all use one-step-ahead prediction
to obtain corresponding results. That is, they usually predict only one amplitude value
due to the one-step-ahead prediction, which may be inefficient and complex to get a
required long prediction in practice. Thus, a k-step-ahead prediction is urgent for sea clutter
prediction. However, existing plain RNN-based methods may be powerless to deal with a
long output sequence.

Aiming at the above shortcoming of existing methods, a sea clutter prediction network,
denoted as SCPNet is proposed in this paper to achieve the k-step-ahead prediction. The
proposed SCPNet takes a sequence-to-sequence (Seq2Seq) structure as a backbone and is
enhanced by a self-attention module. Hence, different from the existing methods based on
one-step-ahead prediction, the purpose of this paper is to attempt to explore the prediction
performance of the k-step-ahead prediction method. The difficulty and shortcomings are
then analyzed and summarized through experiments with a real-life database. The main
contributions of this paper are as follows:

1. Different from mainstream methods based on the one-step-ahead prediction, the
proposed SCPNet is capable of predicting a long output sequence in one prediction
via the k-step-ahead prediction, which is more helpful in practice and can be easily
transformed into the one-step-ahead prediction when needed;

2. A Seq2Seq model is introduced to deal with the problem of variable-length output
sequences. The Seq2Seq model is capable of encoding input sequences and then
decoding them as prediction sequences. Furthermore, a self-attention module is
integrated to boost the learning and representation ability;

3. Although the IPIX database is a widely used benchmark, some physical parameters
are relatively out-of-date owing to the limitations of the hardware. Instead, a newly re-
leased database [30], namely the sea-detecting radar data-sharing program (SDRDSP)
database, is employed to assess the performance of each method.

The rest of this paper is organized as follows: Section 2 provides a problem formulation,
the difference between one-step-ahead prediction and the k-step-ahead prediction, and
an introduction to phase space reconstruction and the SDRDSP database. The details
of the proposed method, the structure of the SCPNet, and the experiment setting are
presented in Section 3. The results of the phase space reconstruction and comparisons of
different prediction modes are given and analyzed in Section 4. The consistency analysis
and the computational complexity are discussed in Section 5. Finally, the conclusions of
this paper and future works are summarized in Section 6.

2. Materials

In this subsection, the sea clutter prediction problem is formulated to clarify the
theoretical basis and contributions. Further, a brief introduction to the phase space recon-
struction theory is provided. Some detailed physical parameters and experiment settings
of the employed SDRDSP database are finally introduced.

2.1. Sea Clutter Properties and Problem Formulation

There are lots of research focused on the sea clutter model from different points of
view, such as the amplitude distribution, the Doppler domain, and spatial and temporal
correlations. The amplitude distribution is always used to describe the stochastic fluctu-
ation of sea clutter through the probability density function (PDF). As mentioned in the
introduction, some typical distribution models are employed to fit the amplitude distribu-
tion of actual sea clutter, including the Rayleigh distribution, the log-normal distribution,
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the Weibull distribution, and the K distribution. Furthermore, there are more and more
elaborate models to describe actual sea clutter in recent years.

For echoes of sea clutter, the Bragg scatting returns are significant components, and
they yield two distinct Doppler frequencies when the carrier frequency is lower than
the L-band. When the carrier frequency is higher than the L-band, there is usually only
one Bragg peak in the frequency spectrum [31]. These Doppler frequencies fd can be
calculated as [32]

fd = ±
√

g fc

πc
, (1)

where fc is the carrier frequency, g is the gravity acceleration, and c is the speed of light.
The analysis of temporal and spatial correlations can indicate a strong correlation in the
range domain and the time domain, respectively. Mathematically, for a fully coherent radar
overlooking a clutter-only ocean, the received sea clutter sequence with N sample points
can be denoted as

X = {x(1), x(2), x(3), . . . , x(N)}. (2)

Then, the temporal correlation coefficient ρ(t) and the spatial correlation coefficient
ρ(m) are defined as [33]

ρ(t) =
R(t)− |E(X)|2

R(0)− |E(X)|2
(3)

ρ(m) =
1
N ∑N−m

n=0 x(n)x∗(n + m)−
∣∣X∣∣2

|X|2 −
∣∣X∣∣2 (4)

where R(t) is the correlation function in the time domain and E(·) is the mathematical
expectation. According to these properties, it is viable to learn inner features and predict
the probable future fluctuation of sea clutter through NNs. Afterward, the extrapolated
clutter sequence can be employed to detect an anomaly, especially the presence of a target
by comparing it with the actual received echoes.

Since most existing NNs cannot process complex-value signals, the absolute value of
the received clutter sequence then becomes an alternate, denoted as Y. Due to the complex
nonlinear and chaotic characteristics of sea clutter, the absolute value sequence is usually
normalized, which is also beneficial to training RNNs. Herein, a min-to-max normalization
is employed as follows:

y(n) =
y(n)− ymin
ymax − ymin

, n = 1, 2, 3, . . . , N, (5)

where ymin and ymax are the minimal value and the maximal value, respectively. Then ac-
cording to Takens’ embedding theorem [34], the chaotic sequence Y can be reconstructed as:

Z(i, m) = {y(i), y(i + τ), . . . , y(i + (m− 1)τ)}, (6)

where i = 1, 2, 3, . . . , N − (m− 1)τ. τ and m denote the delay time and embedding dimen-
sion, respectively [35]. Z(i, m) is the i-th reconstructed sequence. Through the phase space
reconstruction theory, a state transition function f (·) can be calculated as

y(i + mτ) = f (Z(i, m)). (7)

Apparently, the nonlinear transition function f (·) is the key to predicting the next
value. However, how to find the function is a rather challenging task. Thanks to the
universal approximation theorem, a full-connection RNN with adequate sigmoid-class
hidden neurons is capable of fitting any nonlinear dynamic systems [36]. Thus, f (·) can be
obtained through data-driven training. Equation (4) then is rewritten as

y(i + mτ) = RNN(y(i), y(i + τ), . . . , y(i + (m− 1)τ)), (8)
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where RNN(·) denotes a RNN and y(i + (m− 1)τ + 1) is the prediction value of the RNN.
As for the training of the RNN, supervised learning is employed to obtain the optimized
weights. For a given training sample

{
Yt, L

}
, where Yt denote the training sequence and L

denote the label sequence, the error of prediction is calculated via a loss function as follows

Error = L
(
L, RNN

(
Yt; θ

))
, (9)

where L(·) is the loss function and θ is the learnable parameter in the RNN. Herein, the
loss function is the MSE function that is widely used in the prediction problem. The MSE
function is defined as

MSE =
1

Nt
∑Nt

i=1(l(i)− ŷ(i))2, (10)

where Nt is the length of the prediction sequence; l(i) and ŷ(i) denote the i-th true value
and i-th prediction value, respectively.

Next, our goal is to minimize the MSE between training samples and labels, and
backpropagation through a time algorithm is used to train the RNN. However, it is hard to
build a robust dependent relationship for a long range owing to the gradient exploding
problem. So, a gradient clipping method is introduced during the training. Let gt denote
the current gradient; then the gradient clipping performs the following steps:{

gt = gt, ‖gt‖2 ≤ b
gt =

b
‖gt‖2

gt, ‖gt‖2 > b , (11)

where ‖·‖2 indicates a 2-norm and b is a hyperparameter.

2.2. Phase Space Reconstruction

The length of an input clutter sequence is an important hyperparameter that, no doubt,
will influence the prediction performance of RNNs. How to select the optimized length
then becomes another difficulty. The length is manually selected by a series of experiments
in lots of previous works, which, however, is a time-consuming job and cannot guarantee
optimization. Thus, the phase space reconstruction theory is introduced in this paper to
find the optimized length of the input sequence.

The received clutter sequence is actually a scalar that is more appropriate to analyze
dynamic and chaotic characteristics in one-dimensional space. Thus, a phase space re-
construction is used to construct a higher dimensional space in the chaotic system for the
clutter sequence, which can preserve the inner geometric properties of the original system.
In addition, according to Takens’ embedding theorem, when an appropriate embedding
dimension m is selected, a phase space with the same meaning as the original system can
be reconstructed by using the original time series, just as derived in Equation (3).

Under ideal conditions, the delay time τ and the embedding dimension m can be
stochastically determined for a noise-free sequence with infinite length. However, for the
finite clutter sequence with lots of noise, it is of significance to calculate τ and m precisely
since inaccurate τ and m are supposed to interfere with reconstruction performance and
follow-up analysis. Once the optimized τ and m are selected, the optimized input length is
then selected. That is, the optimized length equals mτ, just as indicated in Equation (4).

There are lots of algorithms to find the optimized τ, such as the autocorrelation
algorithm and the mutual information algorithm. For a chaotic and nonlinear system,
the mutual information algorithm is a better choice. Let S = {s1, s2, s3, . . . , sn} and
Q = {q1, q2, q3, . . . , qn} denote two discrete systems, and H(S) and H(Q) are the infor-
mation entropy of S and Q, respectively. Then the mutual information is defined as

I(Q, S) = H(Q)− H(Q|S), (12)
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where H(Q|S) is the conditional probability density (CPD). For each element in two
systems, I(Q, S) can be rewritten as

I(Q, S) = ∑i ∑j Psq
(
si, qj

)
log

[
Psq
(
si, qj

)
Ps(si)Pq(j)

]
, (13)

where Psq
(
si, qj

)
is the joint probability density function. If we denote [s, q] = [x(t), x(t + τ)],

that is, S represents the sequence x(t) and Q represents the sequence with the delay time
x(t + τ). Then, I(Q, S) is a function with the delay time τ, denoted as I(τ). When I(τ) = 0,
there is no correlation between x(t) and x(t + τ). The first minimal value of I(τ) actually
indicates the most unrelated relation between x(t) and x(t + τ), and the first minimal value
consequently is the optimized delay time.

Once the delay time τ is selected, the Cao method [37] is employed to find the opti-
mized m. In the phase space with m dimensions, each point vector
Zm(i) = {z(i), z(i + τ), . . . , z(i + m− 1)τ)} is supposed to have the nearest point ZN

m(i) at
a certain distance. When the dimension is m + 1, the distance will change and there will be
the nearest point ZN

m+1(i). Then, a variable is defined as

a(i, m) =
‖Zm+1(i)− ZN

m+1(i)‖
‖Zm(i)− ZN

m(i)‖
, (14)

where ‖·‖ denotes the Euclidean distance. Further, E(m) and E1(m) are defined as

E(m) =
1

N −mτ ∑N−mτ

i=1 a(i, m), (15)

E1(m) =
E(m + 1)

E(m)
. (16)

If E1(m) does not change after m is greater than a certain value, the optimized embed-
ding dimension m has been determined.

2.3. The One-Step-Ahead Prediction and the k-Step-Ahead Prediction

In the prediction problem, there are always two direct issues that remain to be dealt
with, namely the length of the input sequence and the length of the output sequence in one
prediction. Now that the former issue has been solved in the above subsection, it comes
to the output length. Just as mentioned in the introduction part, existing methods almost
depend on the one-step-ahead prediction, which means that they output only one value
in one prediction. If a long prediction sequence is required, a recursive one-step-ahead
prediction strategy is employed to achieve the prediction of a long sequence. When the
length of an expected output sequence is N, the one-step-ahead prediction should be
recursively repeated N times, just as shown in Figure 1a.

In Figure 1a, the boxes in each row represent a one-step-ahead prediction. The blue
boxes mean the input sea clutter sequence in one prediction, and the dark blue box de-
notes the prediction value. After a series of predictions, a long prediction sequence is
then obtained. In addition, a viable way to realize the k-step-ahead prediction via the
one-step-ahead prediction is the recursive one-step-ahead prediction. That is, the current
prediction value is supposed to be added to the next input sequence. Apparently, when the
required length of the output sequence is relatively long, prediction errors of the recursive
one-step-ahead prediction will be accumulated.

Different from the one-step-ahead prediction, a multiple-input multiple-output method
is employed to achieve k-step-ahead prediction in this paper. Specifically, the length of
the input sequence is the same as that of the one-step-ahead prediction, but it can out-
put multiple values in one prediction, just as shown in Figure 1b. In one prediction, the
k-step-ahead prediction directly outputs k values to arrange a prediction sequence. Appar-
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ently, the number of predictions for the k-step-ahead prediction is much lower than that of
the one-step-ahead prediction.

Remote Sens. 2023, 15, x FOR PEER REVIEW 7 of 21 
 

 

Different from the one-step-ahead prediction, a multiple-input multiple-output 

method is employed to achieve k-step-ahead prediction in this paper. Specifically, the 

length of the input sequence is the same as that of the one-step-ahead prediction, but it 

can output multiple values in one prediction, just as shown in Figure 1b. In one prediction, 

the k-step-ahead prediction directly outputs k values to arrange a prediction sequence. 

Apparently, the number of predictions for the k-step-ahead prediction is much lower than 

that of the one-step-ahead prediction. 

 

(a) 

 

(b) 

Figure 1. The difference between the one-step-ahead prediction and the k-step-ahead prediction. (a) 

the one-step-ahead prediction; (b) the k-step-ahead prediction. 

2.4. The SDRDSP Database 

In spite of the fact that the IPIX database has been a classical benchmark in sea clutter 

prediction and floating target detection, it has been nearly 30 years since the first issue of 

the IPIX database was proposed. Particularly, with the rapid development of advanced 

radar systems, some physical parameters of the IPIX database, such as the range resolu-

tion of 30 m, are relatively out-of-date and may not adequately evaluate modern signal-

processing methods. 

Learning from the success of the IPIX database and other open-access databases, the 

SDRDSP database [30] is released by the Naval Aviation University to promote research 

on clutter characteristics, sea clutter suppression, and target detection. The employed X-

band radar is a solid-state power amplifier radar for coastal surveillance and navigation, 

which has the advantages of high resolution, high reliability, and a small distance blind 

area. The detailed physical parameters are listed in Table 1, where “Transmitting signal” 

indicates the radar transmits single frequency pulses (denoted as T1) and linear frequency 

modulation (denoted as T2) pulses successively. Except for the measured data, the auxil-

iary material and documentation of experiments are provided in detail, which include the 

environment parameters of the observation ocean and the information of the automatic 

identification system (AIS) in cooperative targets. 

Figure 1. The difference between the one-step-ahead prediction and the k-step-ahead prediction.
(a) the one-step-ahead prediction; (b) the k-step-ahead prediction.

2.4. The SDRDSP Database

In spite of the fact that the IPIX database has been a classical benchmark in sea
clutter prediction and floating target detection, it has been nearly 30 years since the first
issue of the IPIX database was proposed. Particularly, with the rapid development of
advanced radar systems, some physical parameters of the IPIX database, such as the range
resolution of 30 m, are relatively out-of-date and may not adequately evaluate modern
signal-processing methods.

Learning from the success of the IPIX database and other open-access databases, the
SDRDSP database [30] is released by the Naval Aviation University to promote research on
clutter characteristics, sea clutter suppression, and target detection. The employed X-band
radar is a solid-state power amplifier radar for coastal surveillance and navigation, which
has the advantages of high resolution, high reliability, and a small distance blind area. The
detailed physical parameters are listed in Table 1, where “Transmitting signal” indicates the
radar transmits single frequency pulses (denoted as T1) and linear frequency modulation
(denoted as T2) pulses successively. Except for the measured data, the auxiliary material
and documentation of experiments are provided in detail, which include the environment
parameters of the observation ocean and the information of the automatic identification
system (AIS) in cooperative targets.

From 2019 to 2022, authors have proposed 6 issues in the SDRDSP database, including
the radar cross-section (RCS) calibration, the observation of sea clutter under different sea
conditions, and marine target detection. Since we focus on the sea clutter prediction, the
first issue of the SDRDSP database in 2020 is employed in this paper to train and assess each
prediction method. During the experiment in this issue, the radar is placed at a bathing
beach in Yantai City, the altitude of the experiment scenario is about 400 m, and the height
is 80 m [38]. Under different sea conditions, the radar works in the staring mode to observe
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sea clutter. The experimental scenario is shown in Figure 2, where the blue area indicates
the area of observation.

Table 1. The detailed physical parameters of the employed radar in the SDRDSP database.

Name Value

Frequency 9.3~9.5 GHz
Bandwidth 25 MHz

Range resolution 6 m
Pulse repetition frequency 1.6 kHz

Peak power 50 W
Antenna length 1.8 m

Polarization mode HH
Operation mode Staring or scan

Horizontal beam width 1.2◦

Grazing angle 1.2◦~7◦

Transmitting signal Single frequency pulse
Linear frequency modulation pulse
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Figure 2. The diagram of the experimental scene in the Baidu map. The blue area indicates the area
of observation.

To be specific, the clutter-only “20210106155330_01_staring” dataset is employed to
construct the training and test samples. Herein, the sea condition is 3~4 and there are no
moving targets in the observation area due to the high sea condition. In addition, there are
6940 pulses of both the T1 and the T2 in this dataset, and there are 2224 and 4346 range
samples of the T1 and T2, respectively. The pulse widths of the T1 and T2 are 0.04 µs and
3 µs, respectively. Since linear frequency modulation signals are more commonly used in
advanced radar systems, we pay more attention to the T2 mode in the dataset and only
samples in the T2 mode are used in the following experiments. For a visual understanding,
the time-domain and range−Doppler map are given in Figure 3.

To further analyze the properties of the employed SDRDSP database, the measured
amplitude distribution and the frequency spectrum are provided in Figure 4a,b, respectively.
The amplitude distribution reveals a trailing phenomenon and the frequency spectrum
indicates a Bragg peak near the zero frequency. The temporal and spatial correlations are
shown in Figure 5a,b, respectively. By comparing with the threshold 1/e (shown as the red
dotted line), the strong temporal correlation and spatial correlation are about 3.53 ms and
13.5 m, respectively.
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3. Approach

In this section, a self-attention enhanced Seq2Seq structure is designed in this paper to
tackle the k-step-ahead prediction problem. Considering that sea clutter is a chaotic time
series, RNNs are still the backbone networks of the proposed structure inspired by the
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success of the previous prediction methods. Thus, the basis of RNNs and the inner structure
of the proposed SCPNet are introduced, and details of the experiments are provided.

3.1. The Basis of RNNs

In feedforward neural networks, information and features of the current input are
transferred unidirectionally. That is, the output of these networks only relies on the current
input, which makes it easy for networks to train and optimize. While the output not
only relies on the current input but also the previous outputs in many actual tasks. For
example, it is difficult for feedforward neural networks to process time series, such as
speech and text.

Different from feedforward neural networks, RNNs have loop structures and short-
term memories, which indicates neurons in RNNs can receive information from both other
neurons and self-neurons. Then RNNs are capable of processing time sequence data of any
length by using neurons with self-feedback. For an input sequence S = (s1, s2, s3, . . . , sT),
the hidden states Ht in the corresponding hidden layer with self-feedback are updated as

Ht = f (Ht−1, st), (17)

where Ht−1 denotes the last hidden state and h0 = 0. f (·) is a nonlinear function or a
feedforward neural network. That is, there are feedback connections between hidden states
in RNNs, and these hidden states are capable of preserving memories and information
from previous inputs.

Although plain RNNs can theoretically establish dependencies between states with
long ranges, only short-term dependencies can be actually learned due to the problem of
gradient explosion or vanishing gradient. To tackle this long-term dependency problem,
the gating mechanism is introduced in RNNs to control the accumulating speed of infor-
mation. The gating mechanism can selectively add new information and selectively forget
previously accumulated information. Based on the gating mechanism, the LSTM and gated
recurrent unit (GRU) are proposed. The GRU can be viewed as a slightly simplified LSTM
cell, which provides less computational complexity [39].

Different from plain RNNs, there are two gates in a GRU, namely, the reset gate
and the update gate. These gates are capable of controlling hidden states and the values
of their learnable parameters are between 0 to 1. Mathematically, for the same input
in Equation (14), the reset gate Rt is calculated as

Rt = σ(WsrS + WhrHt−1 + br), (18)

where Wsr and Whr denote the weights for input sequences and last hidden states, respec-
tively; br is the bias term and σ(·) is the Sigmoid activation function. The reset gate actually
controls the ratio of task-relevant previous states. Then the update gate Ut is calculated as

Ut = σ(WsuS + WhuHt−1 + bu), (19)

where Wsu, Whu, and bu denote the weights and the bias term, respectively.
The reset gate and last hidden states are then combined to calculate the current

candidate hidden states
~
Ht as

~
Ht = tan h(WshS + Whh(Rt �Ht−1) + bh), (20)

where Wsh, Whh, and bh denote the weights and the bias term, respectively. The “�” is
the Hadamard product. To combine the update gate Ut and candidate hidden states, the
current hidden states Ht can be calculated as

Ht = Ut �Ht−1 + (1−Ut)�
~
Ht (21)
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For clarity, the reset gate is beneficial to catch the short-term dependency and the
update gate is helpful to build the long-term dependency in sequences. The flowchart of a
GRU is shown in Figure 6.
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3.2. The Structure of the Proposed SCPNet

The proposed SCPNet consists of a Seq2Seq structure and a simple self-attention
module, where the Seq2Seq structure is employed to tackle the k-step-ahead prediction and
the self-attention module is capable of boosting the adaptive feature selection. First, the
key to the k-step-ahead prediction is to construct a network where its input and output are
sequences, and the length of the input sequence and output sequence can be different. For
the input sequence S = (s1, s2, s3, . . . , sT) and an output sequence Y = (y1, y2, y3, . . . , yN),
the goal of the Seq2Seq is to approximate the CPD as

p(Y1:N |S1:T) = ∏N
n=1 p

(
yn

∣∣∣Y1:(n−1), S1:T

)
, (22)

where the subscript means the start and end of the sequence. Then, the maximum likelihood
estimation can be used to find the optimization weight θ̂ as follows,

θ̂ = argmax
θ

∑N
n=1 log p(Y1:N |S1:T). (23)

Taking the time-series characteristics of sea clutter into consideration, two RNNs are
employed in the SCPNet to construct a Seq2Seq model, where one RNN is used as an
encoder and another is used as a decoder. For the encoder, the RNN can encode the input
sequence S to a matrix E with a fixed dimension, and the vector usually is the hidden state
at the last time step. That is,

E = RNNen
(
Hen

T−1, θen
)
, (24)

where Hen
T−1 is the hidden state in the previous time step and θen is the learnable parameter

in the encoder RNN.
Another RNN is then employed to encode and output the prediction sequence, where

the initial hidden state is the hidden state in the last time step. That is,

Hde
0 = E, (25)

at the t-th time step of the decoder, the current hidden state is

Hde
t = RNNde

(
Hde

t−1, θde

)
, (26)
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where Hde
t−1 is the hidden state in the previous time step and θde is the learnable parameter

in the decoder RNN. Finally, the last hidden state of the decoder RNN is employed to
obtain the prediction sequence via a linear layer.

Although the GRU and the Seq2Seq model improve the ability to build a long-term
dependency, they are still prone to losing information from early stages if the input sequence
is too long. Furthermore, the physical and chaotic characteristics of sea clutter are complex.
It may be satisfactory for existing LSTM-based methods to achieve the one-step-ahead
prediction, while the proposed SCPNet is required to not only build long-term dependency
of the input sequence but also find time-series dependency of the prediction sequence with
the length of k in the k-step-ahead prediction.

Thus, to further boost the feature adaptive selection ability, a simple self-attention
module is introduced. The self-attention module is capable of constructing an external
score to evaluate the significance of the output of each neuron at each moment in the GRU.
The attention module aims to adaptively find task-relevant outputs and suppress useless
features through the score function. A standard attention module always consists of a
query, a key, and a value [24]. Mathematically, let A denote the input of the attention
module, the query matrix Q, the key matrix K, and the value matrix V are calculated as:

Q = WqA
K = WkA
V = WvA

(27)

where Q = {q1, q2, q3, . . . , qN}, K = {k1, k2, k3, . . . , kN}, and V = {v1, v2, v3, . . . , vN}.
For each qn, the score Sc is then calculated as:

Sc = ∑N
j=1 SoftMax

(
s f
(
kj, qn

))
vj (28)

where SoftMax(·) denotes the SoftMax function and s f (·) is the score function. In the
proposed SCPNet, the score function is achieved via a layer perceptron where the inputs
are the outputs of the GRU in the decoder. The outputs of the GRU are then scaled by
calculated scores.

In the final layer of the proposed SCPNet, a linear layer is employed to map its inputs
to the prediction sequence. To enrich the feature map, the scaled outputs of the decoder and
the original outputs of the decoder are concatenated to serve as the inputs of the final linear
layer. The detailed setting and structure of the proposed SCPNet are provided in Table 2,
where “GRU 1 (Encoder)” means a GRU in the encoder part, the hidden size indicates the
size of the hidden state, and “# Layers” means the number of layers. The flowchart of
the proposed method is also shown in Figure 7, where “Concatenate” denotes the vector
concatenation operation and “Attention” represents the attention module.

Table 2. The detailed structure of the proposed SCPNet.

Layer Input Size Output Size Hidden Size Activation # Layers

GRU 1
(Encoder) 1 32 32 Sigmoid

Tanh 1

GRU 2
(Encoder) 32 32 32 Sigmoid

Tanh 1

GRU 3
(Decoder) 32 32 32 Sigmoid

Tanh 1

GRU 4
(Decoder) 32 32 32 Sigmoid

Tanh 1

Linear 1
(Attention) 32 32 - SoftMax 1

Linear 2
(Output) 64 32 - - 1
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3.3. Details of Experiments

As mentioned above, the clutter-only “20210106155330_01_staring” dataset in the
SDRDSP database is employed to construct the training and test samples. Since the T2
mode, namely, the linear frequency modulation mode, is much more commonly used than
the single frequency mode in modern radar systems. The measured signals in the T2 mode
are used and their absolute values are normalized to serve as the inputs of each method. In
addition, due to the relatively weak amplitude of sea clutter far from the coast, only the
first 1280 range samples of each pulse are selected for the sake of computational burden.

During the training of each method, a 2-norm gradient clipping method is employed
to avoid the gradient exploding problem. The Adam [40] optimization algorithm is used to
find the optimized weight of each method. Meanwhile, a cosine annealing warm restart is
used for cooperative work with Adam to improve efficiency. As for the hyperparameters,
the learning rate is 0.01, the batch size is 2048, and the number of epochs is 200. For all
experiments, a server, equipped with a CPU of Intel Xeon Gold 6226R with a RAM of 256 G
and a GPU of Nvidia Quadro RTX 6000 with a video memory of 24 G, is used. The software
platform includes Python 3.8.5, PyTorch 1.7.1, and CUDA 11.0.

4. Results

In this subsection, the input length is selected through the results of the phase space re-
construction. Then, comparisons of the one-step-ahead prediction of the proposed method
and the state-of-the-art methods are provided and analyzed. Moreover, comparisons of the
one-step-ahead prediction and the computational complexity of each method are shown
and discussed.

4.1. Results of the Phase Space Reconstruction

For a prediction method based on RNNs, the input length is an important hyper-
parameter that is supposed to influence the prediction performance without a doubt. In
many previous works focused on the sea clutter prediction problem, the optimized input
length is selected manually by a series of experiments, which is inefficient and exhausting
in practice. Fortunately, based on the phase space reconstruction theory, the optimized
input length can be found due to the chaotic characteristics.

As mentioned in Section 2, the optimized length equals mτ, just as indicated
in Equation (4). The delay time τ is calculated through the mutual information algo-
rithm, and the result is shown in Figure 8a. When the delay time τ is greater than eight,
the mutual information is almost stable and no longer decreasing. Hence, the optimized
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delay time τ is eight. As for the optimized embedding dimension m, it is selected by the
Cao method and its result is shown in Figure 8b. Similarly, when the embedding dimen-
sion is greater than eight, the E1 is no longer decreasing. Then the optimized embedding
dimension m is 8, which indicates the optimized input length is 64.

Remote Sens. 2023, 15, x FOR PEER REVIEW 14 of 21 
 

 

in practice. Fortunately, based on the phase space reconstruction theory, the optimized 

input length can be found due to the chaotic characteristics. 

As mentioned in Section 2, the optimized length equals 𝑚𝜏, just as indicated in Equation 

(4). The delay time 𝜏 is calculated through the mutual information algorithm, and the result 

is shown in Figure 8a. When the delay time 𝜏 is greater than eight, the mutual information is 

almost stable and no longer decreasing. Hence, the optimized delay time 𝜏 is eight. As for the 

optimized embedding dimension 𝑚, it is selected by the Cao method and its result is shown 

in Figure 8b. Similarly, when the embedding dimension is greater than eight, the 𝐸1 is no 

longer decreasing. Then the optimized embedding dimension 𝑚 is 8, which indicates the op-

timized input length is 64. 

  

(a) (b) 

Figure 8. The results of the phase space reconstruction. (a) the delay time 𝜏; (b) the embedding 

dimension 𝑚. 

4.2. Comparisons on the One-Step-Ahead Prediction 

Since the existing prediction methods are based on the one-step-ahead prediction, 

results with the one-step-ahead prediction of the proposed method and several state-of-

the-art methods, including the GRNN, the DNN, the LSTM, and the GF-RNN, are com-

pared and analyzed. Although the proposed method is designed for the k-step-ahead pre-

diction, the proposed method can be easily converted to the one-step-ahead prediction. 

To be specific, if the input sequence and the interval of each input sequence are the same 

as the existing methods, the proposed method can be viewed as the one-step-ahead pre-

diction by only using the first prediction value in each prediction. 

As for the metrics of comparisons, except for the MSE defined in Equation (7), the 

mean absolute error (MAE) is also employed to evaluate the performance, which is de-

fined as 

MAE =
1

𝑁𝑡
∑ |𝑙(𝑖) − 𝑦̂(𝑖)|𝑁𝑡

𝑖=1 , (29) 

where |∙| denotes the absolute value function. The MSE and MAE of each method are 

provided in Table 3, where results are in the format of average ± standard deviation. 

For the one-step-ahead prediction, the MSE and the MAE of the SCPNet are about 

1.48 × 10−5 and 2.25 × 10−3, respectively. That is, the proposed SCPNet is capable of achiev-

ing the smallest MSE and MAE, which indicates the SCPNet can still have the best predic-

tion performance compared with the four existing methods. In addition, compared with 

the GRNN and the DNN, the RNN-based networks, namely, the SCPNet, the LSTM, and 

the GF-RNN, obviously gain better prediction performance, which verifies the superiority 

of RNNs. 
  

Figure 8. The results of the phase space reconstruction. (a) the delay time τ; (b) the embedding
dimension m.

4.2. Comparisons on the One-Step-Ahead Prediction

Since the existing prediction methods are based on the one-step-ahead prediction, re-
sults with the one-step-ahead prediction of the proposed method and several
state-of-the-art methods, including the GRNN, the DNN, the LSTM, and the GF-RNN, are
compared and analyzed. Although the proposed method is designed for the k-step-ahead
prediction, the proposed method can be easily converted to the one-step-ahead prediction.
To be specific, if the input sequence and the interval of each input sequence are the same as
the existing methods, the proposed method can be viewed as the one-step-ahead prediction
by only using the first prediction value in each prediction.

As for the metrics of comparisons, except for the MSE defined in Equation (7), the mean
absolute error (MAE) is also employed to evaluate the performance, which is defined as

MAE =
1

Nt
∑Nt

i=1|l(i)− ŷ(i)|, (29)

where |·| denotes the absolute value function. The MSE and MAE of each method are
provided in Table 3, where results are in the format of average ± standard deviation.

Table 3. The MSE and MAE of each method.

SCPNet (Proposed) GRNN DNN LSTM GF-RNN

MSE 1.48 × 10−5

±5.2 × 10−6
1.87 × 10−2

±5.1 × 10−3
1.02 × 10−3

±2.6 × 10−4
3.55 × 10−5

±6.2 × 10−6
1.72 × 10−5

±5.1 × 10−6

MAE 2.25 × 10−3

±3.6 × 10−4
9.9 × 10−2

±1.4 × 10−2
2.02 × 10−2

±3.3 × 10−3
3.71 × 10−3

±3.8 × 10−4
2.85 × 10−3

±3.5 × 10−4

For the one-step-ahead prediction, the MSE and the MAE of the SCPNet are about
1.48 × 10−5 and 2.25 × 10−3, respectively. That is, the proposed SCPNet is capable of
achieving the smallest MSE and MAE, which indicates the SCPNet can still have the
best prediction performance compared with the four existing methods. In addition, com-
pared with the GRNN and the DNN, the RNN-based networks, namely, the SCPNet, the
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LSTM, and the GF-RNN, obviously gain better prediction performance, which verifies the
superiority of RNNs.

For a visible comparison, the prediction result of each method is shown in Figure 9,
where “Raw” denotes the ground truth of sea clutter and red points are the prediction
results of each method. Due to the poor prediction performance of the GRNN, its result is
not provided herein. Overall, four methods are capable of fitting the variation trend of sea
clutter, but there are a lot of prediction errors of the DNN and the LSTM at the bottom of
the sea clutter. The prediction performance of the proposed SCPNet is slightly better than
that of the GF-RNN in this clutter sample. To summarize, it is not a difficult task to achieve
the one-step-ahead prediction of existing RNN-based methods, and the proposed SCPNet
has the best prediction performance.
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4.3. Comparisons on the k-Step-Ahead Prediction

In the k-step-ahead prediction, the prediction method is required to predict the k value
in one prediction. For those existing methods, it is a viable way to use the recursive
one-step-ahead prediction and then achieve the k-step-ahead prediction indirectly. The
proposed method uses the Seq2Seq structure to directly achieve the k-step-ahead prediction.
Then, the results on the k-step-ahead prediction are analyzed and discussed. Table 4 shows
the MSE of each method with different k in the k-step-ahead prediction.

For clarity, only three RNN-based methods are compared in Table 4. When k is 1, it
then becomes the one-step-ahead prediction. When k equals 2, the MSE of the proposed
SCPNet is 1.35 × 10−4 which is about 0.56 × 10−4 and 1.4 × 10−4 lower than that of the
GF-RNN and the LSTM, respectively. Compared with the MSE of the one-step-ahead
prediction, the MSE of each method is remarkably decreased when k = 2. Even for the
proposed method, the MSE is about 1.2 × 10−4 higher compared with the one-step-ahead
prediction. When k is gradually increasing, the MSE of each method is also increasing.
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However, no matter what k is, the MSE of the proposed SCPNet is the lowest compared to
that of the GF-RNN and the LSTM. It is of note that the MSE of the LSTM is dramatically
decreased when k = 32, which is because prediction errors are supposed to be accumulated
in the recursive one-step-ahead prediction.

Table 4. The MSE of each method with different k.

k = 1 k = 2 k = 4 k = 8 k = 16 k = 32

SCPNet (Proposed) 1.48 × 10−5 1.35 × 10−4 1.39 × 10−3 8.76 × 10−3 0.016 0.021

LSTM 3.55 × 10−5 2.75 × 10−4 2.76 × 10−3 0.015 0.058 0.313

GF-RNN 1.72 × 10−5 1.91 × 10−4 2.23 × 10−3 0.011 0.024 0.035

For a visible comparison, the prediction result when k is 8 of each method is shown
in Figure 10. The prediction sequence of the DNN can hardly fit the raw clutter sequence,
even the prominent peak has not been predicted by the DNN. As for the LSTM, the
prediction peak is also much lower than the raw peak and there are a lot of prediction errors
at the bottom of the clutter sequence. The prediction peak of the GR-RNN, nevertheless, is
higher than the raw clutter sequence. Moreover, there are a large number of false peaks
around fluctuations of the raw clutter sequence, which means there will be lots of false
high values in the prediction sequence. As for the proposed SCPNet, it can fit most peaks
and fluctuations of the raw clutter sequence and there are only a few false high values
in the prediction sequence, which verifies the superiority of the proposed method in the
k-step-ahead prediction.
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(b) the LSTM; (c) the GF-RNN; (d) the proposed SCPNet.
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5. Discussions
5.1. The Consistency Analysis

Furthermore, to evaluate the prediction results in depth, the consistency between the
predictions and raw clutter sequence is analyzed and shown in Figure 11, where the state-
of-the-art GF-RNN is compared. Herein, the red dotted line denotes the prediction results
equal to the raw clutter sequence. Hence, fewer outliers away from the red dotted line
indicate better prediction performance. The prediction results of both of the two methods
are more located under the normalized amplitude of 0.5. In the area of the real normalized
amplitude of 0 to 0.3, the blue points of the SCPNet are more concentrated around the red
dotted line than the orange points of the GF-RNN.
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Most outliers of the SCPNet are located at the low right part and under the red dotted
line, which means false predictions of the SCPNet tend to be lower than the real values.
On the contrary, most outliers of the GF-RNN are located in the upper left part, which
indicates false predictions of the GF-RNN tend to be higher than the real values. Taking the
time-domain cancellation into consideration, if the prediction sequence is higher than the
real clutter, the amplitude of the target of interest would also be weakened falsely, which is
prone to losing targets in the following detection step.

To conclude, it is more challenging to achieve the k-step-ahead prediction compared
with the one-step-ahead prediction. When the k is gradually becoming greater, prediction
errors of each method are also increasing. Especially for the recursive one-step-ahead
pre-diction, prediction errors are supposed to be accumulated, which causes remarkable
performance degradation. On the other hand, the proposed SCPNet achieves better predic-
tion performance on the k-step-ahead prediction compared with existing methods.

Since the characteristics of input sea clutter under kinds of sea conditions are different
as well. To be specific, amplitude distributions of sea clutter are supposed to change
with different sea conditions and observation areas, and some environmental parameters,
including the wind velocity, will also have an impact on the spectrum of sea clutter. On the
other hand, the proposed method based on supervised learning requires that the training
dataset and the test dataset should conform to the same distribution so that the learning
method can achieve better performance. Sea clutter with different characteristics obviously
does not belong to the same distribution. Thus, the accuracy of prediction is supposed
to be related to the distributions and the spectrum of sea clutter. For the sake of further
applications, the proposed method can be improved via transfer learning under different
distributions and spectrums of clutter.
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5.2. The Performance of Target Detection

As pointed out in the introduction, the aim of the proposed method is to use extrapo-
lated clutter sequence to detect the presence of a target through time cancellation. In the
radar community, the MTI is a well-known and widely used clutter-suppression method
based on time cancellation. To demonstrate the performance of clutter suppression and tar-
get detection, a target-containing dataset, namely, the “20210106160919_01_staring” dataset
is employed to verify the performance of both the proposed method and the MTI method.
The raw echo sequence and detection results are shown in Figure 12. Herein, the MTI
indicates a three-pulse-cancellation MTI method.
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In Figure 12a, the target of interest is partly covered by the wild clutter and it is very
challenging to detect the target while keeping a satisfactory probability of false alarm.
Although wild clutter amplitudes are greatly decreased after the MTI method, the target of
interest is drastically suppressed as well due to the low speed of the target. As for the result
of the proposed method, most wild clutter amplitudes are suppressed while the target is
retained. Compared with the raw sequence, the target of the proposed method is much
more distinguished, which is supposed to be beneficial to target detection.

5.3. The Computational Complexity

For the sake of practical applications, it is also necessary to analyze the computational
complexity of each method. Herein, three metrics are employed to measure the compu-
tational complexity, including the inference time, the floating-point operations (FLOPs),
and the learnable parameters. The inference time is the consuming time of one prediction
on the above-mentioned hardware platform, the FLOPs are widely used to measure the
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complexity of a neural network, and the learnable parameters indicate the number of
learnable data in a neural network.

The computational complexity of each method is listed in Table 5. The inference time
of the proposed SCPNet is about 9.8 ms, the FLOPs are 1685 K, and the SCPNet has about
23 K learnable parameters. Although the DNN has the lowest computational complexity
in Table 5, the prediction performance of the DNN in the k-step-ahead prediction is the
worst. The computational complexity of the GF-RNN and the LSTM is also lower than that
of the proposed SCPNet, while the inference time of the SCPNet is only 2 ms more than that
of the GF-RNN. More importantly, the computational complexity of the SCPNet is actually
based on a 32-step-ahead prediction. That is, based on the computational complexity listed
in Table 5, the SCPNet can predict 32 values in one prediction while the rest of the methods
only predict one value. Hence, the proposed method is still more efficient than the GF-RNN
in practice.

Table 5. The computational complexity of each method.

SCPNet (Proposed) GF-RNN LSTM DNN

Time (ms) 9.8 7.8 3 0.6

FLOPs (K) 1685 246 305 1.3

Parameter (K) 23 3.5 4.5 1.2

6. Conclusions

In this paper, an attention-enhanced Seq2Seq structure is designed to achieve both the
one-step-ahead prediction and the k-step-ahead prediction. The proposed SCPNet takes
full advantage of the powerful ability of the Seq2Seq model in the time-series processing
and the adaptive feature selection of the self-attention module. In addition, the phase space
reconstruction theory is employed to find the optimized input sequence. Results with
the SDRDSP database demonstrate that the proposed SCPNet is capable of achieving the
lowest MSE in both the one-step-ahead prediction and the k-step-ahead prediction, which
verifies that the proposed method outperforms the GRNN, the DNN, the LSTM, and the
GF-RNN. The analysis of the computational complexity shows the proposed method takes
relatively more FLOPs and parameters while the proposed method is still more efficient in
practice. The promising results of the proposed method also underscore the potential of
the Seq2Seq structure in the k-step-ahead prediction of sea clutter.
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