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Abstract: Global Navigation Satellite System interferometric reflectometry (GNSS-IR), as a new
remote sensing detection technology, can retrieve surface soil moisture (SM) by separating the
modulation terms from the effective signal-to-noise ratio (SNR) data. However, traditional low-order
polynomials are prone to over-fitting when separating modulation terms. Moreover, the existing
research mainly relies on prior information to select satellites for SM retrieval. Accordingly, this study
proposes a method based on empirical modal decomposition (EMD) and cross-correlation satellite
selection (CCSS) for SM retrieval. This method intended to adaptively separate the modulation terms
of SNR through the combination of EMD and an intrinsic mode functions (IMF) discriminant method,
then construct a CCSS method to select available satellites, and finally establish a multisatellite
robust estimation regression (MRER) model to retrieve SM. The results indicated that with EMD,
the different feature components implied in the SNR data of different satellites could be adaptively
decomposed, and the trend and modulation terms of the SNR could more accurately be acquired by
the IMF discriminant method. The available satellites could be efficiently selected through CCSS, and
the SNR quality of different satellites could also be classified at different accuracy levels. Furthermore,
MRER could fuse the multisatellite phases well, which enhanced the accuracy of SM retrieval and
further verified the feasibility and effectiveness of combining EMD and CCSS. When rm = 0.600
and rn = 0.700, the correlation coefficient (r) of the multisatellite combination reached 0.918, an
improvement of at least 40% relative to the correlation coefficient of a single satellite. Therefore, this
method can improve the adaptive ability of SNR decomposition, and the selection of satellites has
high flexibility, which is helpful for the application and popularization of the GNSS-IR technology.

Keywords: GNSS-IR; soil moisture; empirical modal decomposition; CCSS; MERE

1. Introduction

Soil moisture (SM) is an essential parameter in agriculture [1], ecology [2], meteorol-
ogy [3], and geology [4]. Accurately and timely monitoring SM changes is significant for
crop growth assessment, water resource cycle problems, climate and weather forecasting,
and geological hazard assessment. Currently, SM monitoring mainly relies on traditional
in situ measurements, satellite radar remote sensing monitoring, and model simulation or
data assimilation [5–7]. Traditional in situ measurement methods, such as tensiometry, time-
domain reflectometry, and drying–weighing, have a high time resolution. Still, they can only
achieve a local point measurement and are difficult to perform monitoring on a regional scale.
Satellite radar remote sensing monitoring and assimilation products, such as the Soil Moisture
Active Passive (SMAP) or Soil Moisture and Ocean Salinity (SMOS), can provide regional
SM [8–10]. Limited by their temporal and spatial resolution, these remote sensing products
cannot easily meet the application requirements of small- and medium-scale fields [11]. With
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the constant development of the Global Navigation Satellite System (GNSS), the use of GNSS
multipath signals for the remote sensing of geophysical parameters has increased [12,13]. It
has the advantages of multiple signal sources, wide coverage, and high efficiency, and has
been widely used for monitoring SM [14–17], sea level or tides [18,19], snow depth or reflector
height [20–22], Flood [23], and vegetation changes [24,25].

Martin-Neira (1993) first achieved ocean height measurements using GNSS reflected
signals [26]. On this basis, two new GNSS remote sensing techniques were proposed. One
of them is GNSS Reflectometry (GNSS-R), which estimates the characteristic change of geo-
physical parameters by analyzing the propagation delay or power/waveform information
of reflected signals [27–31]. Subsequently, the technique was further validated for moni-
toring SM [24,32,33], snow depth [34,35], and wind speed [36]. However, it needs special
right-handed circularly polarized (RHCP) and left-handed circularly polarized (LHCP)
antennas and requires high-level hardware equipment, which restricts its application and
extension to a certain extent. Another technique is GNSS Interferometric Reflectometry
(GNSS-IR), which retrieves surface parameters from satellite interference signals received
on a single antenna. In addition, GNSS satellite signals are mainly transmitted in L-band,
which has less attenuation in the atmosphere and intense penetration [37]. Therefore, with
the help of GNSS tracking sites (such as PBO and terrestrial network), it is easier to establish
an in situ monitoring system for geophysical parameters.

For GNSS-IR monitoring of SM, Larson et al. [38] first proved that there is a certain
correlation between the amplitude and phase of reflected signals from a satellite and SM
near the surface. Chew et al. [39] further verified that the phase is linearly related to SM by
an electrodynamic single-scattering forward model. Due to some differences in SNR data at
different elevation angles, Roussel et al. [40] fused SNR data within satellite elevation angles
of 2–30◦ and 30–70◦ to improve the time resolution of SM retrieval and the correlation with
in situ SM. Considering the impact of vegetation change on SNR, Chew et al. [41] corrected
the results considering the impact on vegetation, and the accuracy of SM retrieval was
significantly improved. Small et al. [42] further applied the corresponding SM retrieval
algorithm for different surface vegetation, effectively weakening the effect of vegetation
on SM retrieval. Zhang et al. [43] used a new normalized SNR phase method to retrieve
SM affected by vegetation, and the comparison between the retrieved results and the
reference values showed good consistency. In addition, Lv et al. [44] proposed an adaptive
regression spline curve model to correct the vegetation error, which proved the feasibility
of correcting the vegetation error based on the multipath effect. The different undulation
of a terrain was also considered to have adverse impacts on the application of GNSS-IR.
Ran et al. [45] proposed a DSNR arc editing method to improve the retrieval accuracy of
SM in undulating terrain. Meanwhile, based on the SNR of different carriers, many scholars
tried retrieving SM using multisatellite, multi-frequency data. Larson et al. [38] realized
SM retrieval through GPS L2 SNR, and the retrieval results were in good agreement with
the changing trend of SM. Compared with L2C, the SM retrieved using L5, L1, and L2P
showed less difference [46,47]. The B1 and B2 from the BDS also reflected well the trend
of SM [48] (Yang et al., 2019). Compared with a single satellite, SM retrieved by GNSS
multisatellite fusion has higher stability and accuracy [49]. In addition, the SM retrieved by
multisatellite dual-frequency combined multipath error can effectively improve the time
resolution of SM [50]. Since low-quality SNR data usually cause abnormal phases, an SM
retrieval method considering the detection and repair of abnormal phases was proposed,
and the quality of the phases for each satellite was effectively improved [51]. However,
the premise of using these methods to retrieve SM is to accurately separate the reflected
signals from each satellite. Presently, the low-order polynomial is normally used to separate
direct and reflected signals of satellites, but it is prone to local overfitting and has limited
adaptability. Further improving the fitting quality of SNR, Han et al. [52] proposed a
semi-empirical SNR model. Subsequently, the wavelet transform was also well verified
to effectively reduce the noise information of SNR and showed a better fitting effect than
the low-order polynomial [53]. Empirical Mode Decomposition (EMD) was introduced
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into GNSS-IR monitoring to achieve the adaptive decomposition of SNR and improve the
model stability [54]. Although wavelet transform and EMD have been used for satellite
reflected signal separation, verifying their greater advantages over the traditional low-order
polynomial in the fitting, the wavelet transform needs to choose appropriate wavelet bases
and decomposition layers. The adaptive decomposition process of SNR data by EMD will
generate many intrinsic mode functions (IMF), while there are fewer methods explicitly
proposed to determine the satellite reflected signal in SM retrieval. In addition, the effective
selection of GNSS satellites is the key to multisatellite combinations. The current satellite
selection greatly depends on a priori information or empirical values, which further limits
the promotion and application of the GNSS-IR technology.

Accordingly, this paper proposes an SM retrieval method based on multisatellite
fusion, which combines EMD and cross-correlation satellite selection (CCSS). This study
aimed to adaptively decompose the SNR of each satellite through EMD and extract the
modulation terms of the SNR using the IMF discriminant method. Meanwhile, these
modulation terms were fitted by the nonlinear least squares algorithm (LLS) to gain the
satellite phases. Then a cross-correlation satellite selection (CCSS) method was established
to select the effective satellites. Subsequently, a multisatellite robust estimation regression
(MRER) model was established for SM retrieval using the IGG III weight function. Finally,
the model performance was assessed by comparing the retrieval results of different schemes,
and the effectiveness of the satellite selection method was also verified.

2. Site and Data
2.1. GNSS Site Description

The study selected the P043 site from the Plate Boundary Observatory (PBO) H2O
network to acquire GNSS observations [38]. Basic information and the surroundings of
this site are shown in Table 1 and Figure 1, respectively. In Figure 1, it can be seen that the
terrain in this area fluctuates slightly, with no large shelter and sparse vegetation, which is
conducive to SM retrieval. Since the SNR quality of the L2C signal is better than those of the
L1 C/A and L2P signals [55], the L2C SNR data were used in this study within the elevation
range of the satellite from 5◦ to 20◦, and the experimental period was from day of year
(DOY) 96 to DOY256 in 2015. This ensured that the SNR had a clear and stable multipath
periodic oscillation characteristic in the intercepted satellite elevation range. Based on the
first Fresnel reflection principle [26,38,41,56], the monitoring area corresponding to the 5◦

and 20◦ satellite elevation angles were drawn, as shown in Figure 1.

Table 1. Basic information for P043.

Location Receiver Type Antenna Type Sampling Rate

43◦52′52′′N,
104◦11′09′′W Trimble NERT9 TRM59800.80 SCIT 30 Hz

2.2. SM and Precipitation Data

Corresponding to the GNSS station (P043) and observation data, the SM reference data
and precipitation data were provided by the International Soil Moisture Network (ISMN),
and the time resolution was unified as one day (Figure 2). These data have long been used
to conduct studies on SM retrieval and are representative [7,42]. Among them, the SM
reference data provided acceptable performance at typical sites in the PBO H2O network
(RMSE ≤ 0.05 cm3 cm−3) from the ISMN [38,39,42,47]. They were obtained from L2C
observations and averaged based on SM retrieval results from multiple satellite orbits (≥8).
The SM retrieval results were calculated based on fluctuations in the phase of the GNSS
satellite and residual SM content [39,42,57]. As can be seen in Figure 2, there were 15 days
of significant precipitation exceeding 10 mm during this time period, and on DOY230,
precipitation reached 26 mm. Due to the frequent precipitation during this period, the SM
changed violently, showing some non-linear and random changes. With the precipitation
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decreasing or stopping, the SM would gradually decrease and fall back. It is obvious that
precipitation is the main factor causing sudden changes in SM. The precipitation at this site
during the experimental period was relatively rich and suitable for SM research.
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area of each satellite during the research periods when setting an elevation interval between 5◦and
20◦. These images can be accessed at http://earth.google.com/, accessed on 5 May 2023 and
http://www.unavco.org/, accessed on 5 May 2023.
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Figure 2. SM reference and precipitation data. Shown are daily averages for the study area, which
were obtained from the International Soil Moisture Network (https://ismn.geo.tuwien.ac.at/en/,
accessed on 5 May 2023).

3. Methodology
3.1. GNSS Satellite Reflected Signal

SNR is a measurement parameter representing the strength quality of a signal received
from the receiver antenna, including the direct and the reflected signals [39,58,59]. At
any time, the SNR is a function of direct power, reflected power, and the phase difference
between them. Changes in SM will change the phase of the reflected signal and the soil
reflectivity [38,39]. Thus, SNR oscillations can provide information about changes in near-
surface SM [41]. The geometric principle is shown in Figure 3. Evidently, there is a definite
relationship between SNR and the ground environment. Therefore, SNR could be used to
establish a multipath effect assessment model, which was conducive to estimating surface
environmental parameters.

http://earth.google.com/
http://www.unavco.org/
https://ismn.geo.tuwien.ac.at/en/


Remote Sens. 2023, 15, 3218 5 of 20

Remote Sens. 2023, 15, x FOR PEER REVIEW 5 of 21 
 

 

3. Methodology 
3.1. GNSS Satellite Reflected Signal 

SNR is a measurement parameter representing the strength quality of a signal re-
ceived from the receiver antenna, including the direct and the reflected signals [39,58,59]. 
At any time, the SNR is a function of direct power, reflected power, and the phase differ-
ence between them. Changes in SM will change the phase of the reflected signal and the 
soil reflectivity [38,39]. Thus, SNR oscillations can provide information about changes in 
near-surface SM [41]. The geometric principle is shown in Figure 3. Evidently, there is a 
definite relationship between SNR and the ground environment. Therefore, SNR could be 
used to establish a multipath effect assessment model, which was conducive to estimating 
surface environmental parameters. 

 
Figure 3. Geometric principle illustrating the relationship between multipath signals of SNR and 
the ground environment. In the figure, ℎ is the vertical distance from the GNSS antenna center to 
the horizontal ground surface, which is called vertical reflection distance; 𝜃 represents the angle 
between the satellite signal and the slope. 

According to existing research, under the assumed condition that reflection occurs 
only once, there is a sine (or cosine) functional relationship between SNR observations 
and the multipath interference phase [38,39]: SNR = 𝑆 + 𝑆 + 2𝑆 𝑆 cos𝜓 (1)

where 𝑆  is the direct signal, representing the low-frequency trend term of the SNR; 𝑆  is 
the reflected signal, representing the high-frequency modulation term of the SNR [56];  𝜓 
is the phase difference between the direct and the reflected signals. 

Since the SM retrieval of GNSS-IR is only related to the reflected signal, it is necessary 
to remove the direct signal of SNR in the low satellite elevation range. After that, there is 
still a sine (or cosine) function relationship of fixed frequency between the reflected signal 
and sin 𝜃, and the reflected signal SNR  can be expressed as [38]. SNR = 𝐴cos 4𝜋ℎ𝜆 sin 𝜃 + 𝜑  (2)

where 𝜆 represents the carrier frequency; 𝐴 and 𝜑 are the characteristic parameters of 
the reflected signal to be solved, i.e., amplitude and phase, which can be used to retrieve 
the variation of the surface environment around the site [38,39]. 
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ground environment. In the figure, h is the vertical distance from the GNSS antenna center to the
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the satellite signal and the slope.

According to existing research, under the assumed condition that reflection occurs
only once, there is a sine (or cosine) functional relationship between SNR observations and
the multipath interference phase [38,39]:

SNR2 = S2
d + S2

r + 2SdSrcosψ (1)

where Sd is the direct signal, representing the low-frequency trend term of the SNR; Sr is
the reflected signal, representing the high-frequency modulation term of the SNR [56]; ψ is
the phase difference between the direct and the reflected signals.

Since the SM retrieval of GNSS-IR is only related to the reflected signal, it is necessary
to remove the direct signal of SNR in the low satellite elevation range. After that, there is
still a sine (or cosine) function relationship of fixed frequency between the reflected signal
and sin θ, and the reflected signal SNRr can be expressed as [38].

SNRr = Acos
(

4πh
λ

sin θ + ϕ

)
(2)

where λ represents the carrier frequency; A and ϕ are the characteristic parameters of the
reflected signal to be solved, i.e., amplitude and phase, which can be used to retrieve the
variation of the surface environment around the site [38,39].

3.2. EMD for Separating the Modulation Terms

Based on the previous section, the accurate separation of the SNR modulation terms is
crucial to solving the multiple phases. Currently, the modulation and trend terms in SNR are
extracted mainly by the low-order polynomial or the wavelet transform [38,41,53]. Although
these methods can obtain the modulation terms well, they need some prior knowledge. The
low-order polynomial needs to predict the type of signal trend term in advance, and the
wavelet transform needs to determine the best wavelet basis and the decomposition level.
These requirements lead to the experiment process for signal separation becoming complex
and less flexible. Compared with these methods, EMD is a better adaptive analysis method.
Since it can decompose the signal directly according to the scale characteristics of the signal
itself without prior knowledge, it is very suitable for extracting the characteristics of non-
stationary signals [60,61]. Moreover, using EMD in signal decomposition can significantly
enhance the stability and accuracy of GNSS-IR retrieval, as demonstrated for tidal levels and
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vegetation effects [19,54]. Hence, this paper used EMD to decompose the SNR signal of each
satellite. The SNR signal can be expressed as:

f (t) = [a1, a2, . . . , at], (t = 1, 2, . . . , l) (3)

where a represents the GNSS satellite, and t and l are the observation epoch and its
length, respectively.

The basic idea of EMD is to decompose f (t) into an m intrinsic modal function (IMF) of
different time scales and a residual term. The following two conditions must be met for each
IMF. First, the number of extreme value points must be equal to or at most one unit different
from the number of crossing zero points in the whole sequence; second, the average values of
the envelope formed by the local maximum and the envelope formed by the local minimum
must be zero [60]. The decomposition process of f (t) can be expressed as:

f (t) =
m

∑
k=1

IMFk(t) + Tm(t) (4)

where Tm is the residual term of the sequence; m is the number of IMF components; IMFk(t)
is the intrinsic modal function, which reflects the inherent and intrinsic characteristics of
the signal itself.

It can be seen that the f (t) is decomposed into a limited number of IMF that contain the
local feature signals of the original signal. The first IMF component is the highest-frequency
component of f (t). As the order of the IMF increases, the frequency of its corresponding
components gradually decreases. Ideally, Tm(t) is used as the low-frequency trend term
of the original signal. In practice, due to the comprehensive influence of the satellite orbit
and the surrounding environment of the site, the SNR of different satellites varies greatly
in different periods, and the frequency change of direct signals may exceed the frequency
range of a single IMF component. If the IMF component of the last layer is directly fixed as
a trend term, it will cause a big error. Considering the residual component is set as the last
IMF component and the combination from the boundary IMF component (IMFT) to the
last IMF component is used as the trend term of the original signal, it is possible to obtain
the high-quality SNR modulation term required for subsequent LLS analysis. Therefore,
reasonably determining the IMFT of all IMF components is the key to effectively extracting
the trend term and the fluctuation term of SNR. The trend term can be expressed as:

SNRd(t) =
m

∑
k=T

IMFk(t) (5)

In this paper, an automatic determination criterion for EMD trend terms is proposed.
According to the linear regression relationship between the original signal and each IMF
component, the IMF with high correlation was merged as the trend term of SNR, and
the remaining IMF was merged as the modulation term of SNR. The method proposed is
referred to as the IMF discriminant method, and the specific process is as follows. (1) The
correlation coefficient (r0) between each IMF component and the original sequence are
calculated, and the correlation coefficient threshold (rm) is set; (2) the IMF component
corresponding to the first r0 greater than rm is considered as the IMFT . Subsequently, the
components from the IMFT to the last IMF are combined as trend terms and deleted, while
the components from the first IMF to the IMFT−1 are combined as modulation terms and
retained. For different GNSS satellites, the target component determined by this method
also varies across multiple IMF components with the change of SNR rather than being
fixed. In other words, this method is based on the characteristics of the data themselves
rather than on artificial restrictions or definitions; so, it has high flexibility.
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3.3. CCSS Method

For the SNR data of the same satellite, its ascending (S) and descending (J) tracks are
considered as independent [24]; so, they were processed independently. The amplitude
and phase in Equation (2) can be obtained by LLS fitting the separated modulation term of
SNR [62]. Since the phase of a satellite can better characterize SM changes [39], it was used
for SM retrieval in this paper. However, the phases of different satellites have different
sensitivities to SM, and not all satellite tracks are suitable for SM monitoring [51]. So, the
satellite phases needed to be selected. According to previous experiments, it was found that
the phases of different satellites that are strongly related to the SM reference values have
similar regular variations. Taking 2015 DOY96~256 of P043 as an example, the correlation
coefficients were calculated between the phases of each satellite solved during this period
and the SM reference values, as shown in Figure 4. It can be seen that satellites with high
correlation with the SM reference values, such as PRN07, PRN23, PRN30, etc., also had
high correlation with each other.
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According to this property, and in order to realize satellite selection adaptively, this
paper proposes a cross-correlation satellite selection (CCSS) method independent of the
SM reference values. The satellites were selected directly according to the degree of cross-
correlation between their phase sequences. Therefore, the effective satellites were selected
by calculating the cross-correlation coefficients between different satellite phases and then
by reasonably setting the threshold range of the cross-correlation coefficient based on the
correlation degree (Table 2).

Table 2. Cross-correlation threshold range.

Degree of
Cross-Correlation

Very Weak
Correlation Weak Correlation Medium

Correlation
Strong

Correlation
Very Strong
Correlation

correlation
coefficient 0~0.2 0.2~0.4 0.4~0.6 0.6~0.8 0.8~1
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The specific process of CCSS was as follows:

1. During the experiment, the satellites with relatively complete phase data (more than
95% of the total data) were selected preliminarily. Because for the multisatellite com-
bination retrieval mode, the selected satellite data needed to meet the requirement
of continuous and consistent reflection trajectories within the range of satellite inter-
ception elevation, the continuous phase could be generated throughout the annual
product day observation period.

2. Based on the satellites selected in step À, the cross-correlation coefficient (r1) between
each satellite phase and other satellite phases was calculated separately. Then, con-
sidering the medium correlation as the initial reference condition according to the
cross-correlation threshold range in Table 2, the satellites with r1 greater than 0.400
were selected as long as they existed, and the satellites without r1 greater than 0.400
were excluded.

r(ϕa, ϕb) =
Cov(ϕa, ϕb)√

Var[ϕa]
√

Var[ϕb]
(6)

where a and b correspond to different (PRN) numbers of GNSS satellites, Cov(ϕa, ϕb)
is the covariance corresponding to a and b, Var[ϕa] represents the variance of a, and
Var[ϕb] represents the variance of b.

3. The cross-correlation coefficient (ri
a) and its average value (ri

a) for each satellite selected
in step Á were calculated. Then, the threshold ranges (ri

n) of different gradients were
set for the cross-correlation coefficient average, and the satellites with ri

a larger than ri
n

were selected. Among them, the setting of ri
n started from a value greater than 0.400

and increased at intervals of 0.1 each time. Moreover, in every screening process, it
was necessary first to eliminate the satellites with ri

a smaller than ri
n, then continue

to calculate ri
a and ri

a for the remained satellites, and only later compare the updated
ri

a with the newly set threshold ri
n. This way, the accurate selection of satellites with

different precision was realized:

ri
a =

∑m
n=1 r(ϕa, ϕn)

m
≥ ri

n (7)

where ∑m
n=1 r(ϕa, ϕn) is the sum of the correlation values between satellite a and other

m satellites.
4. Based on the satellites selected in step Â, effective satellites within different ri

n ranges
were obtained. We continued to select and process them, eliminating satellites with
duplicate ascending and descending segments. For the same satellite, if there was no
ascending segment (S), the phase of the descending segment (J) was used; if there was
no descending segment, the phase of the ascending segment was used; if both the
ascending and the descending segments existed, the satellite within the higher CCSS
threshold range was selected.

3.4. MRER Model

Based on the previous section, the phase set of multiple satellites selected by different
cross-correlation threshold ranges (rn) can be expressed as:{

x0
a = [ϕ1, ϕ2, . . . , ϕt], (t = 1, 2, . . . , m)

x =
[
x0

1, x0
2, . . . , x0

a
]
, (a = 1, 2, . . . , 32)

(8)

where x0
a and x are the phase set of single satellites and multisatellite combinations, respec-

tively, m represents the phase length of the satellite, and a represents the (PRN) number of
GNSS satellites.

The training set samples for building the model were {(xj
i , yi|i = 1, 2, . . . , t1; j = 1, 2, . . . ,

c)}(t1 < m, c ≤ 32), where xj
i is the multisatellite phase set as the input samples for modeling, yi
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is the corresponding SM set as the output samples for modeling, and xj
s(s = t + 1, t + 2, . . . , m)

is the input sample set for the testing model. Then, a multi-linear regression model was
established as follows:

yi = β0 + β1x1
i + β2x2

i + . . . + β jx
j
i + vi (9)

where i represents the sample length of the modeling, j represents the number of combined
satellites for modeling, β0, β1, . . . , β j are the regression coefficients of the model, vi is the
residual, including the constant deviation of the regression function and random noise.

Converting Equation (9) into matrix expression:

Y =


y1
y2
...
yi

, X =


1 · · · x1

i
1 · · · x2

i
...

...
...

1 · · · xj
i

, β =


β0
β1
...
β j

, V =


v1
v2
...
vi

 (10)

where Y and X represent the SM matrices and the phase matrices, respectively; β represents
the coefficient matrices that need to be solved; V is the residual matrices.

Therefore, the regression model can be expressed as:

Y = Xβ + V (11)

A robust estimation can suppress the impact of abnormal values to a certain extent,
thus enhancing the number or the quality of the satellites that can be used to monitor
SM [63]. In this study, the M estimation was used to replace the traditional least squares
estimation. Its basic principle is to use the iterative reweighted least squares (IRLS) method
to estimate the regression coefficients [64]. The M estimation criterion can be expressed as:

j

∑
i=1

Pijρ(vi) =
j

∑
i=1

Pijρ
(

xi β̂ j − yi
)
= min (12)

where Pij represents the robust weight function, the selection of which is the key to a robust
estimation. In this paper, the IGGIII weight function with “three-stage” estimation was
adopted, which has strong robustness and can use information more effectively [65,66].

Subsequently, according to the IRLS principle, the iterative equation of the robust
regression could be obtained as follows:

βIRLS =
(

XTPijX
)−1

XPijY (13)

It can be seen that the main idea of a robust regression model is to assign different
weights to different points according to residuals. Then, the weighting algorithm is iterated
several times to optimize the weight βIRLS. Therefore, the obtained SM has a certain
robustness.

4. GNSS-IR SM Retrieval

Based on the methods and principles introduced above, a GNSS-IR SM retrieval model
was developed in this paper. Figure 5 shows the overall strategy for the parameter and
model determination for SM retrieval using GNSS data. Among the steps, to verify the
feasibility and effectiveness of the method, the statistical indicators for the model test results
and the SM reference values, including the correlation coefficient (r), the root-mean-square
error (RMSE, unit cm3 cm−3), the mean absolute error (MAE, unit cm3 cm−3), and the
maximum error (Max, unit cm3 cm−3), were used to analyze and assess the model test
results from different combination schemes.
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DOY98 to DOY209 were used as the training set, and the following 30% from DOY210 to DOY256
were used as the test set.

5. Results and Discussion
5.1. Separation of the Modulation Terms

According to the previous description of SNR separation, EMD was used to decompose
the SNR of each satellite adaptively, and the decomposition results of PRN 14 and 32 are
shown in Figure 6. It can be seen that as the decomposition layers increased, the components
from IMF1 to the residual tended to smooth, the frequency decreased in order, and the
changing trend among the low-frequency components showed a basic consistent feature.
The components of PRN 14 and 32 were further analyzed for correlation with SNR, as
shown in Table 3. Visibly, the correlation coefficients (r) from IMF1 to the residual gradually
increased, and there were obvious cut-off points, such as IMF6 for PRN14 and IMF7 for
PRN32. Further, r between IMF1~IMF6 for PRN14 and IMF1~IMF5 for PRN32, which
tended to be the high-frequency modulation terms, was less than 0.600. In addition, r
between IMF7~residual for PRN14 and IMF6~residual for PRN32, which tended to be the
low-frequency trend terms, was greater than 0.600. It follows that the cut-off points for
the high- and low-frequency components were not fixed. If one or several layers of IMF
were fixed directly as the trend term, this would probably cause large errors. As such,
reasonably and flexibly determining the correlation coefficient threshold (rm) corresponding
to IMFT was extremely important for effectively separating the modulation and the trend
terms of SNR. After many experiments and comparative analyses, it was found that when
rm was 0.600, the decomposition effect was better. Accordingly, rm was set to 0.600 in
this paper. To further compare and analyze the effect of the trend items obtained from
the combination of different low-frequency components, the components determined by
residual, IMF9~residual, IMF8~residual, IMF7~residual, and the IMF discriminant method
were used, and the trend items obtained are shown in Figure 7.
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Figure 6. The decomposition results of EMD. In the Figure, the horizontal axis represents the epoch of
the satellite, and the vertical axis represents the amplitude of the signal. The intrinsic mode function
is represented from IMF1 to the residual, with a gradually decreasing frequency. Due to limited space,
only the decomposition results for PRN 14 and 32 were randomly selected for display.

Table 3. Correlation coefficient (r) of each IMF with the original SNR.

IMF
r

PRN14 PRN32

SNR 1 1
IMF1 0.064 0.015
IMF2 0.065 0.050
IMF3 0.013 0.053
IMF4 0.174 0.051
IMF5 0.018 0.056
IMF6 0.703 0.208
IMF7 0.989 0.925
IMF8 0.989 0.989
IMF9 0.989 0.989

residual 0.905 0.988

It can be seen in Figure 7 that the trend terms separated by the IMF discriminant
method were consistent with the total trend of SNR. By comparison, the fitting results
from other single-layer or multi-layer IMF component combinations showed some bias.
Therefore, the IMF discriminant method could effectively determine the cut-off points of the
trend term and modulation term. The separation results of the modulation and trend terms
for different satellites obtained by combining EMD and the IMF determination method
are shown in Table 4. For SNR of different satellites, the number of EMD decomposition
layers was basically located in 9~10 layers, and the demarcation points of the trend and
modulation term were mainly concentrated in IMF6~IMF8. Therefore, the IMF modulation
term components extracted from the SNR of different satellites were not fixed, and the
trend term could be accurately separated using the combination of multiple low-frequency
IMF components determined by the IMF discrimination method.
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5.2. Selection of Available Satellites

Based on combining EMD and the IMF determination method to separate the mod-
ulation terms of each satellite, the original phase of each satellite was determined by the
LLS fitting. Following the steps in satellite selection, satellites with continuous phases
were preliminarily selected, with 17 satellites in both the ascending and the descending
segments. The statistics of these satellites relative to the threshold ranges (rn) of different
cross-correlation coefficients are shown in Table 5. It can be seen that there were 14 satellites
having lifting tracks with rn greater than 0.400. Among them, seven satellites had rn greater
than 0.600; they were PRN 14 (S), PRN 30 (S), PRN 23 (S), PRN 07 (S), PRN 09 (J), PRN04
(J), and PRN 14 (J). In addition, the statistical correlation (r) between the phases of the
17 satellites that were in the elevation segment and SM is shown in Figure 8. It can be
observed that for the satellites with ra less than 0.400, their corresponding r were below
0.550, which means that the correlations were low or non-existent. Thus, these satellites
could not be used for SM retrieval and needed to be eliminated. For the satellites with
ra greater than 0.400, their corresponding r were greater than 0.600, implying that these
satellites had a strong correlation relevant to SM and could be selected for SM retrieval.
Among them, when rn was above the threshold of 0.700, the correlations of the selected
satellites were all greater than 0.750.
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Table 4. Separation results for the trend and modulation terms from each satellite (DOY98).

Satellite Number Number of Decomposition
Layers of EMD

Number of Layers of
Combined Modulation Term

Number of Layers of
Combined Trend Term

PRN 01 10 IMF1–4 IMF5–10
PRN 02 10 IMF1–8 IMF9–10
PRN 03 10 IMF1–8 IMF9–10
PRN 04 10 IMF1–8 IMF9–10
PRN 05 10 IMF1–9 IMF10
PRN 06 10 IMF1–8 IMF9–10
PRN 07 10 IMF1–9 IMF10
PRN 09 10 IMF1–6 IMF7–10
PRN 10 10 IMF1–7 IMF8–10
PRN 11 9 IMF1–6 IMF7–10
PRN 12 10 IMF1–7 IMF8–10
PRN 13 10 IMF1–7 IMF8–10
PRN 14 10 IMF1–6 IMF7–10
PRN 15 10 IMF1–8 IMF9–10
PRN 16 10 IMF1–6 IMF7–10
PRN 18 10 IMF1–8 IMF9–10
PRN 19 9 IMF1–8 IMF9–10
PRN 20 10 IMF1–5 IMF6–10
PRN 21 10 IMF1–8 IMF9–10
PRN 22 10 IMF1–8 IMF9–10
PRN 23 10 IMF1–8 IMF9–10
PRN 24 10 IMF1–6 IMF7–10
PRN 25 10 IMF1–8 IMF9–10
PRN 27 10 IMF1–7 IMF8–10
PRN 28 10 IMF1–6 IMF7–10
PRN 29 10 IMF1–8 IMF9–10
PRN 30 9 IMF1–8 IMF9
PRN 32 10 IMF1–6 IMF7–10

Table 5. Satellite statistics for different threshold ranges of the cross-correlation coefficient (rn ).

Satellite Number (S/J) rn Satellite Number (S/J) rn

PRN 04 S <0.4 PRN 01 J <0.4
PRN 09 S <0.4 PRN 03 J <0.4
PRN 11 S <0.4 PRN 11 J <0.4
PRN 13 S <0.4 PRN 16 J <0.4
PRN 27 S <0.4 PRN 22 J <0.4
PRN 31 S <0.4 PRN 23 J <0.4
PRN 22 S <0.4 PRN 27 J <0.4
PRN 03 S <0.4 PRN 18 J <0.4
PRN 32 S 0.4–0.5 PRN 21 J <0.4
PRN 19 S 0.4–0.5 PRN 24 J <0.4
PRN 24 S 0.5–0.6 PRN 31 J <0.4
PRN 01 S 0.5–0.6 PRN 15 J <0.4
PRN 16 S 0.5–0.6 PRN 13 J 0.5–0.6
PRN 14 S 0.6–0.7/0.7–0.8 PRN 32 J 0.5–0.6
PRN 30 S 0.6–0.7/0.7–0.8 PRN 09 J 0.6–0.7
PRN 23 S 0.6–0.7/0.7–0.8 PRN 04 J 0.6–0.7
PRN 07 S 0.6–0.7/0.7–0.8 PRN 14 J 0.7–0.8

S and J in the table represent the ascending and the descending segments of the satellites’ track, respectively.



Remote Sens. 2023, 15, 3218 14 of 20

Remote Sens. 2023, 15, x FOR PEER REVIEW 14 of 21 
 

 

PRN 31 S <0.4 PRN 23 J <0.4 
PRN 22 S <0.4 PRN 27 J <0.4 
PRN 03 S <0.4 PRN 18 J <0.4 
PRN 32 S 0.4–0.5 PRN 21 J <0.4 
PRN 19 S 0.4–0.5 PRN 24 J <0.4 
PRN 24 S 0.5–0.6 PRN 31 J <0.4 
PRN 01 S 0.5–0.6 PRN 15 J <0.4 
PRN 16 S 0.5–0.6 PRN 13 J 0.5–0.6 
PRN 14 S 0.6–0.7/0.7–0.8 PRN 32 J 0.5–0.6 
PRN 30 S 0.6–0.7/0.7–0.8 PRN 09 J 0.6–0.7 
PRN 23 S 0.6–0.7/0.7–0.8 PRN 04 J 0.6–0.7 
PRN 07 S 0.6–0.7/0.7–0.8 PRN 14 J 0.7–0.8 

S and J in the table represent the ascending and the descending segments of the satellites� track, 
respectively. 

 
Figure 8. Values of r between phases of the initially selected satellites and SM. The ascending (left 
panel) and descending (right panel) segments are shown. 

To further verify the dispersion degree of the phases from the selected satellites in 
different 𝑟  ranges, the satellites with repeated ascending and descending segments were 
eliminated. Then, 12 satellites were left to be analyzed, as shown in Figure 9. It can be seen 
that when the range of 𝑟  was set lower, some of the selected satellites, such as PRN19, 
PRN24, PRN01, and PRN16, had poor quality and showed more outliers. As the range of 𝑟  increased, the selected satellites acquired a better observation quality. When the value 
of 𝑟  was greater than 0.700, the phases of the selected satellites basically showed no ab-
normal values. To this end, the satellite phases selected by CCSS were used to retrieve SM; 
schemes are formulated in the next section. 

Figure 8. Values of r between phases of the initially selected satellites and SM. The ascending (left
panel) and descending (right panel) segments are shown.

To further verify the dispersion degree of the phases from the selected satellites in
different rn ranges, the satellites with repeated ascending and descending segments were
eliminated. Then, 12 satellites were left to be analyzed, as shown in Figure 9. It can be seen
that when the range of rn was set lower, some of the selected satellites, such as PRN19,
PRN24, PRN01, and PRN16, had poor quality and showed more outliers. As the range of rn
increased, the selected satellites acquired a better observation quality. When the value of rn
was greater than 0.700, the phases of the selected satellites basically showed no abnormal
values. To this end, the satellite phases selected by CCSS were used to retrieve SM; schemes
are formulated in the next section.
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Figure 9. Linear regression analysis of the phases of the certain initially selected satellites and SM. In
the graph, the solid line represents the linear regression trend. The results are shown for a total of 12
satellites, and these satellites were characterized by different cross-correlation threshold ranges.

5.3. Retrieval of SM

After completing the selection of the satellite phases, the MRER model entered the
processing stage. Following the results in the previous section, 12 satellites were selected
for the experiment: PRN 19, PRN 24, PRN 01, PRN 16, PRN 30, PRN 23, PRN 07, PRN
13, PRN 32, PRN 09, PRN 04, and PRN 14. In this experiment, two methods were used
to build the MRER model: method 1, i.e., a single-satellite model, and method 2, i.e., a
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multi-satellite combination model according to the gradually increasing threshold range
of rn. For method 1, the MRER model was built directly using a single satellite, and the
model test results from 12 satellites were calculated and are shown in scheme 1. Method
2 combined the satellites corresponding to the different ranges of rn; the specific scheme
settings are shown in Table 6. After completing the modeling training, the testing set was
input into the model to retrieve SM. The retrieval errors of SM for the different methods
are shown in Figure 10.

Table 6. Modeling scheme for the multisatellite combination of method 2.

Scheme rn Method 2

2 >0.4 PRN 19, 24, 01, 16, 30, 23, 07,13, 32, 09, 04, 14
3 >0.5 PRN 24, 01, 16, 30, 23, 07, 13, 32, 09, 04, 14
4 >0.6 PRN 30, 23, 07, 09, 04, 14
5 >0.7 PRN 30, 23, 07, 14
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In Figure 10, it can be seen that whatever the modeling or the testing stages, accurately
grasping the variation trend of SM when using a single satellite was difficult, and the
retrieval error fluctuated obviously. Especially, for satellites with rn less than 0.600, such
as PRN16 and PRN32, the retrieval effect was poor, and the retrieval process was highly
prone to abnormal jumps. It can also be seen from Figure 10 that the retrieval errors of
schemes 2 to 5 generally tended to be stable, and the errors mainly fluctuated within the
range of −0.070~0.100. Compared with scheme 1, the model was significantly improved.
For example, as the cross-correlation coefficients of schemes 4 and 5 were greater than
0.600, the number of combined satellites was reduced. However, the retrieval errors of
the models still tended to be stable, but the errors fluctuated less. Additionally, as shown
in Figures 2 and 10, the retrieval error of a single satellite gradually increased during the
period of continuous precipitation. Especially for the periods of sudden precipitation, such
as DOY98~DOY99, DOY116, DOY161~DOY162, and DOY249, the retrieval error values
suddenly increased, which might be due to the existence of a certain delay in the SM of
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single-satellite retrieval. In comparison, the retrieval errors of multisatellite combinations
tended to be smooth and basically undisturbed by a sudden or persistent precipitation.

To further assess the performance of each scheme, r, RMSE, MAE, and Max were used,
as shown in Figure 11. It can be seen that in the single-satellite scheme, r of the model
was low, with a Max generally greater than 0.131, and the ranges of RMSE and MAE were
0.057~0.167 and 0.062~0.155, respectively. In Figure 11, it can also be seen that the modeling
results of the multisatellite combination were better, with r greater than 0.918, i.e., 40~44%
better than that of a single satellite. RMSE and MAE were less than 0.039, and Max was
less than 0.077. It is not difficult to see that the multisatellite robust regression model could
effectively restrain the influence of outliers and improve the SM retrieval accuracy. Further
comparing scheme 2 to scheme 5, it is surprising that with the gradual improvement of
the set range of rn, the changes of r, RMSE, MAE, and Max were still small, although the
number of satellite combinations used for modeling decreased. This may be related to both
the number and the quality of the selected satellites. When the observation quality of the
satellites used for modeling is good, a small number of combined satellites can achieve a
higher modeling effect. Therefore, it is worth noting that when the selected satellites had
rn greater than 0.700, the observation quality of these satellites was generally good, and
this value could be directly chosen to build multisatellite robust regression models. In this
case, only few satellites would be required to improve the results; so, the complexity of
modeling is decreased. When each satellite had an rn of less than 0.600, the observation
quality of the satellite was poor; so, combining more satellites would also be a good option.
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6. Conclusions

By combining EMD and the IMF discriminant method, the modulation and trend
terms of the SNR from different satellites were effectively separated. Compared with
the traditional low-order polynomial and wavelet analysis, EMD does not require prior
knowledge, so it can directly and adaptively decompose the information of different
frequencies implied in the SNR data. It was also found that for the SNR of different
satellites, the number of layers obtained by EMD decomposition was inconsistent, and
the layers were mainly 9~10. Obviously, when separating the trend and the modulation
terms, the high number of many decomposition layers increased the difficulties. To solve
this problem, the IMF discriminant method was further used to analyze the correlation
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between low-frequency and high-frequency components. It could effectively determine
the cut-off points of the trend terms and modulation terms for each satellite. When the
correlation coefficient threshold rm corresponding to IMFT was 0.600, the modulation term
of each satellite could be accurately extracted. Thus, for the modulation term separation, the
combination of EMD and the IMF discrimination method showed stronger self-adaptability
and, thus, has more advantages than the low-order polynomial and wavelet transform.

Due to the comprehensive influence of different surface environments and satellite
tracks, the response modes of different satellite phases to surface SM changes are inconsis-
tent. The available selection of satellites is the key to the accurate retrieval of SM. The results
showed that CCSS could effectively select the available satellites and classify the SNR qual-
ity of each satellite to different accuracy levels. Moreover, it reduced the dependence on the
SM reference value and achieved an adaptive selection of the satellites. For SM retrieval,
the MSER model can fully combine the surface SM information from satellites in different
directions, and the model training or the test error is relatively stable. Compared with
the single-satellite model, the retrieval accuracy of the multisatellite combination model
was effectively enhanced, and the retrieval error of SM in sudden precipitation periods
was effectively improved. When the cross-correlation coefficient threshold (rn) of CCSS
was set to 0.700 or above, the correlation between the selected satellite phases and the SM
reference values was greater than 0.750. Moreover, these selected satellites also achieved
better results after being modeled by MSER, with r reaching 0.918, which is a value more
than 40% higher than that for the single-satellite model. this fully shows that the satellites
selected by using CCSS were effective. Therefore, to reduce the modeling complexity, the
range of rn can be set to 0.700, as the cut-off value to select the satellites. Of course, this
conclusion is limited to the observation environment selected in this paper. In addition, if
higher precision SM retrieval results are required, it is better to combine all satellites with
rn greater than 0.400.

In the future, this method will be extended to the application of different satellite
navigation systems for different vegetation environments. In this process, the problems
of vegetation noise removal and satellite selection for multisatellite and multi-frequency
combinations need to be further discussed.
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