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Abstract: Information relating to errors in evapotranspiration (ET) products, including satellite-
derived ET products, is critical to their application but often challenging to obtain, with a limited
number of flux towers available for the sufficient validation of measurements. Triple collocation
(TC) methods can assess the inherent uncertainties of the above ET products using just three inde-
pendent variables as a triplet input. However, both the severity with which the variables in the
triplet violate the assumptions of zero error correlations and the corresponding impact on the error
estimation are unknown. This study proposed a cross-correlation analysis approach to discover
the optimal triplet of satellite-derived ET products with regard to providing the most reliable error
estimation. All possible triple collocation solutions for the same product were first evaluated by the
extended triple collocation (ETC), among which the optimum was selected based on the correlation
between ETC-based and in-situ-based error metrics, and correspondingly, a statistic experiment
based on ranked triplets demonstrated how the optimal triplet was valid for all pixels of the product.
Six popular products (MOD16, PML_V2, GLASS, SSEBop, ERA5, and GLEAM) that were produced
between 2003 to 2018 and which cover China’s mainland were chosen for the experiment, in which the
error estimates were compared with measurements from 23 in-situ flux towers. The findings suggest
that (1) there exists an optimal triplet in which a product as an input of TC with other collocating
inputs together violate TC assumptions the least; (2) the error characteristics of the six ET products
varied significantly across China, with GLASS performing the best (median error: 0.1 mm/day),
followed by GLEAM, ERA5, and MOD16 (median errors below 0.2 mm/day), while PML_V2 and
SSEBop had slightly higher median errors (0.24 mm/day and 0.27 mm/day, respectively); and
(3) removing seasonal variations in ET signals has a substantial impact on enhancing the accuracy of
error estimations.

Keywords: satellite-derived evapotranspiration products; error assessment; extended triple collocation;
cross-correlation analysis; optimal triplet

1. Introduction

Evapotranspiration (ET) is a key component of the water and energy balance in climate–
soil–vegetation interactions, controlling 60–65% of water loss from rainfall inputs [1],
and up to 90% of water loss in arid regions [2]. Advanced remote sensing (RS) sensors
such as MODIS and VIIRS [3] are effective in characterizing various surface fields and
land surface models, and data assimilation techniques are also improving. Nevertheless,
large differences are observed between satellite-derived or reanalyzed ET products, and
it is unclear why these differences arise and how they affect applications such as water
resources, agricultural systems, and ecosystem management, which are heavily dependent
on hydrometeorological conditions [4]. Therefore, assessing errors in various ET products
is critical to understanding the impact of their uncertainties on these applications.
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Currently, two main error estimation techniques are used to assess the uncertainty
of geophysical variables [5] and can be used to estimate errors in ET products. The first
method is mainly used for verification, in which the error is characterized by calculating the
correlation, root mean square error, and other indicators between ET products and in-situ
measurements. However, obtaining ET observations from in-situ flux towers is challenging
due to the lack of sufficient instrumented sites in most regions. The second approach is the
triple collocation (TC) error estimation technique [6], which uses statistical relationships
to estimate the standard deviation (STD) of the random errors of three or more identical
geophysical datasets as variables in the absence of truth values; this method is often used
as a powerful supplementary validation scheme for those regions with limited in-situ sites
when the input datasets conform to the TC assumptions.

TC methods have become very popular in recent years and are still being developed.
It was originally designed by Stoffelen [6] for near-surface wind velocities, and then
McColl, et al. [7] developed the extended triple collocation (ETC) method, which intro-
duced a new variable to avoid setting one of the inputs as the reference in solving the
TC equation, thus providing more reliable indicators such as the correlation coefficient,
the signal-to-noise ratio, and the fRMSE metric [8]. Generalizing the triple collocation
analysis to an arbitrary number of input datasets has also been explored, but it is still
subject to the general assumption of independent errors in TC. Pierdicca, et al. [9] pro-
posed an extended quadruple collocation (E-QC) approach that integrates quadruple
collocation (QC) [10] and extended collocation (EC) [11] to process four more inputs,
aiming at relaxing the hypothesis of statistically independent errors. Nevertheless, it still
needs to know one input in advance to be independent from the others as a priori and to
ensure that each member of the dataset, which exhibits a non-zero error cross-correlation,
is also included in at least one dataset triplet where the errors are fully independent [9].
The most practical procedure that extends the triple collocation to multiple collocation
(MC) by Pan, et al. [12] can handle any number of data sources under the framework
of Pythagorean constraints in the Hilbert space, which is a complete inner product
space capable of defining geometric concepts such as length, angle, and orthogonality.
The error assessment for an input source is equivalent to the mean of all possible TC
solutions under Pythagorean constraints that one can perform against the other N-1
inputs. It does output a unique solution to the multiple collocation but it by no means
resolves the potentially discrepant conclusions from individual triple collocations. It re-
mains unknown as to whether it actually provides any better-performed error estimation
since this extension still cannot answer how much the uncorrelated error assumption is
being violated [12].

Currently, the TC analysis has been widely used in various geographic variables,
including soil moisture products [11,13,14], precipitation [15–18], the leaf-area index [19],
land-based water storage [20], marine gravity [21], and ET [5]. In terms of the number
of publications, compared with soil moisture and precipitation products in the water
cycle, relatively few papers consider the application of the TC in the estimation of errors
in ET or vapor flux products [22]. ET products display spatial variations in errors that
are significantly influenced by the characteristics of land use and land cover (LULC).
Research conducted by Khan, Liaqat, Baik, and Choi [5] has shown that the MOD16
estimations exhibit good agreement with ground observations in rice paddy ecosystems.
In contrast, the GLEAM product exhibits lower bias errors in forest and grassland biomes.
Currently, the commonly utilized evapotranspiration datasets can be broadly classified
into the following three categories [23]: (1) fully physically-based combination models that
incorporate principles of mass and energy conservation; (2) semi-physically based models
that focus on either mass or energy conservation; and (3) black-box models that rely on
artificial neural networks, empirical relationships, as well as fuzzy and genetic algorithms.
Unlike precipitation and soil moisture products, ET products are generated based on
multiple meteorological forcing and land surface datasets. These ancillary datasets can be
shared by many products [24–29], violating the basic assumption of zero-error correlations
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to varying degrees. Violating the assumptions about the structure of input datasets affects
the stability and reliability of the estimation of random errors, which in turn limits the
efficacy of the multiple collocation analysis. However, the extent of the violations of
the non-zero cross-correlation hypothesis and their implications for the accuracy of the
multiple collocation analysis remain uncertain. None of the existing TC extensions can
completely overcome this problem due to the weakness of the fundamental assumption of
the TC [9,12].

In addition to error assessment, the TC method is valuable for data fusion, where
original datasets are combined to generate more accurate data products using the TC-
estimated errors. The integration of the least square method with the TC method has
proven effective for fusing diverse data products [12,20]. This approach enhances the
accuracy of datasets without relying on user-defined parameters and has been widely
applied in various fields, including soil moisture [14,30,31], evapotranspiration [5,32], land
storage anomaly [20], precipitation [33], and so on.

To investigate and generate a more reliable and accurate ET estimate, the satellite-
based or reanalyzed ET products are fused in this work, based on error characteristics
calculated by the ETC technique [3,15]. ETC is deployed because it can provide the
acceptable error estimation by discovering the optimal triplets, plus more quality in-
dicators, provided that the in-situ measurement is available in our experiment. Other
multiple collocation analyses are not appropriate for our situation. The general ex-
tension of MC by Pan, et al. is a kind of “voting” process and one input data source
gets one vote [12], under which the error estimation is an averaged solution among
all possible triplets, not the optimum, which is practical in mathematics for a general
solution without the support of in-situ datasets. The E-QC and QC request one input
to be independent from others and also take it as a unit of reference; thus, setting an
ET dataset as a reference will result in a biased estimation. Moreover, E-QC needs
at least three inputs with independent errors as the EC required to keep a number of
zero correlated dataset pairs, which is also a big challenge for ET products to simultane-
ously obtain three wholly independent datasets due to the errors of ET products often
being inevitably cross-correlated.

In this paper, we first introduce six popular ET products and in-situ flux datasets, then
describe the ETC method and the approach to determine the optimal triplet among all
possible triplets in which the dataset pairs violate the collocation assumptions to varying
degrees; we ranked the triplets based on the correlation between ETC-based and in-situ-
based error metrics, and, finally, determined the best error estimate for a product, which
was calculated at the product’s original spatial resolution and validated by the statistics
related to the differences of the ranked error estimates.

2. Study Area and Datasets
2.1. Study Area

The research area is China’s mainland (73◦33′–135◦05′E, 3◦51′–53◦33′N), about 5200 km
from east to west and 5500 km from north to south, with a stepped distribution of high
elevation in the west and low elevation in the east (Figure 1). The climate is complex and
diverse; precipitation mostly occurs in summer. The ET is the evaporation of water trapped
in water bodies, soils, and vegetation surfaces, as well as transpiration by plants. Therefore,
the ET varies regionally due to the significant differences in climate, vegetation, and soil
across the study area [34], leading to strong spatial and temporal heterogeneity in different
regions at different times.
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Figure 1. Study area and in-situ flux measurement sites.

2.2. Datasets
2.2.1. Evapotranspiration Datasets

Six satellite-derived or reanalyzed ET products were collected to assess their quality,
as shown in Table 1. These datasets have varying degrees of homology often attributable
to a common origin, in terms of the model principles of ET inversion or the model inputs,
resulting in errors in these datasets that cannot be completely independent of each other.
In addition, the spatial scales of the above ET products are also different. The specific
information is as follows.

Table 1. Characteristics of the evapotranspiration datasets.

Datasets Scheme/Model Spatial Resolution Temporal Resolution Date Range

MOD16A2GF Penman–Monteith 500 m Every 8 days Jan.2000–Dec.2021
PML_V2 Penman–Monteith–Leuning 500 m Daily Feb.2000–Dec.2020
GLASS Bayesian model averaging 1 km Every 8 days Jan.2000–Dec.2018
SSEBop surface energy balance 1 km Every 10 days Jan.2003–Jun.2021
ERA5 IFS 0.1◦ Hourly Jan.2001–present

GLEAM Priestley Taylor 0.25◦ Daily Jan.2003–Jul.2020

MOD16A2GF v061 [24] (www.usgs.gov, accessed on 18 June 2023) calculates the ET
according to Penman–Monteith using daily meteorological reanalysis data and the eight-
day remote sensing vegetation dynamics of MODIS. However, it has been observed that
MOD16 exhibits significant deviations from local-scale observations [35,36]. Therefore,
in this study, we utilize the gap-filled version of MOD16A2, where cloud-contaminated
LAI/FPAR gaps are temporally filled before calculating the ET. However, it is important to
note that this version still has a substantial bias, as illustrated in Figure 2.

PML_V2 [25] (data.tpdc.ac.cn, accessed on 18 June 2023) adopts GLDAS 2.1 meteoro-
logical data and MODIS MCD12Q2.006 IGBP reflectance, emissivity, LAI, and continuous
dynamic vegetation as inputs for a Penman–Monteith–Leuning model for estimating ter-
restrial ET and the total primary productivity dataset.

www.usgs.gov
data.tpdc.ac.cn
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GLASS [26] (www.GLASS.umd.edu, accessed on 18 June 2023) uses a Bayesian model-
averaging (BMA) approach that incorporates five latent heat flux algorithms to estimate the
ground latent heat flux (LE), including MOD16, RRS-PM, PT-JPL, MS-PT, and UMD-SEMI.

SSEBop [27] (edcintl.cr.usgs.gov, accessed on 18 June 2023) applies a simplified surface
energy balance (SSEB) model with predefined “hot” and “cold” boundary conditions to
estimate ET per pixel. MODIS relative data and GLDAS meteorological data are used as
the model inputs.

ERA5-Land [28] (cds.climate.copernicus.eu, accessed on 18 June 2023) is a reanalysis
dataset that uses variables, such as temperature, generated by the land component of the
ECMWF ERA5 climate as a meteorological driver and calculates the potential ET based on
the surface energy balance.

GLEAM v3.5b [29] (www.gleam.eu, accessed on 18 June 2023) is a complex surface-
model product that first uses the Priestley–Taylor equation to calculate potential evapora-
tion from surface net radiation and near-surface air temperature, and then obtains actual
evaporation data from the multiplicative evaporative stress factor. It uses CERES, TMPA,
and AIRS radiation, rainfall, and temperature data as model inputs to estimate the different
components of land evaporation.

2.2.2. In-Situ Datasets

The in-situ data in this study were obtained from multiple sources, including the
FLUXNET2015 dataset [37] (https://fluxnet.org, accessed on 18 June 2023), the multi-scale
surface flux and meteorological elements observation dataset in the Hai River basin [38]
(http://data.tpdc.ac.cn, accessed on 18 June 2023), and the CERN original observation
dataset (http://rs.cern.ac.cn, accessed on 18 June 2023). Based on the data availability of
in-situ measurements, a total of 23 stations across the Chinese mainland (Figure 1) are
selected, and the details of the station information are shown in Table 2.

Table 2. The in-situ flux tower sites.

Site Latitude Longitude Type Temporal
Extent Province Data Source

1 Cha 42.40 128.10 Forest 2003–2005 Jilin Fluxnet
2 Din 23.17 112.54 Forest 2003–2005 Guangdong Fluxnet
3 Qia 26.74 115.06 Forest 2003–2005 Fujian Fluxnet

4 Cng 44.59 123.51 Grassland 2007–2010 Jilin Fluxnet
5 Dan 30.50 91.07 Grassland 2004–2005 Xizang Fluxnet
6 HaM 37.37 101.18 Grassland 2003–2004 Qinghai Fluxnet

www.GLASS.umd.edu
edcintl.cr.usgs.gov
cds.climate.copernicus.eu
www.gleam.eu
https://fluxnet.org
http://data.tpdc.ac.cn
http://rs.cern.ac.cn
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Table 2. Cont.

Site Latitude Longitude Type Temporal
Extent Province Data Source

7 Hgu 32.85 102.59 Grassland 2015–2017 Sichuan Fluxnet
8 Du2 42.05 116.28 Grassland 2006–2008 Neimenggu Fluxnet
9 Du3 42.06 116.28 Grassland 2009–2010 Neimenggu Fluxnet
10 Sw2 41.79 111.90 Grassland 2010–2012 Neimenggu Fluxnet
11 Aru 38.05 100.46 Grassland 2014–2017 Qinghai TPDC
12 Dsl 38.84 98.946 Grassland 2014–2017 Qinghai TPDC
13 Yku 38.01 100.24 Grassland 2015–2017 Qinghai TPDC

14 Hla 40.35 115.79 Cropland 2014–2017 Hebei TPDC
15 Myn 40.63 117.32 Cropland 2008–2010 Beijing TPDC
16 Gut 36.52 115.13 Cropland 2008–2010 Hebei TPDC
17 Dxn 39.62 116.43 Cropland 2008–2010 Beijing TPDC
18 Chw 35.24 107.68 Cropland 2010–2015 Shanxi CERN
19 Ans 36.86 109.32 Cropland 2016–2017 Shanxi CERN

20 Ha2 37.61 101.33 Wetland 2003–2005 Qinghai Fluxnet

21 Ssw 38.79 100.49 Desert 2013–2014 Gansu TPDC
22 Bjt 38.91 100.30 Desert 2014–2014 Gansu TPDC
23 Lud 42.00 101.13 Desert 2014–2015 Neimenggu TPDC

To match satellite-based or reanalyzed ET datasets, in-situ ET data were aggregated on
an eight-day scale. The preprocessing of half-hourly interval observations from Fluxnet [37]
was carried out to select those data with good measurements and filling conditions, thus
controlling the quality of the flux tower data and excluding the day of rainfall and the
day after to avoid canopy interception evaporation and sensor saturation effects. The
unit of latent heat flux was converted to mm/day. The measured ET data from TPDC
were obtained using the eddy covariance (EC) system and large-aperture scintillator (LAS)
observations. Due to the existence of measurement errors, the quality control on the
selection of eddy data followed the processing procedures [38]. In addition, large-scale
lysimeter observation data (mm/day) were directly obtained from the resource-sharing
service platform of China CERN.

3. Methodology
3.1. Extended Triple Collocation

Triple Collocation (TC) is a statistical technique that analyzes errors within a triplet
of spatially coincident or temporally collocated datasets of the same geophysical variable,
without knowledge of the truth values. It provides insights into individual error statistics
and underlying uncertainties. The TC method is based on four assumptions related to
its input signals: (i) linearity between the modeled signals and the truth signals, (ii) the
stationary nature of the modeled signal and error statistics, (iii) the errors among the
modeled signals are independent and uncorrelated, and independent on truth signals, and
(iv) error orthogonality, that is, the random error in the modeled signals is independent of
the true values [7]. The model is listed below:

Xi = X′i + εi = αi + βit + εi (1)

where Xi(i ∈ {1, 2, 3}) are three collocated independent ET inputs, t is the true ET signal
but is unknown, αi and βi are the systematic biases relative to the true signal, αi is the
additive bias, βi is the multiplicative bias, and εi is the zero-mean random error of the
modeled signals.

Based on Equation (1), the covariance between different ET systems can be
expressed as:

Cov
(
Xi, Xj

)
= E

(
XiXj

)
− E(Xi)E

(
Xj
)
= βiβ jσ

2
t + βiCov

(
t, ε j
)
+ β jCov

(
t, ε j
)
+ Cov

(
εi, ε j

)
(2)
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where σ2
t = Var(t). Assuming that the errors of different ET datasets are not correlated

with each other or with the truth values, it yields zero covariances among the errors
and truth values

(
Cov

(
εi, ε j

)
= 0, i 6= j

)
(Cov(εi, t) = 0). As a result, the last three terms

of Equation (2) are eliminated, and thus are simplified to:

Qij ≡ Cov
(
Xi, Xj

)
=

{
βiβ jσ

2
t , for i 6= j

β2
i σ2

t + σ2
εi

, for i = j
(3)

where σ2
εi

= Var(εi). The above covariance matrix contains six unique terms
(Q11, Q12, Q13, Q22, Q23, Q33), but there are seven unknowns (β1, β2, β3, σε1 , σε2 , σε3 , σt);
therefore, there is no solution for Equation (3). The traditional TC method needs to set one
of the ET datasets as the reference, and then convert the other datasets to the reference
space, that is, α1 = 0 and β1 = 1, which simplifies Equation (3) and makes it solvable.

However, this simple rescaling of the ET system with simplified estimation equations
leads to biased estimates of RMSE [6]. For this reason, McColl, Vogelzang, Konings, En-
tekhabi, Piles, and Stoffelen [7] proposed the extended triple collocation method, which
reduces the number of unknowns and avoids the simple scaling process seen in the tradi-
tional TC by defining a new variable, θi = βiσt. The creative simplification of Equation (4)
is as follows:

Qij =

{
θiθj, for i 6= j

θ2
i + σ2

εi
, for i = j

(4)

The standard deviation (STD) of the random variable as the essential output of the TC
analysis can thus be solved as shown below (Equation (5)):

σε =


√

Q11 − Q12Q13
Q23√

Q22 − Q12Q23
Q13√

Q33 − Q13Q23
Q12

 (5)

More importantly, θi can be used to solve the correlation coefficient of the modeled ET
variable concerning the unknown ET truth values. Both θi (Equation (6)) and the correlation
coefficient ρt,X (Equation (7)) can be obtained through the ordinary least square method,
and the signal-to-noise ratio can be calculated using the square of ρt,X (Equation (8)):

θi = ρt,Xi

√
Qii (6)

ρt,X = ±


√

Q12Q13
Q11Q23

sign(Q13Q23)
√

Q12Q23
Q22Q13

sign(Q12Q23)
√

Q13Q23
Q33Q12

 (7)

ρ2
t,xi

=
β2

i σ2
t

β2
i σ2

t + σ2
εi

=
SNRub

SNRub + 1
(8)

3.2. Experimental Design
3.2.1. Data Standardization

TC methods are dedicated to evaluating the standard deviation (STD) of the random
errors of a dataset, and they cannot produce any information about the systematic error
(bias) or the presence of time-varying biases caused by seasonal variations in the dataset,
which affects the accuracy of assessing random errors using the TC analysis [39]. Because
both the signal and the error of the ET datasets contain strongly seasonally variation infor-
mation as is shown partly in Figure 2, which seriously violates the stability assumption of
the TC, the bias caused by seasonal changes must be eliminated during the data prepro-
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cessing. Otherwise, non-linear and non-zero error cross-correlation could occur between
the input ET products within a triplet [40].

The data can be decomposed into the mean and anomaly components, as shown in
Equation (9); the anomaly data, relative to the seasonal signal, are used as the input data,
for which the systematic deviation is included in the mean value [41]. In this way, we can
effectively alleviate the volatility of the ET datasets and avoid violating the TC assumption
of signal stationarity [11]. Most studies posit that decomposition using the monthly scale as
a moving window can effectively remove the seasonal information of time-series data [42].

θX =< θX >N
D + θ′x (9)

where < θX >N
D is the mean value of the ET signal; the mean value at each moment is

calculated by the time window N centered on this moment; and θ′x is the anomaly term
corresponding to the mean value. The time scale of the ET dataset is 8 days, so N is set to 4.

3.2.2. Cross-Correlation Analysis

Considering the six ET products shown in Table 1, there are a number of possible
triplets that can be used to estimate the errors of a product using the ETC analysis. This is
because these products share meteorological forcing inputs or land surface datasets, and
their errors will inevitably be correlated. Thus, the error estimated by ETC for the same
product may differ depending on which other two products are its counterparts. In this
situation, it is necessary to consider which combination of triplets can result in the best
estimation of errors for a given product in comparison of the observation at in-situ sites,
and how to determine the triplet that can obtain the most reliable spatial distribution of the
product error. These concerns constate the focus of the experimental design.

Most studies carry out the TC analysis on spatially aggerated datasets if the spatial
resolutions of the products differ from each other. The impact of the representative er-
ror for a product on the TC analysis may be larger than the one caused by the non-zero
error correlations between the product and its two counterparts if the product is spa-
tially aggregated from a very fine resolution to a quite coarse resolution. So, as shown
in Table 3, this study constructed the triplets for an ET product as possible at its original
spatial resolution to reduce the impact of scale conversion on the accuracy of the prod-
uct due to the neutralization of neighbor cell values. Meanwhile, the products that have
temporal resolutions different from that of MODIS-ET were also generated uniformly
to the eight-day interval using temporal aggregation. In addition, there are only two
500 m datasets (MOD16 and PML_V2) available, and we have upsampled two 1 km
datasets (GLASS and SSESop) to perform the ETC analysis at the finest 500 m resolu-
tion, providing that the conversion between such close resolutions causes tiny errors on
spatial representativeness.

Table 3. The correlation coefficients between the ETC-estimated error and the actual error.

Triplets MOD16
500 m

PML_V2
500 m

GLASS
1 km

SSEBop
1 km

ERA5
0.1◦

GLEAM
0.25◦

1 MOD16-PML_V2-GLASS 0.448 (0.23) 0.871 (0.24) 0.442 (0.11)
2 MOD16-PML_V2-GLEAM 0.551 (0.15)
3 MOD16-PML_V2-SSEBop 0.725 (0.22) 0.874 (0.24) 0.799 (0.27)
4 MOD16-PML_V2-ERA5 0.062 (0.14)
5 MOD16-GLASS-GLEAM 0.893 (0.18)
6 MOD16-GLASS-SSEBop 0.821 (0.19) 0.472 (0.13) 0.856 (0.27)
7 MOD16-GLASS-ERA5 0.880 (0.19)
8 MOD16-ERA5-GLEAM 0.525 (0.13)
9 MOD16-SSEBop-GLEAM 0.890 (0.17)
10 MOD16-SSEBop-ERA5 0.850 (0.19)
11 PML_V2-GLASS-GLEAM 0.380 (0.12)
12 PML_V2-GLASS-SSEBop 0.829 (0.20) 0.668 (0.10) 0.854 (0.26)
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Table 3. Cont.

Triplets MOD16
500 m

PML_V2
500 m

GLASS
1 km

SSEBop
1 km

ERA5
0.1◦

GLEAM
0.25◦

13 PML_V2-GLASS-ERA5 0.204 (0.12)
14 PML_V2-SSEBop-GLEAM 0.660 (0.13)
15 PML_V2-ERA5-GLEAM 0.502 (0.11)
16 PML_V2-SSEBop-ERA5 0.000 (0.14)
17 GLASS-SSEBop-GLEAM 0.691 (0.14)
18 GLASS-ERA5-GLEAM 0.730 (0.11)
19 GLASS-SSEBop-ERA5 0.759 (0.17)
20 SSEBop-ERA5-GLEAM 0.486 (0.12)

The values in the table denote the correlation coefficients (the median of ETC-estimated STD errors of all pixels).

The ETC analysis was performed on all triplets, enabling the estimation of the standard
deviation of the random error (referred to as ETC-estimated STD errors) for each product
at its original spatial resolution. Assuming that the ET data measured at in-situ towers
can be regarded as the true values, the actual errors of each satellite-derived ET product
at all tower locations were calculated, and the standard deviation of these actual errors,
tentatively referred to as actual STD errors, was estimated. To assess the performance
of each triplet in the TC analysis, we performed a linear correlation analysis with ETC-
estimated and actual STD errors for each ET product at its original spatial resolution. By
ranking the triplets with the correlation coefficient as the score, the triplet with the highest
coefficient was treated as the optimum, as it produced the best error estimation. The flow
chart is shown in Figure 3.
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3.2.3. Evaluation Indicators

Previous studies have compared the difference between the TC-estimated random
error and the RMSE that is calculated between the satellite-derived ET product and the
measured flux data, in order to verify whether the ETC error estimation is robust. They are
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not comparable if it is necessary to review Equation (6) in the TC method [43]. Indeed, the
comparison focuses on the standard deviation of the product random errors.

(1) The correlation coefficient r (Equation (10)) is the amount of linear correlation
between two variables: the larger the r, the higher the degree of correlation between
two variables.

r =

N
∑

i=1

(
Si − S

)2(Mi −M
)2

√
N
∑

i=1
(Si − S)2

√
N
∑

i=1
(Mi −M)2

(10)

(2) The root mean square error (RMSE) is used to test the difference between
two variables. The smaller the RMSE (Equation (11)), the smaller the difference between
the two variables [5].

RMSE =

√
1
n

n

∑
i=1

(Mi − Si)
2 (11)

where Si is the estimated value, Mi is the actual value, and n stands for the number of
in-situ sites.

3.2.4. Data Fusion

A data fusion method is proposed to merge the satellite-derived ET products by fol-
lowing a popular fuzzy membership merging method [44]. Under a fuzzy assignment,
the fuzzy membership stands for the similarity between the source data and their coun-
terpart target. The more similar a source is to the target, the stronger the assignment. An
uncertainty-reduced ET estimate can be made for the original ET products using either a
hardening (Equation (12)) or weighing (Equation (13)) mode, as follows:

ETharden = max(ETi) (12)

ETweigh =
N

∑
i=1

wiETi (13)

where wi is the fuzzy membership of the dataset ETi,
N
∑

i=1
wi = 1, and N is the number

of members.
The calculation of the fuzzy membership is based on an objective-based least-square

method [31], which has been successfully used to merge satellite-derived and model-based
soil moisture products. The basis of the least-square method is to minimize the summary of
the error variance of all the merged estimates by the expression of wi (Equation (14)) [45]:

wi =

(
σ−1

i

)2

N
∑

i=1

(
σ−1

i

)2
(14)

where σi is the standard deviation of the random error of the ith ET product estimated by
the TC analysis.

4. Results
4.1. Optimal Triplet Mining by Correlation Analysis

For all the triplets constructed for an ET product in the experiment, we first used
the ETC method to estimate the STD of random errors at the original resolution of the
product, and then compared them with the actual STDs at 23 in-situ flux sites using the
correlation analysis [39]. By ranking the performance of the triplets in the product with
the correlation coefficient, the optimal triplet for the product at a given spatial resolu-
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tion was identified to estimate the product’s errors (Table 3). Taking MODIS-ET as an
example, the best triplet occurs with the combination of MOD16–GLASS–SSEBop, which
leads to a top correlation coefficient of 0.82 and a median of 0.19 for ETC-estimated STD
errors. The magnitude of the correlation coefficient implies whether the ETC-estimated
errors are consistent with the actual errors recorded in-situ. Interestingly, the products
of MOD16, GLASS, ERA5, and GLEAM show large differences in their correlation coeffi-
cients, indicating that they could seriously be affected by their different counterparts
in the TC analysis. In comparison, PML_V2 and SSEBop are much more reliable for
the TC analysis according to the correlation coefficient. Moreover, aggregating high-
spatial-resolution products to match low-resolution datasets reduces the accuracy of ETC
estimations [22], but some high collocating triplets are still found in this work, i.e., ERA5
and GLEAM.

4.2. Spatial Distribution of the ETC-Estimated STD Errors of Six ET Products

Each of the six satellite-derived ET products has one optimum triplet, which was
identified for the spatial resolution of the product. By evaluating the error estimates that
result from these triplets using ANOVA (Table 4), the p-values of the F-statistics show
that the correlation between the ETC-estimated and actual STD errors was significantly
high at the significance level of 0.05; meanwhile, the RMSE is quite low. The 500 m prod-
ucts of MOD16 and PML_V2 were collocated in the TC analysis with the upsampling
versions of the 1 km GLASS and SSEBop; it seems that the impact of the scale shifting
on the TC analysis is lower than that of the impact caused by violations of the TC as-
sumptions. In addition, it is worth noting that the slopes of the best combination are all
less than one for all products, suggesting that the ETC method as a whole may underes-
timate the product error; this finding is similar to that regarding the TC analysis of soil
moisture products [46].

Table 4. ANOVA analysis of the correlation between the ETC-estimated and actual STD errors for
six products.

MOD16 PML_V2 GLASS SSEBop ERA5 GLEAM

Regression y = 0.75x + 0.01 y = 0.87x + 0.04 y = 0.63x + 0.01 y = 0.84x + 0.05 y = 0.85x + 0.05 y = 0.83x + 0.04
r 0.82 0.87 0.67 0.86 0.88 0.89

F-statistic 33.10 55.22 14.50 72.35 72.01 82.36
p-value 2.97 × 10−5 (***) 9.82 × 10−7 (***) 0.00129 (**) 4.46 × 10−8 (***) 3.16 × 10−8 (***) 1.03 × 10−8 (***)
RMSE 0.05 0.04 0.05 0.05 0.04 0.03

** p < 0.01, *** p < 0.001.

The ETC-estimated STD errors of the six satellite-derived ET products are repre-
sented at the original spatial resolutions of these products (Figure 4). At this spatial
distribution, none of the products achieved full accuracy in the whole region. Conspic-
uously, SSEBop shows a significant difference over space; that is, error estimation was
very poor in the north but fairly good in the south. However, according to the statistics
of the error estimates for all pixels, the median STD error of GLASS is the smallest at
0.10 mm/day; then, GLEAM is 0.18 mm/day; both MOD16 and ERA5 are at 0.19 mm/day.
PML_V2 has higher errors of 0.24 mm/day; finally, the highest is SSEBop, which reaches
0.27 mm/day. To a certain extent, these findings are consistent with the conclusions
reported in previous studies [5].

Moreover, the statistics of the standard deviation, correlation coefficient, and signal-
to-noise ratio estimated by the ETC for each ET product (Figure 5) illustrate that GLASS
performed best in all three indicators, while SSEBop is the worst. It is worth noting that
the removal of the seasonal signal leads to a lower signal-to-noise ratio (Figure 5c); this is
because the input of the ETC is an anomaly part relative to the mean value of the ET signal,
which has a smaller dynamic range than the original ET value [47].
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4.3. Dataset Merging

Comparing the dominant weights of the six ET products on the pixels, the spatial
pattern shows a relatively continuous patchy distribution (Figure 6). Among the products,
GLASS performed the best, covering about 43.85% of the area; SSEBop took second place
at about 35.24%, and the remaining four datasets accounted for no more than 10% each.

By utilizing the ETC-estimated errors, the ET products are integrated into a more
precise dataset through a fuzzy membership weighting approach. It effectively captures the
spatial heterogeneity across diverse regions, surpassing the capabilities of any individual ET
product. The original ET data are merged at a resolution of 0.25◦ as an example according
to the hardening and weighing methods, and the spatial distribution of two fusion outputs
is highly consistent (Figure 7); however, the results obtained using the weighing approach
are smoother or more continuous in space. The ET values of the merged dataset were
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regressed against the measured ET values on 23 sites, finding that 20 sites were dominated
by the weighing approach; as such, we recommend utilizing the weighing approach to
merge data in China.

Remote Sens. 2023, 15, x FOR PEER REVIEW 13 of 20 
 

 

because the input of the ETC is an anomaly part relative to the mean value of the ET signal, 

which has a smaller dynamic range than the original ET value [47]. 

 

Figure 5. Boxplot of ETC statistics, (a) standard deviation of random errors, (b) the correlation coef-

ficient, and (c) the signal-to-noise ratio. 

4.3. Dataset Merging 

Comparing the dominant weights of the six ET products on the pixels, the spatial 

pattern shows a relatively continuous patchy distribution (Figure 6). Among the products, 

GLASS performed the best, covering about 43.85% of the area; SSEBop took second place 

at about 35.24%, and the remaining four datasets accounted for no more than 10% each. 

 

Figure 6. The dominant regions of the six ET products in the merged output. 

By utilizing the ETC-estimated errors, the ET products are integrated into a more 

precise dataset through a fuzzy membership weighting approach. It effectively captures 

the spatial heterogeneity across diverse regions, surpassing the capabilities of any indi-

vidual ET product. The original ET data are merged at a resolution of 0.25° as an example 

according to the hardening and weighing methods, and the spatial distribution of two 

fusion outputs is highly consistent (Figure 7); however, the results obtained using the 

Figure 6. The dominant regions of the six ET products in the merged output.

Remote Sens. 2023, 15, x FOR PEER REVIEW 14 of 20 
 

 

weighing approach are smoother or more continuous in space. The ET values of the 

merged dataset were regressed against the measured ET values on 23 sites, finding that 

20 sites were dominated by the weighing approach; as such, we recommend utilizing the 

weighing approach to merge data in China. 

 

Figure 7. Two data fusion outputs. 

The accuracy of the two fused ET products was assessed by comparing them with 

the six original datasets at 23 in-situ sites. The correlation between the weighted dataset 

and the measured values showed a significant improvement, with a median value of 0.79 

across the in-situ sites, as shown in Figure 8. 

 

Figure 8. Correlation between ET datasets and measured values over 23 in-situ sites. 

  

Figure 7. Two data fusion outputs.

The accuracy of the two fused ET products was assessed by comparing them with the
six original datasets at 23 in-situ sites. The correlation between the weighted dataset and
the measured values showed a significant improvement, with a median value of 0.79 across
the in-situ sites, as shown in Figure 8.
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5. Discussion
5.1. The Impacts of Seasonal Changes on TC Analysis

Systematic errors (biases) caused by seasonal changes in ET signals usually affect
the estimation of the STD of random errors in satellite-derived products. We compared
two preprocessing approaches for lessening the impact of seasonal change on the TC analysis.
The simpler method involves a fixed long-term mean signal [41], namely, removing a constant
bias; however, this method cannot be used for signals with strong seasonal changes [40]. The
other method involves selecting a seasonal change period as a filter window to remove the
seasonal information of the dataset [42]. The correlation between the ETC-estimated STD
errors and the actual STD errors at 23 in situ towers indicates that removing the seasonal bias
leads to a higher correlation compared to the original dataset (Figure 9).
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5.2. The Reliability of Triplet Ranking

The triplets of an ET product were ranked by comparing their performance at
23 in-situ sites; in this way, the best triplet for each product was determined. However, this
comparison was conducted using limited observation points, and it remains necessary to
determine whether the ranking of the triplets is valid for all pixels for each product.

A statistical approach to detecting the degree of the difference in the error estimates
among the ranked triplets was proposed, in order to illustrate the reliability among the
ranked triplets for all the pixels covered by the product. Assuming that higher-ranked error
estimates are closer to actual errors than the lower-ranked ones, the difference between
two higher-ranked errors must be less than that between a higher error and a lower error.
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Therefore, we first selected three error estimates for each product, including the top two
and the worst, then organized them into two groups—the “high–high” with two tops and
the “high–low” with the worst and either of two tops. Finally, we calculated the absolute
difference between the two group members.

As shown in Table 5, the means and STDs of the difference in the “high–high” groups
are smaller than those in the “high–low” groups, except for the STD of MOD16. This finding
reveals that the error estimates resulting from highly ranked triplets are more reliable
than poorly ranked ones, across the entire region covered by the product. The results of
the Kolmogorov–Smirnov Test also show that the difference between the two groups for
each product is significant, as the p-value is far less than 0.05. Using the above way, we
demonstrate that it is acceptable or practical to select the top ranked triplet as the optimum.

Table 5. The degree of the absolute difference in the error estimates among the ranked triplets.

ET
Products

“High–High” “High–Low” Kolmogorov–Smirnov Test

Mean STD Mean STD Statistic p-Value

MOD16 (500 m) 0.033 0.231 0.045 0.208 0.046 0.000 (***)
PML_V2 (500 m) 0.007 0.122 0.022 0.147 0.079 0.000 (***)
GLASS (1 km) 0.006 0.237 0.027 0.359 0.055 0.000 (***)
SSEBop (1 km) 0.003 0.047 0.004 0.101 0.059 0.000 (***)
ERA5 (0.1◦) 0.003 0.046 0.046 0.199 0.137 0.000 (***)
GLEAM (0.25◦) 0.001 0.042 0.054 0.229 0.270 0.000 (***)

*** p < 0.001.

In addition, the number of pixels for which the inputs in the triplet violate the TC
assumption might, to some degree, indicate the quality of the triplets. As shown in
Figure 10, the scatter plots show the violation of assumptions in the ETC analysis and the
correlation coefficient between the TC-estimated and actual STDs at 23 observation sites.
The plot indicates a certain degree of negative correlation; that is, the larger the number of
violations, the more serious the triplet’s violation of the TC assumption.
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5.3. The Issues of Identifying the Optimal Triplet

The errors of remotely sensed or reanalyzed ET products are inevitably correlated as
they often share ancillary datasets for their calculation. Nevertheless, the error estimation
by ETC still achieved acceptable results on a global scale [3,15]. Regretfully, it is difficult
to identify the best triplet or quadruplets under current advanced multiple collocation
techniques [7–10], as there are no good ways to measure the non-zero error correlation
among ET products in the absence of in-situ measures.

As suggested [12], a better error assessment can only happen when new, better, and
independent data sources become available. In this experiment, the flux at 23 in-situ sites
was acquired to support the error estimation. In most cases, the best-performing triples can
be identified against all possible triplets, but there are exceptions. For the example of the
1 km SSEBop, the correlation between ETC-based and in-situ-based error metrics is 0.856
by the triplet MOD16-GLASS-SSEBop and 0.854 by PML_V2-GLASS-SSEBop, too close to
determine which is better since the observations at these in-situ sites cannot represent the
entire region, and the random error for a product in a grid-based dataset is also different to
some extent to a point-based measurement [46].

The errors of the same ET product will change when converting from a very fine
resolution to a quite coarse resolution; this is because the neutralization occurs on the
aggregation of adjacent ET signals [11], which thus causes the spatial representativeness
of the random errors for the same product differing in spatial resolution [46]. Such a
difference caused by spatial aggregation can definitely affect the non-zero error correlation
between two ET products, so this work sticks the optimal triplet tightly to a specific spatial
resolution on which the ETC performed. However, the impact of spatial aggregation on the
error correlation is difficult to capture and needs to be further explored.

6. Conclusions

Triple collocation (TC) is an effective method for quantifying data errors in ET products,
but it is susceptible to the violation of its underlying assumptions, particularly arising
from the input datasets. In this study, we identified the optimal triplet configuration
that minimizes the violation of the non-zero cross-correlation hypothesis, improving the
accuracy of error estimation. Performance ranking was conducted for all triplets comprising
six widely used ET products, by correlating their ETC-estimated error metrics with in-situ
error metrics at multiple flux observation points. The top-ranked triplet was determined as
the optimum configuration, and the accuracy of this ranking was further validated through
the statistical analysis of error estimate differences among the ranked triplets.

In the context of the experiment conducted in China, the error distribution of six
datasets are very different in space. Generally, the GLASS product exhibited the lowest
median error of 0.10 mm/day, indicating its superior performance. It was closely followed
by the GLEAM, ERA5, and MOD16 products, which displayed median errors below
0.20 mm/day. The PML_V2 and SSEBop products demonstrated slightly higher median
errors, measuring 0.24 mm/day and 0.27 mm/day, respectively. The weighted fusion ET
product presents an accuracy improvement across all 23 in situ sites in comparison of the
hardening way.

In the process of error assessment for ET products, our focus was on identifying
the optimal triplets that minimize violations of the non-zero cross-correlation hypothesis
through experimental investigation. However, the exact extent of the non-zero correlation
remains uncertain. To achieve a more accurate assessment of errors, future research should
incorporate new, improved, and independent data sources. Additionally, utilizing remote
sensing datasets to explore the relationship between ET and different LULC categories is
an intriguing way to consider in the future, as it indicates the impacts of vegetation growth
on ET modeling and helps understand geographical errors.
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