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Abstract: The crop drought risk assessment is an important basis for mitigating the effects of drought
on crops. The study of drought using crop growth models is an integral part of agricultural drought
risk research. The current Decision Support System for Agrotechnology Transfer (DSSAT) model is
not sufficiently sensitive to moisture parameters when performing simulations, and most studies
that conduct different scenario simulations to assess crop drought vulnerability are based on the
site-scale. In this paper, we improved the moisture sensitivity of the Crop Environment Resource
Synthesis System (CERES)-Wheat to improve the simulation accuracy of winter wheat under water
stress, and then we assessed the drought intensity in the Beijing-Tianjin-Hebei region and constructed
a gridded vulnerability curve. The grid vulnerability curves (1 km × 1 km) were quantitatively
characterized using key points, and the drought risk distribution and zoning of winter wheat were
evaluated under different return periods. The results show that the stress mechanism of coupled
water and photosynthetic behavior improved the CERES-Wheat model. The accuracy of the modified
model improved in terms of the above-ground biomass and yield compared with that before the
modification, with increases of 20.39% and 11.45% in accuracy, respectively. The drought hazard
intensity index of winter wheat in the study area from 1970 to 2019 exhibited a trend of high in the
southwest and low in the southeast. The range of the multi-year average drought hazard intensity
across the region was 0.29–0.61. There were some differences in the shape and characteristic covariates
of the drought vulnerability curves among the different sub-zones. In terms of the cumulative loss
rates, almost the entire region had a cumulative drought loss rate of 49.00–54.00%. Overall, the
drought risk index decreased from west to east and from north to south under different return
periods. This quantitative evaluation of the drought hazard intensity index provides a reference for
agricultural drought risk evaluation.

Keywords: moisture sensitivity; CERES-Wheat; yield loss rate; vulnerability curves; drought risk

1. Introduction

Drought is one of the most complex and devastating natural hazards [1]. In recent
years, global climate change and the development of human life, the economy and urban-
ization have led to an increase in the frequency of and damage caused by droughts [2,3].
The impacts of drought include economic, natural and social impacts [4], with drought
having a significant impact on agriculture. Globally, the average annual loss of agricultural
production due to drought has exceeded USD 6 billion and is still increasing [5]. Between
1983 and 2009, about three-quarters of the global crops’ harvested crop area (454 million
hectares) experienced yield losses due to drought, with cumulative yield losses equivalent
to USD 166 billion. With respect to the global average, a drought can reduce the agricultural
gross domestic product (GDP) by 0.8%, and the degree of impact varies from country to
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country [6]. For the same drought disaster intensity, the higher the level of regional agri-
cultural vulnerability, the more severe the disaster losses. Therefore, in-depth research on
the quantification of agricultural drought vulnerability is of great significance for regional
agricultural drought risk prevention and the formulation of disaster mitigation strategies.

Research on drought risk assessment is growing in the international community [7],
and there is a proliferation of assessment methods. Most studies consider the agricultural
drought risk as the superimposed effect of the exposure, the environmental sensitivity and
the vulnerability of the crop in the process of coping with drought in agricultural systems.
A risk index system was constructed to comprehensively evaluate the risk level of a region
and carry out zoning [8–10]. Zhang et al. [11] developed a multi-indicator assessment
model to evaluate the agricultural drought risk in terms of the hazard, vulnerability, ex-
posure and drought resistance based on the fuzzy characteristics of variables. Existing
machine learning approaches have made great progress in drought stress monitoring and
diagnosis [12]. An et al. [13] used a deep learning convolutional neural network (DCNN)
for drought stress identification. In addition, numerous studies have been conducted on
the drought monitoring of plants and images using machine learning algorithms [14,15].
A number of studies have also focused on the analysis of precipitation indices that affect
drought vulnerability, such as the use of the standardized precipitation index (SPI) to
characterize agricultural drought conditions [16,17]. Thomas et al. [18] used a combina-
tion of the SPI, surface water drought index and groundwater drought index to assess the
drought vulnerability. Kar et al. [19] used multiple factors including watershed topographic
characteristics, soil type and rainfall deviation to evaluate the spatial and temporal vari-
ability of drought characteristics, and then identified and analyzed the areas vulnerable to
drought. Some scholars considered farmers as the mainstay of agricultural production and
focused more on a drought vulnerability assessment from the microscopic perspective of
farmers’ households [20,21]. The impact of the farmers’ own characteristics on the drought
sensitivity and adaptive capacity is considered. Drought vulnerability studies based on
indicator systems are mostly represented by qualitative or semi-quantitative risk maps,
which are useful for understanding the spatial and temporal distribution characteristics
of the drought risk. However, there is the problem that the selection of indicators is too
subjective, and it is difficult to determine the physical significance associated with the
composite vulnerability index and to estimate the corresponding agricultural losses under
different drought intensities.

Agricultural drought vulnerability curves can enable the quantitative assessment of the
crop vulnerability level and estimation of the extent of agricultural damage under different
drought hazard intensities. Three main types of data can be used to construct these curves:
actual disaster data, systematic surveys and model simulation data [22,23]. The first type
is more dependent on disaster case data, while the second type is more work-intensive
and mixed with more human factors to investigate. Vulnerability curves constructed with
the help of crop growth models are less limited by disaster data and can quantify the
relationship between the degree of drought and crop yield loss from the perspective of
physical processes, so they are gradually becoming a hot research topic [24–26].

Currently, the commonly used crop growth models include the FAO Crop Model to
Simulate Yield Response to Water (AquaCrop) [27,28], Agricultural Production Systems
Simulator (APSIM) [29], Environmental Policy-Integrated Climate (EPIC) [30–32] and
Decision Support System for Agrotechnology Transfer (DSSAT) [33,34] models. Scholars use
appropriate crop growth models to evaluate agricultural drought vulnerability according to
the major crops in the region. For example, Wang et al. [31] concluded that the EPIC model
was less sensitive to the crop yield during severe drought and was not good at modeling
the soil moisture when crops were under water stress. They proposed to construct physical
vulnerability curves for crops based on the water stress and yield loss contribution of
the EPIC model, and then performed a vulnerability evaluation and yield loss rate risk
evaluation. The DSSAT model is a globally used crop modeling platform that has been
widely used in agriculture in recent years [35]. It has a daily time step and considers the
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effects of moisture, nitrogen and sunshine length on crop growth and development [36].
The DSSAT-CERES (Crop Environment Resource Synthesis System)-Wheat model has been
used for more applications in the Chinese region [37,38]. However, the DSSAT model is
more sensitive to nitrogen than water, and its water module only considers the relationship
between the possible water uptake and the actual transpiration, making it less accurate for
simulating crop yield loss under different water stresses. Moreover, this model is mainly
used to simulate the effect of different irrigation amounts on crop yield reduction based on
field experiments or to analyze the risk of future climate change on crop yield reduction at
the regional scale [39,40].

The DSSAT model is not sufficiently sensitive to moisture parameters when performing
simulations, and few studies have used the correlation between the water stress and the
yield loss rate to construct regionally gridded crop drought vulnerability curves. The
CERES-Wheat model has been utilized less in constructing vulnerability curves using
scenario simulation methods [41]. The main objectives of this study paper were (1) to make
moisture improvements to the CERES-Wheat model, improve its moisture sensitivity and
evaluate the modified model; (2) to set up a scenario simulation of winter wheat growth in
the study area with a spatial resolution of 1 km × 1 km, construct a gridded vulnerability
curve and characterize the vulnerability curve; and (3) to assess the drought risk of winter
wheat in the study area. The results of this paper provide a quantitative estimation of the
small-scale winter wheat drought loss risk and a basis for refined disaster prevention and
mitigation strategies.

2. Data and Methods
2.1. Study Area

The Beijing-Tianjin-Hebei region (36◦05′N–42◦40′N, 113◦27′E–119◦50′E) was selected
as the study area, which is bordered by the Bohai Sea to the east, the Taihang Mountains
to the south, Shanxi to the west and Inner Mongolia to the north. The study area covers a
total area of 216,000 km2, accounting for 2.2% of China’s national territory. Figure 1 shows
the study area and distribution of winter wheat.
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2.2. Data

In this paper, the extraction method of the winter wheat planting area was based on
the decision tree method, using multi-temporal MODIS (Moderate-Resolution Imaging
Spectroradiometer) data with different phenological characteristics and spectral differences
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of winter wheat and other vegetation, and completing the area stitching and projection
conversion in MRT (MODIS Reprojection Tool) [42–44]. The NDVI (normalized difference
vegetation index) for October, November and May/June was selected to build a decision
tree to extract the 2010 winter wheat planting area in the study area, which is in general
agreement with other studies in the literature [45].

The daily meteorological data from 1970 to 2019 were obtained from the China Me-
teorological Administration (CMA) (http://data.cma.cn/ (accessed on 20 January 2020)),
including daily maximum temperature, daily minimum temperature, precipitation and sun-
shine hours data. Based on the sunshine hours, the daily solar radiation was calculated using
the Angstrom–Prescott equation [46]. The meteorological data were spatially interpolated to
a resolution of 1 km using the kriging method. The digital elevation model (DEM) data were
obtained from the Shuttle Radar Topography Mission (SRTM) data provided by the Resource
and Environmental Science and Data Center (http://www.redc.cn/Default.aspx (accessed
on 11 October 2022)), with a spatial resolution of 1 km. The daily minimum temperature,
daily maximum temperature, precipitation and sunshine hours data for the winter wheat
growing period (15 November to 20 May) in the Beijing-Tianjin-Hebei region from 1970 to
2019 were integrated into each meteorological data for each growing period (49 growing
periods). The meteorological data and DEM elevation data were graded and mapped using
the natural breakpoint method. Figure 2 shows the meteorological data and DEM data for
the wheat growing periods from 1970 to 2019 in the Beijing-Tianjin-Hebei region.
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Figure 2. Meteorological geographical data for the wheat growing periods from 1970 to 2019 partitioning
in the Beijing-Tianjin-Hebei region: (a) average annual precipitation, (b) average annual sunshine hours,
(c) average annual maximum temperature, (d) average annual minimum temperature and (e) DEM.

In this study, a dataset composed of crop growth and development and farmland soil
moisture ten-day values from 1991 to 2010 from agrometeorological stations was utilized.
The dataset was obtained from the China Meteorological Data Network (http://data.cma.cn/
(accessed on 11 April 2022)), including basic information about the stations (station number,
name, latitude, longitude and elevation) and basic growth information about winter wheat.

Two datasets were used for the regional soil-scale simulations: a China dataset of soil
properties for land surface modeling [47], and a China dataset of soil hydraulic parameters’
pedotransfer functions for land surface modeling [48,49], both of which had a spatial
resolution of 1 km. In this simulation, the model used 11 parameters, including the soil
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thickness, sand, powder, clay, gravel, bulk weight, pH, saturated water content, water
content, bulk density, saturated hydraulic conductivity, field water-holding capacity and
wilting coefficient.

2.3. Methods
2.3.1. Improving the Moisture-Sensitive DSSAT Model

The DSSAT, one of the most widely used crop growth simulation models worldwide,
has distinct application characteristics [50,51]. The DSSAT family of models has some
generic modules, but each crop has its own module [52]. The CERES-Wheat model is a sub-
model embedded in the DSSAT, which is able to simulate various environmental (including
weather and soil) and management factors (crop variety, growing conditions, fertilizer and
irrigation) on a day-by-day basis. Transpiration is one of the most important mechanisms
of plant water transport. The CERES-Wheat model uses the relative transpiration method
to calculate the root water uptake as the minimum crop water requirement for the day and
the model-simulated root water uptake [53].

Tai = min
(
Tpi, Uxi

)
(1)

Uxi =
n

∑
j=1

0.013emin(c2,j(θi,j−θpwp),4.0)

7.01− ln
(

ρri,j /104
) ∆zjρri,j (2)

where Tai is the actual plant water uptake on day i, Tpi is the crop water requirement on
day i, and Uxi is the model-simulated root water uptake on day i, c2,j is the coefficient of
root uptake, θi,j, θpwp are the actual soil water content and wilting water content of the soil
layer, ρri,j is the root length density (cm/cm3) and ∆zj is the thickness of the soil layer (cm).

The effect of the soil water content on plant transpiration and photosynthesis was
taken into account. Coupling the stress mechanisms of the soil water content on plant
transpiration and photosynthetic behavior, the relationship between the actual soil water
availability and the critical soil water availability affecting photosynthetic production was
used to construct the effect factor of the water stress on photosynthesis. This factor reflected
the discounting effect of photosynthesis during the water deficit. The sensitivity of the
model to water was improved by embedding the water stress effect factor on photosynthesis
in the CERES-Wheat model:

f =
θi − θpwp

θti − θpwp
(3)

θti = (1− p)
(

θ f c − θpwp

)
− θpwp (4)

Tai = min
(
Tpi, Tpi × f , Uxi

)
(5)

where f is the effect of water stress on photosynthesis, θi is the actual soil water con-
tent (cm3/cm3), θpwp is the wilting water content (cm3/cm3), θti is the critical soil water
content (cm3/cm3) affecting photosynthetic production, p is the proportion of soil water
available for photosynthesis that is readily absorbed by plants and θ f c is the amount of
water held in the field (cm3/cm3).

The DSSAT model source code is written in Fortran. In this paper, the stress mecha-
nisms of the soil water content on plant transpiration and photosynthesis behavior were
coupled, and the new effect factors f were embedded into the soil evapotranspiration file.
The modified model was used to simulate winter wheat growth.

2.3.2. Model Accuracy Evaluation and Parameter Calibration

In this paper, the CERES-Wheat model was improved by embedding factors for the
effect of water stress on photosynthesis. The above-ground biomass and yield were simu-
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lated using the modified model, and the standard root mean square error (nRMSE) of the
simulated and measured values was calculated and compared with the pre-model improve-
ment. For different species of crops, the genetic parameters used in the DSSAT varied from
variety to variety. It was necessary to calibrate the genetic parameters of the crop to the
actual measurements before conducting the simulation. The parameter localization process
was as follows. First, the daily meteorological data, soil data and management data for
each prefecture were entered into the CERES-Wheat model. Second, the model-simulated
phenological periods were compared with the actual measured phenological periods, and
the generalized likelihood uncertainty estimation (GLUE) method was used to calculate
the genetic parameters. This method was a direct debugging of a set of model parameters,
and the degree of simulation between the simulation results and the measured results was
the evaluation criterion. After several adjustments, parameters such as the vernalization
coefficient, photoperiod response and grain-filling phase duration were finally determined.

2.3.3. Drought Hazard Intensity Index

In this paper, a spatial rasterization run of the CERES-Wheat model was used to
simulate the growth of wheat on grid cells within the study area. The water stress indicator
was defined as the difference between the actual and potential evapotranspiration [27]. The
water stress was used as the main factor to describe the intensity of the drought-causing
factors, as the magnitude of the water stress and the number of days of stress together affect
the intensity of the drought in a crop during a reproductive period. The number of days of
stress is the number of days when the moisture stress value is greater than 0, i.e., the number
of days when the actual evapotranspiration is less than the potential evapotranspiration.
Therefore, the water stress value and the number of days affected by water stress throughout
the growing period were used to extract and construct the drought hazard intensity index
(DHI) as an indicator for evaluating drought-causing factors in wheat:

DHIxy =
1
n

n

∑
i=1

WSIi (6)

WSIi = 1− ET/ET0 (7)

where DHIxy is the drought hazard intensity index for grid y of year x, WSIi is the water
stress index at day i, ET is the actual evapotranspiration (mm) and ET0 is the potential
evapotranspiration (mm). The DHI is in the range (0,1) and the closer the DHI is to 1, the
drier it is.

2.3.4. Gridded Drought Vulnerability Curves

In order to determine the effect of water stress on the crop yield, two scenarios were
set: sufficient nutrients and irrigation (scenario Y1) and no irrigation (scenario Y2). These
two scenarios can be considered as reaching the point of excluding the effects of temperature
stress on crop growth. The differences between the corresponding indicators simulated in
scenario Y1 and scenario Y2 for the entire growing season were the loss due to the degree
of exposure to drought.

YLxy =
Y1 −Y2

Y1
× 100% (8)

where YLxy is the degree of yield loss due to drought throughout the growing period in
grid y of year x; Y1 and Y2 are the yield values in scenarios Y1 and Y2, respectively.

According to numerous studies, logistic functions can adequately describe the relation-
ship between the DHI and the corresponding yield loss rate [54,55]. Therefore, a physical
vulnerability curve was defined based on the DHI and the corresponding yield loss rate, and
the relationship between the two was modeled using a logistic regression analysis as follows:

YL =
1

1 + aeb∗DHI + c (9)



Remote Sens. 2023, 15, 3197 7 of 20

where YL is the yield loss rate of the evaluation unit, DHI is the drought hazard intensity
index of the evaluation unit and a, b, c is the parameter to be fitted.

Three characteristic parameters were calculated to characterize the phase change
based on the vulnerability curve function [56], where these key points were calculated
by deriving Equation (9) such that both the second and third order derivatives were zero.
Table 1 lists the key point covariates of the vulnerability curves. The three characteristic
parameters were as follows: (1) the starting point of rapid loss growth (V1) is the dividing
point between the initial and developmental phases of the vulnerability curve, marking
the shift from slow to rapid loss growth; (2) the inflection point of rapid loss growth (V2)
is the peak point of loss growth, located in the middle of the developmental phase of
the vulnerability curve; (3) the end point of rapid loss growth (V3) is the dividing point
between the developmental and end phases of the vulnerability curve phase and the end of
the vulnerability curve, marking the final slow growth phase of losses, which will remain
at a relatively stable high value. In addition, the cumulative yield loss rate (CYL) was
also used as one of the parameters for the evaluation of the vulnerability curve. The
CYL was obtained by integrating Equation (9) over DHI values of (0, 1) to describe the
overall vulnerability.

Table 1. Key point covariates of the vulnerability curve.

The Starting Point of Rapid
Loss Growth (V1)

The Inflection Point of Rapid
Loss Growth (V2)

The End Point of Rapid Loss
Growth (V3)

DHI − ln(2−
√

3)a
b

− ln a
b − ln(2 +

√
3)a

b

YL (3−
√

3)
6

+ c c +
1
2

(3 +
√

3)
6

+ c

2.3.5. Drought Risk Assessment

From a system engineering perspective, the drought risk can be considered to be a
system [57]. In this paper, the exposure was set to 1 in areas planted with winter wheat and 0
in areas not planted with winter wheat, without considering drought mitigation capacity [58].
The winter wheat drought risk was a function of the drought hazard and vulnerability. The
drought hazard was determined by the drought hazard intensity index and the vulnerability
was determined by the yield loss rate determined by the vulnerability curve.

R = f (H, V, E) (10)

R = DHI ×YL (11)

where R, H, V, E represent drought risk, hazard, vulnerability and exposure, respectively;
R represents drought risk and is used to indicate the degree of regional drought risk. The
higher the value, the greater the degree of drought risk and the greater the vulnerability
to drought. DHI represents the winter wheat drought hazard intensity index and is used
to indicate the degree of drought disturbance; and YL is used to indicate winter wheat
drought vulnerability: the higher the value, the greater the potential damage caused.

Table 2 presents the drought risk classification for winter wheat. The drought risk
was classified into five classes based on the natural breakpoint method according to the
1970–2019 average risk index, and thus the drought risk in the study area was zoned.

Table 2. Drought risk classification for winter wheat.

Risk Index ≤0.09 0.09~0.18 0.18~0.28 0.28~0.46 ≥0.46

Risk level low relatively low moderate relatively high high
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3. Results
3.1. Model Accuracy Evaluation and Parameter Localization

Table 3 and Figure 3 demonstrate the simulated and measured values of the above-
ground biomass throughout the growing period before and after the model modification.
The accuracy of the model in simulating both aboveground biomass and yield was im-
proved after improving the water sensitivity by embedding the effect factor of the water
stress on photosynthesis. For trial NO. 1, the modified model exhibited the greatest im-
provement relative to the pre-modification model, with a 4.89% reduction in error. In the
example trial, the improved model in trial NO. 2 exhibited less improvement, with a 1.61%
reduction in error (Table 3). The modified CERES-Wheat model simulated above-ground
biomass values closer to the measured values than the pre-modification model simulation,
with an average accuracy increase of 20.39%. The changes in the improved results com-
pared to the pre-modification results generally began to manifest only halfway through the
growing period and became more significant as the period progressed, providing a more
accurate simulation of winter wheat growth.

Table 3. The nRMSE of simulated and measured values before and after modification of the above-
ground biomass model.

Trial Number Before Modification (%) After Modification (%) Error Reduction (%)

1 17.98 13.08 4.89
2 12.21 10.60 1.61
3 13.61 9.94 3.67
4 20.94 17.91 3.03
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In terms of the yield, Figure 4 compares the measured and simulated yield values
before and after the model modification. The nRMSE of the simulated value of the model
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before modification was 17.56%. The scatter of the simulated yield of the modified model
and the actual value was closer to the 1:1 trend line, and the nRMSE was 15.55%, i.e., 11.45%
more accurate than before the modification. This shows that the modified model simulated
the yield variation of winter wheat more accurately.
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Figure 4. (a) Original model and (b) modified model simulated yield values vs. measured values.

In the simulation of the study area, the GLUE method is used to determine the genetic
parameters of the winter wheat in the study area based on the phenological data. Figure 5
shows the simulated anthesis and maturity stages compared to the measured values when the
genetic parameters are localized. The localized model simulated both anthesis and maturity
values close to the 1:1 trend line, with a correlation coefficient (R2) of 0.66 between the
simulated anthesis and measured anthesis. The fit of the simulated maturity was better than
that of the anthesis, with a correlation coefficient of 0.80 between the simulated and measured
maturity. In general, the model achieved a good level of accuracy at this spatial scale.
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after localization of genetic parameters.

3.2. Drought Hazard Intensity Assessment

In this paper, the interpolated meteorological data and genetic parameters of each
component from 1970 to 2019 were input into the modified CERES-Wheat model using
1 km × 1 km as the evaluation unit. Without irrigation, the daily water stress indices
for each evaluation unit in the study area were output, and finally the drought hazard
intensity index (DHI) was calculated for each evaluation unit during a growing period.
Figure 6 shows the spatial distribution of the DHI for winter wheat in a time series. In
most years, the DHI for winter wheat exhibited a trend of high in the southwest and low in
the southeast. The range of the multi-year average DHI across the region was 0.29, 0.61.
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Overall, most of the central region was the driest region in the entire study area, with a
multi-year average DHI of greater than 0.5. In terms of the time series of the DHI in Beijing,
Tianjin and Hebei, the drought hazard was higher in 1985 than in other years, with the
highest DHI, and the DHI exceeded 0.6 in more than 50% of the wheat planted area. The
areas with DHI values of greater than 0.57 in other years were mainly concentrated in
Baoding. In 1990, 2000 and 2015, the DHI was lower, and the proportions of areas with
DHI values of less than 0.30 were 35.86%, 34.75% and 42.75%, respectively. The distribution
of the drought hazard intensity shows that the upper edge of the municipal boundary
between Xingtai and Hengshui was the boundary, with a small intensity index below the
dividing line and a large intensity index above the dividing line.
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Figure 6. The spatial distribution of the DHI for winter wheat in a time series: (a) 1970, (b) 1975,
(c) 1980, (d) 1985, (e) 1990, (f) 1995, (g) 2000, (h) 2005, (i) 2010, (j) 2015 and (k) 2018.

Due to the small variation in the vulnerability curves for the same crop within a small
area, zoning based on factors affecting the drought vulnerability was required to achieve a
more accurate analysis of the DHI and vulnerability. In order to analyze the correlations
between the annual average DHI and five factors, including precipitation, sunshine hours,
daily maximum temperature, daily minimum temperature and DEM elevation data, a
correlation analysis was conducted using the Pearson correlation coefficient. Table 4 shows
the correlation coefficients between each element and the DHI.
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Table 4. Correlation coefficients of each factor with the drought hazard intensity index.

Factor DHI

Precipitation −0.66 **
Sunshine hours 0.31 **

Daily maximum temperature −0.37 **
Daily minimum temperature −0.49 **

** is the correlation coefficient passing the 99% confidence test.

As each factor passed the confidence test, the natural breakpoint method was used to
reassign values to the graded values, followed by aggregation of the various types of data
and finally, the study area was divided into 12 zones. Figure 7 shows the partitioning of
the winter wheat in the study area. Table 5 shows the proportions of the total winter wheat
acreage in the different zones, with zones NO.7 and NO.8 accounting for the largest propor-
tions (16.30% and 15.93%, respectively) and NO.1 accounting for the smallest proportion
(only 0.14%).
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Table 5. Winter wheat zoning in the Beijing-Tianjin-Hebei region.

Number Count Proportion (%) Number Count Proportion (%)

1 69 0.14 7 7823 16.30
2 2521 5.25 8 7647 15.93
3 2019 4.21 9 5076 10.57
4 3932 8.19 10 2181 4.54
5 4632 9.65 11 5133 10.69
6 6519 13.58 12 452 0.94

3.3. Gridded Vulnerability Curves and Characterization

Based on the corrected genetic parameters, the modified CERES-Wheat model was
used to simulate the growth of winter wheat in each grid under both the adequate irrigation
and no irrigation scenarios. The vulnerability curves for the different partitions were fitted
using a logistic approach based on the 48-year drought hazard intensity index and the
corresponding yield loss rates. Since there was little variation in the vulnerability curves
for the same crop within a small area, each grid within the partition fit this partition-fitted
curve. Figure 8 presents scatter plots of the drought vulnerability curves and yield loss
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rates for the 12 sub-zones. In general, the fits for NO.10, 11 and 12 were better than those
for the other sub-regions, with R2 values of 0.53, 0.50 and 0.58, respectively. Based on the
scattered points in Figure 8, it can be seen that the distribution of the drought intensity in
the other sub-zones was similar except for sub-regions 1 and 12, and the drought hazard
indices were within the range of 0.4–0.6.
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Figure 8. Drought vulnerability curves for winter wheat in different sub-zones ((a–l) represent
Nos. 1–12).

Figure 9 shows the covariates of the drought vulnerability characteristics of winter
wheat in different sub-zones. The vulnerability curve was analyzed in terms of four aspects:
the starting point of rapid loss growth, the inflection point of rapid loss growth, the end
point of rapid loss growth and the cumulative loss rate. Figure 9 shows that there were some
differences in the shape of drought vulnerability and the coordinates of the key points in
different sub-zones. The drought hazard intensity and loss rate corresponding to the starting
point of rapid loss growth were mainly distributed in the range of (0, 0.20) and (0, 0.15), the
drought hazard intensity and loss rate corresponding to the inflection point of rapid loss
growth were mainly distributed in the range of (0.25, 0.40) and (0.3, 0.4), and the drought
hazard intensity and loss rate corresponding to the end point of rapid loss growth were
mainly distributed in the range of (0.60, 0.70) and (0.50, 0.55). The range of loss rates was
smaller compared to the drought hazard intensities. Overall, the coordinates of the rapid
growth endpoints of losses were similar in different sub-zones, indicating that yield loss
rates were similar in different zones when winter wheat drought hazard intensities were at
their strongest. In terms of the starting point for rapid loss growth, the DHI1 of the starting
point for rapid loss growth in NO.11 was 0.05. This indicated that the yield loss rate of
winter wheat in this sub-zone entered a rapid growth phase after the intensity of the drought
disaster exceeded 0.05, and the starting point for drought tolerance was lower than that in
other sub-zones. In terms of the inflection point for rapid growth in losses, the DHI2 of the
inflection point for rapid growth in NO.1 was 0.43. This indicated that the growth rate of
winter wheat yield loss in this zone began to decelerate when the drought hazard intensity
exceeded 0.43. In terms of the rapid growth endpoint, the DHI3 of the rapid growth endpoint
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for NO.1 was 0.65. This indicated that the growth rate of the winter wheat yield loss rate in
this zone started to slow down significantly when the drought hazard intensity exceeded
0.65, and the loss rate was close to the peak. The DHI3 for the rapid growth endpoint of
loss for NO.11 was 0.47. This indicated that the loss rate approached the peak of the zone at
drought hazard intensities above 0.47, and that the loss rate of winter wheat was hit by the
drought hazard and entered the high loss stage more quickly than in other areas. In terms of
cumulative loss rates, the cumulative drought loss rates ranged from 49.00% to 54.00% for
almost the entire region. The cumulative loss rate of 54.34% for the drought vulnerability
curve of NO.11 indicated that winter wheat production was more vulnerable to drought
hazards and that drought hazards hit production more strongly in this zone.
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Figure 9. Characteristic drought vulnerability curve parameters for winter wheat in different sub-
zones ((a–l) represent Nos.1–12).

Based on the drought intensity indices under different return periods, the yield loss
rates of winter wheat due to drought under different return periods were plotted in
combination with the constructed drought vulnerability curves so as to assess the drought
vulnerability of winter wheat. Figure 10 shows the distribution of the yield loss rates for
fixed drought risk levels for winter wheat in the Beijing-Tianjin-Hebei region. For the case
of the drought intensity index of once every 2 years, the yield loss rates were all distributed
in the range of (0.3, 0.5): the ranges of (0.3, 0.4) and (0.4, 0.5) each accounted for about half
of the total area. In addition, the distribution of the yield loss rates was more similar for
the drought intensity index return periods of 20 and 25 years. When the drought intensity
index had a return period of 50 years, the yield loss rate was more evenly distributed across
the region, with yield loss rates of >0.7.
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Figure 10. Distribution of yield loss rates for fixed risk levels of winter wheat drought in the Beijing-
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3.4. Drought Risk Assessment

Figure 11 shows the distribution of the drought risk zones for winter wheat in the
Beijing-Tianjin-Hebei region under different return periods. As can be seen from Figure 11a,
the risk was in the low, relatively low and moderate risk classes for the entire region for
a return period of once every 2 years. The relatively low risk level accounted for the
largest area (75.71%), indicating that the lower drought risk had a 2-year return period in
most areas. The moderate risk level accounted for 19.33% of the total area under winter
wheat cultivation, mostly in Shijiazhuang and Baoding. The low risk level accounted
for 7.03% of the total area, and was distributed in the southern part of Handan City, i.e.,
where moisture is more abundant. As can be seen from Figure 11b, for the 5-year return
period, the proportion of the area with a moderate risk was the largest (62.69%), while the
proportion of the area with a relatively low risk was 36.00%, and the boundary between
the moderate and relatively low risk areas was the upper boundary between Xingtai and
Hengshui cities. As can be seen from Figure 11c, the proportion of the area with moderate
risk was the largest (75.00%) for a return period of 10 years. In addition, the area with
relatively high drought risk levels exceeded the area with a relatively low risk for this
return period. As can be seen in Figure 11d, the moderate risk and relatively high risk level
areas each accounted for half of the total area for a return period of 25 years. As can be
seen from Figure 11f, the entire region had a relatively high risk level for a return period of
50 years, with the relatively high and high drought risk areas accounting for 39.64% and
60.36%, respectively. Overall, the drought risk index decreased from west to east and from
north to south, and the drought risk was higher. This indicates that the precipitation levels
in the Beijing-Tianjin-Hebei region are not sufficient for normal winter wheat growth levels
and artificial irrigation is necessary.
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4. Discussion
4.1. Sensitivity Analysis of Model Parameters

The model parameters reveal the characteristics of crop growth and play a crucial
role in the simulation results of the model [30,59]. Not only do the individual parame-
ters themselves influence the model, but the parameters also work together to influence
the model through their interactions [60]. Crop models often include many uncertain
parameters that can lead to uncertainty in predictions. A parameter sensitivity analysis can
provide a better understanding of the internal mechanisms and processes of crop growth
models [61]. Relatively little literature focuses directly on the global sensitivity of the
soil parameters of winter wheat in the DSSAT-CERES, especially under different moisture
treatment conditions. Therefore, in this paper, a sensitivity analysis comparing the results
of the model before and after modification of the DSSAT model parameters is conducted
using the extended Fourier amplitude sensitivity test (EFAST) global sensitivity analysis
method. This paper focuses on the sensitivity to water before and after the modification, so
10 soil parameters are selected and the relevant literature [62,63] is referenced to determine
the range of values for each parameter (Table 6).

The CERES sensitivity response is assumed to differ between the fully irrigated and
limited irrigation treatments [57]. Six irrigation scenarios are set up (Table 7), with irrigation
levels categorized as fully irrigated (50 mm) and not irrigated. The irrigation level of 50 mm
is divided into four drought periods: the greening period (I1), plucking period (I2), spike
period (I3) and grouting period (I4). The meteorological data required for the model were
obtained from Bazhou station, which is located in the more central part of the study area,
and the observation data include precipitation, sunshine hours and daily maximum and
minimum temperatures.
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Table 6. Meaning of soil parameters and range of values.

Input Parameters Meaning Range of Values

SBDM Bulk density (0.8, 1.5)
SLHW PH (5.4, 9.5)
SDUL Drained upper limit (0.25, 0.34)
SLLL Lower limit of soil drainage (0.1, 0.24)
SSAT Soil saturation (0.35, 0.6)
SLOC Organic carbon content (0.4, 5.0)
SSKS Soil saturation hydraulic conductivity (0.1, 21.0)
SCEC Cation exchange capacity (1, 30)
SLRO Runoff curve number (61, 94)
SLDR Drainage rate (0.01, 0.85)

Table 7. Irrigation treatments in winter wheat under different periods of irrigation treatment.

Number
Overwintering Period Greening Period Plucking Period Spike Period Grouting Period

11–15 3–5 4–20 5–5 5–20

I1 0 0 50 50 50
I2 50 0 0 50 50
I3 50 50 0 0 50
I4 50 50 50 0 0

LW 0 0 0 0 0
FW 50 50 50 50 50

Figure 12 presents a plot of the global sensitivity indices for the maximum leaf area
index, above-ground biomass and yield to 10 soil parameters under six different irrigation
treatments. The sensitivity of the maximum leaf area index to each parameter differs before
and after the modification under the different irrigation treatments, and the sensitivity
indices change considerably. As can be seen from Figure 12a1, the leaf area index simulated
using the modified model is more sensitive to SLLL, SSAT and SLOC, and the SSAT is
the parameter with the largest sensitivity index. In contrast, the leaf area index is more
sensitive to the SDUL and SLLL simulated using the original model, which is in agreement
with He et al.’s study of the DSSAT model [64,65]. The modified model has the greatest
change in the sensitivity index of the SSAT for the original model, with the mean sensitivity
index increasing from 0.01 to 0.75, indicating that the modified model is more sensitive to
the SSAT. In addition, the mean sensitivity index for the SLLL decreases from 0.79 to 0.53,
and that for the SDUL decreases from 0.25 to 0.04, indicating that the model improvements
are mainly focused on the SSAT. The sensitivity of the maximum leaf area index simulated
using the modified model to the SSAT decreases as the irrigation satisfaction rate increases.
The sensitivity indices of the above-ground biomass and yield of winter wheat simulated
using the original and modified models exhibit similar patterns to the maximum leaf area
index under different irrigation treatments. The above-ground biomass and yield simulated
using the modified model are mainly sensitive to the SSAT and SLLL. The SSAT is the most
sensitive parameter, accounting for more than 70% of the total effect, followed by the SLLL,
which accounts for more than 50% of the total effect. In addition, the modified model has
different sensitivity indices for the SLOC under different irrigation treatments.
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4.2. Advantages and Limitations

DSSAT models have been used extensively to evaluate the impact of drought on agricul-
ture. Most use meteorological factors in combination with the yield to evaluate the impacts
of drought [31,66]. Itoh et al. [67] used the DSSAT to simulate the yield changes in winter
wheat and then investigated the correlations between the yield and the standardized precipi-
tation evapotranspiration index (SPEI) and soil moisture deficit index (SMDI). Wei et al. [33]
used meteorological factors and the yield loss rates, combined with a semi-logarithmic
function, to construct a drought loss risk curve. Historical meteorological data have also
been combined with drought stress trials and input into the DSSAT model to evaluate the
drought risk by directly outputting the yield loss rates [68]. However, few studies have
used the DSSAT-CERES model for scenario simulation and thus for assessing crop drought
vulnerability. In addition, the models lack accuracy in simulating areas where drought is
frequent [69]. In this paper, the stress mechanisms of moisture and photosynthetic behavior
are coupled to improve the CERES-Wheat model, and the modified model is used to assess
the drought vulnerability of winter wheat. The modified model compensates for the simu-
lation errors caused by the model’s moisture module, resulting in an improvement in the
modified model’s simulation accuracy. The accuracies of both the above-ground biomass
and yield simulations improved compared to the pre-modification results, with accuracy
increases of 20.39% and 11.45%, respectively. In this study, vulnerability curves are fitted
to different partitioned grids rather than to individual grids. In the future, vulnerability
curves will be fit to each grid, but as there is little variation in the vulnerability curves for
the same crop at small scales, it is more representative to use partitioned fits for vulnerabil-
ity curves. In this paper, rainfed scenarios and fully irrigated scenarios are simulated, and
multiple scenarios will be considered in future simulations.

5. Conclusions

In this study, the stress mechanisms of water and photosynthetic behavior were
coupled to improve the CERES-Wheat model and enhance the accuracy of crop simulations.
Based on the modified CERES-Wheat model for the simulation in the study area from
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1970 to 2019, the drought vulnerability curve on a 1 km grid scale was constructed to
quantitatively evaluate the drought hazard intensity index, vulnerability and drought risk
of winter wheat. These results show that the accuracies of the above-ground biomass and
yields simulated using the modified model increased by 20.39% and 11.45% compared
to those of the original model. The drought hazard intensity index for winter wheat in
the study area during 1970–2018 exhibited a trend of high in the southwest to low in the
southeast in the time series. The shapes and characteristic parameters of the drought
vulnerability curves differed somewhat between sub-areas. Furthermore, the drought risk
index decreased from west to east and from north to south under different return periods,
and the drought risk was higher. These results indicate that the precipitation levels in
the Beijing-Tianjin-Hebei region are not sufficient for normal growth levels, and artificial
irrigation is necessary. A method is proposed for an agricultural drought risk evaluation to
provide a reference for mitigating the winter wheat drought risk.
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