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Abstract: Graph convolutional networks (GCNs) are neural network frameworks for machine learn-
ing on graphs. They can simultaneously perform end-to-end learning on the attribute information
and the structure information of graph data. However, most existing GCNs inevitably encounter
the limitations of non-robustness and low classification accuracy when labeled nodes are scarce. To
address the two issues, the deep graph convolutional generative adversarial network (DGCGAN),
a model combining GCN and deep convolutional generative adversarial networks (DCGAN), is
proposed in this paper. First, the graph data is mapped to a highly nonlinear space by using the
topology and attribute information of the graph for symmetric normalized Laplacian transform.
Then, through the feature-structured enhanced module, the node features are expanded into regular
structured data, such as images and sequences, which are input to DGCGAN as positive samples,
thus expanding the sample capacity. In addition, the feature-enhanced (FE) module is adopted to
enhance the typicality and discriminability of node features, and to obtain richer and more represen-
tative features, which is helpful for facilitating accurate classification. Finally, additional constraints
are added to the network model by introducing DCGAN, thus enhancing the robustness of the
model. Through extensive empirical studies on several standard benchmarks, we find that DGCGAN
outperforms state-of-the-art baselines on semi-supervised node classification and remote sensing
image classification.

Keywords: interpolation operation; graph convolutional networks; node classification;
feature-structured enhanced module

1. Introduction

Graphs are essential tools to model structured and relational data, such as social
networks, citation networks, biological networks, the World Wide Web, and physical
networks. Analyzing graph data has become one of the most important topics in the field of
machine learning. Graph neural networks (GNNs), as a strong tool for deep learning, have
already attracted more and more attention and achieved the most advanced performance
in diverse graphical analysis tasks, including link prediction [1,2], node classification [3–6],
and node clustering [7–11]. The graph convolutional network (GCN) [12] is a network
framework for learning graph data structure. With the success of GCN in semi-supervised
node classification, several other GCN variants have been proposed for different prediction
tasks on graphs. According to the definition of convolution [13], the existing methods are
divided into two categories: spatial methods and spectral methods.

The spatial method is directly defined as convolution in the vertex domain, which
follows the practice of traditional CNN. In addition, some works have defined the general
framework of GCN from a spatial perspective and have explained the internal mechanism
of GCN. Graph neural networks (GNNs) [14] are the first model proposed to build neural
networks on graphs. The mixture convolution network (MoNet) [15] focuses on the lack
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of translation invariance on graphs and maps the local structure of each node to a vector
of the same size by defining a mapping function, then learns the shared convolution
kernel from the mapped results. The message-propagation neural network (MPNN) [16],
based on information propagation aggregation between nodes, proposes a framework by
defining the general form of the aggregation function. ManiReg [17] is a learning algorithm
based on a new regularization form that can take advantage of the geometric properties of
edge distributions. SemiEmb [18] utilizes semi-supervised regularizers to enhance deep
architectures to improve their training. Feat [19] only takes the node characteristics as input
and neglects the structure of the graph. The graph attention network (GAT) [20] defines an
aggregation function through attention mechanism, where the adjacency matrix is used to
define relevant nodes and the calculation of the correlation weight depends on the feature
expression of the nodes. SGAE [21] uses a messaging mechanism to gather information
from neighbors and obtain significant and independent potential representations. The open
challenge faced by a spatial method is how to determine the appropriate neighborhood for
a target node when defining graph convolution.

The spectral convolutional neural network (spectral CNN) [13] defines graph con-
volution via a convolution theorem. The original intention of modeling GCN is to use
graph structure to describe the information aggregation of neighboring nodes, but spectral
CNN does not satisfy locality. Henaf et al. [22] propose to use an interpolation convolution
kernel with smooth constraints. This method realizes the localization of GCN. In order to
make the GCN play a role in the semi-supervised learning field on graphs, Kipf et al. [12]
simplify the Chebyshev network and propose a first-order GCN. Specifically, there are
many models that combine GCN with generative adversarial networks [23]. For instance,
GraphGAN [24] presents a framework that combines the discriminative and generative
networks, in which the generator tries to approximate the true potential connectivity dis-
tribution and generates the most likely nodes connected to the target node. The existing
network representation methods and related variants focus on maintaining the network
topology or minimizing reconstruction errors. In comparison, GraphWGAN [25] utilizes
Wasserstein distance to characterize the distance between the underlying true connectivity
distribution and generated distribution in graphic representation learning. Their core
idea arrives from the Nash equilibrium in the game theory. In summary, to the best of
our knowledge, in semi-supervised node classification, previous works lack the number
of labeled nodes, leading to low classification accuracy. The effective graph convolution
methods are unable to capture the robustness of network structure.

However, when the above models and most GNNs [17–19,26–29] perform semi-
supervised classification tasks, the accuracy cannot be improved due to the fewer number
of samples, and the model lacks robustness. In order to address the two problems, we
propose a model named deep graph convolutional generative adversarial networks (DGC-
GAN) that integrates DCGAN with GCN. First, the topological structure and attribute
information of the network are fully utilized for symmetric Laplace transform, and the
graph data are mapped to a highly nonlinear space to obtain hidden variables and the
features of each node. Then, the feature-structured enhanced block is applied to transform
the node features into regular structured data as the positive samples of the discriminator.
Finally, the nodes are classified by the discriminator. In addition, by introducing DCGAN,
the number of samples in the model is expanded and the additional constraints are added
to the network model, thus enhancing the robustness of the model expression.As illustrated
in Figure 1, the adjacency matrix A and the feature matrix X of graph G are fed into the
network as inputs.

In summary, our core contributions are four-fold:

1. We use the topological structure and attribute information of the graph to perform
symmetric normalized Laplace transform, map the graph data into a highly nonlinear
space, and obtain the hidden variables and the features of each node.
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2. The bicubic structured interpolation (BI) is used for each sample to transform the
node features into regular structured data, which is sent to the discriminator as a
positive sample.

3. The feature-enhanced (FE) module is introduced to selectively enhance the the typi-
cality and discriminability of node characteristics and extract richer and more repre-
sentative feature information, which is in favor of facilitating accurate classification.

4. We expand the sample size of the model and add additional constraints to the network
model by incorporating DCGAN, thus enhancing the robustness of the model. We
perform four benchmark datasets to confirm the validity and evaluate the properties
of DGCGAN through a comprehensive comparison with state-of-the-art methods.

1 m 1 m

 z Generator
Discriminator

       0

1

2

3

6

+

-

•
•
•

 

5

4

Graph G

adjacent matrix   

feature matrix  

Symmetric Normalized Laplace 

Transform

v1

v2

v3

v4

v5

v6

v7

v8

v9

v1

v2

v3

v4

v5

v6

v7

v8

v9

New feature matrix 

n dX R




feature of 

feature of each node

m m

v1 v2 v3 v4 v5
v6 v7 v8 v9

positive

generates negative

negative

positive

Classification 

result

K

K+1

A
I

X
W1 1

2 2
D AD X

   

A


v6

D
I

D


1

6

dX R




1

6

gX R




4 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 3 0 0 0 0 0

0 0 0 0 3 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 1 1 1 1 0 0 0 0

1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

1 0 0 0 0 1 1 0 0

1 0 0 0 0 0 0 1 1

0 0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 

degree matrix n nD R 
n nA R 

n dX R 

Node Feature Structured Enhanced Block

i1i  1i 

j1j  1j 

l 1l 1l 

Linear 

operation

6

m mX R 
6

m mX R




( )sqF 

( )exF 

( , )scaleF  

Diagonalization

1

5

dX R




1

7

dX R




5v

6v
7v

5v

Bicubic Structured Interpolation

Feature Enhanced module

Figure 1. The framework of DGCGAN. The adjacency matrix A and the feature matrix X of graph
G are fed into the network as inputs. The model is divided into four modules: the first module is
symmetric normalized Laplace transform, the second module is a node feature-structured enhanced
block, and the third module is DCGAN. The node feature-structured enhanced block consists of
bicubic structured interpolation (BI) and feature enhanced module (FE).
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2. Preliminary and Related Work
2.1. Graph Convolutional Networks

The GCN for undirected graphs as proposed by Kipf and Welling will be briefly
introduced in this section. Let G = (V, E, X) be a graph where V is the set of n = |V| nodes
and E is the set of p = |E| edges. We denote A ∈ [0, 1]n×n as a adjacency matrix of G. It is a
weighted adjacency matrix, and every element Aij = 1 means that there is an edge between
vi and vj, otherwise Aij = 0. The feature matrix is described as X ∈ Rn×d.

The node representation after a single layer of GCN can be defined as Equation (1),

where W ∈ Rd×d
′

is denoted as the model parameters. I is the identity matrix in Â = A + I.
The degree matrix of A is defined as D = diag(d1, d2, . . . , dn), where di = ∑j aij is the
degree of node i. σ is ReLU activation function. X ∈ Rn×d is the feature matrix, where n is
the number of nodes and d is the feature dimension as in Equation (1).

H = σ((D̂−
1
2 ÂD̂−

1
2 )XW) (1)

2.2. Spectral GCN and Spatial GCN

Spectral GCN define convolution operation by convolution theorem. In order to make
the GCN play a role in the semi-supervised learning field on graphs, Kipf et al. [12] simplify
the Chebyshev Network and propose a first-order GCN. Recently, Wavelet Neural Network
(GWNN) [30] has been proposed to use wavelet transform instead of Fourier transform to
implement the convolution theorem. Graph Heat Kernel Network (Graph Heat) [31] uses a
heat kernel function to parameterize the convolution kernel, then the model is realized a
low-pass filter. The relation between GCN and PageRank is used to put forward an modified
communication scheme according to personalized PageRank. This propagation program
is used to construct a simple model, the personalized propagation model (PPNP) [32] is
predicted by the neural network and its rapid approximate model APPNP. Simplified graph
convolutional networks (SGCNs) [33] reduces the extra complexity of GCNs by repeatedly
eliminating the nonlinearity between GCN layers, folding the resulting function into a
linear transformation, and proving that SGC is equivalent to a fixed low-pass filter plus a
linear classifier.

Spatial GCN immediately establishes the convolution operations based on the con-
nectivity of each node, which is more analogous to the convolution in the conventional
CNN. Based on applying the model on large-scale networks, Hamilton et al. [34] propose a
graph sampling aggregation network (GraphSAGE) which randomly samples neighbor-
ing nodes so that the neighboring nodes of each node are fewer than the given number
of samples. DCNN [35] uses the K-hop transition probability obtained after randomly
walking to define the weight between nodes. The confidence-based graph convolutional
network (ConfGCN) [36] believes that a node is a label with a certain degree of confidence.
ConfGCN learns a confidence function for each node and applies it to calculate the cor-
relation of the node to modify the aggregation function. The hypergraph convolutional
network (HGNN) [37] realizes that the correlation between nodes is mutually influenced
by a group of nodes. A group of nodes can build the correlation of nodes within the group.
Relational graph neural networks (R-GCNs) [38] divide the original network into different
sub-networks according to the direction of the graph of edges and the label type on the
edges, then independently aggregate neighbor features on each sub-graph. The jumping
knowledge network [39] uses jump connections and an attention mechanism to select the
appropriate propagation range for each node. Zhang et al. [40] propose a traffic data com-
pletion model based on GCN to complete the lacking values based on deep learning. There
are also some GNN tasks based on graph similarity calculation tasks, including [41–44].
ML-GCN [45] is proposed as a new multi-label GCN, which is utilized to learn the node
representation of multi-label networks. However, most of these models are restricted by
poor robustness when performing classification tasks.
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2.3. Deep Convolutional Generative Adversarial Network

DCGAN [46] is a relatively good improvement after GAN. It is main improvement
is the network structure. The network structure of DCGAN is still widely used and can
greatly improve the stability of GAN training and the quality of generated results.

Compared with the original GAN, DCGAN almost completely only uses convolutional
layers without fully connected layers. The discriminator is almost symmetrical to the
generator. The entire network does not have any pooling layers or up-sampling layers. In
fact, it utilizes a fraction-stride convolution instead of up-sampling to increase the stability
of training.

2.4. Semi-Supervised Learning on Graphs

For the semi-supervised classifying task, m nodes have already detected YL and the
labels YU of the residual n−m nodes are missing. Its goal is to acquire a prediction function
g : G, X, YL → YU to conclude the absent labels YU for unlabeled nodes, a label vector
Yi ∈ Y ∈ {0, 1}n×c in which c indicates the quantity of classes.

As a method of data-mining analysis, node classification is widely used in social
networks. The nodes in the social network can represent a wealth of extra data such as text,
images, and their own attribute values. By analyzing these characteristic information, the
nodes in the network can be classified and labeled. In the node-classification task, nodes
cannot be classified as independent individuals because of the connection relationship
between nodes. Node classification is an significant branch of graph data mining. Through
analyzing the network structure and relationship between nodes and edges during semi-
supervised learning, labeled nodes are used to classify unlabeled nodes more accurately,
avoiding the trouble of manual labeling and the high cost of additional calculation.

3. Deep Graph Convolutional Generative Adversarial Networks
3.1. The Overall Architecture

The DGCGAN framework is illustrated in Figure 1. DGCGAN comprises three parts:
the symmetrical normalized Laplace transformation, node feature-structured enhanced
block, and DCGAN. The node feature-structured enhanced block consists of interpolation
operation and FE. As shown in Figure 1, taking node v6 as an example, through the

interpolation operation, we obtain the feature of node v6,
¬
X6 ∈ R1×g. After the linear

operation, we obtain a new feature representation of node v6,
→
X6 ∈ Rm×m. Through FE

operation, the feature of node v6, X6 ∈ Rm×m is obtained, which is a positive sample to the
discriminator. The random noise z obeying Gaussian distribution (z ∼ N(0, 1)) is used as
the input of the generator, then the generated node features are sent to the discriminator as
negative samples. The task of the discriminator is not only to discriminate the negative
samples produced by the generator, but also to classify the positive samples, including the
K categories in total.

Firstly, the features of each node are obtained by using the topological structure and
attribute information of the graph to perform symmetric normalized Laplace transform
in Section 3.2. Then, by using the node feature-structured enhanced block, we transform
the node features into regular structured data, and send them as positive samples to the
discriminator as input in Section 3.3. Thirdly, we selectively enhance the typicality and
distinguishability of node features by adopting the FE module. Finally, by incorporating
DCGAN, we expand the sample size of the model and add additional constraints to the
network model, thus enhancing the robustness of the model in Section 3.4. The specific
algorithm flow of DGCGAN model is shown in Algorithm 1.
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Algorithm 1: The framework of DGCGAN.
Input: Graph structure G containing adjacency matrix
A ∈ Rn×n and feature matrix X ∈ Rn×d

Output: K + 1 dimensional vector R
1 for i = 1, 2, . . . , n do (n is the number of nodes)

Initialize the Ã = A + I, D̃ii = ∑n
j=1 Ãij

2 Symmetric normalized Laplace transformation (3)
to calculate the feature matrix X̂ ∈ Rn×d

3 According to the i-th node feature X̂i ∈ R1×d to obtain
¬
Xi ∈ R1×g by bicubic structured interpolation, obtaining

X̃i ∈ Rm×m by reshape operation.
4 Feature squeeze and feature excitation operation: using Equations (6)–(8)

to calculate
Fsq(X̃i) = Zi Fex(Zi) = Si Fscale(X̃i, Zi) = Xi

5 Input random noise to the generator to
obtain G(z)

6 for j = 1 to T do (T is the total number of iterations)
Taking two positive samples from the set
G(z1), G(z2), . . . , G(zn) and taking two negative
samples from the set

{
X1, X2, ..., Xn

}
7 discriminator D(v)← Xi, Xi + 1

generator G(z)← G(zi), G(zi+1)
8 According to Equation (11), calculate unsupervised

loss function Lunsupervised
9 The discriminator performs supervised

learning to obtain K + 1 dimensional vector
R and updates the full supervised loss function
Lsupervised

10 end for
11 end for
12 return the classification results R

3.2. Symmetric Normalized Laplace Transform

For the graph G = (A, X), where A is the adjacency matrix and X is the feature matrix,
D = diag(d1, d2, . . . , dn) is a degree matrix with di = ∑n

j=1 Aij. L = D− A is defined as the
Laplace matrix. Laplacian smoothing is performed on the graph, according to Equation (2),

L = (I − γD̂−1 L̂)X (2)

where L̂ = D̂− Â , D̂ = D + I, Â = A + I, 0 < γ ≤ 1 is a hyper parameter that is used to
adjust the weight of target node and surrounding nodes.

Let γ = 1, L = D̂−1 ÂX be obtained after Laplacian smoothing (using Equation (2)). The
spatial perspective of node vi has a larger degree, and the eigenvalues after aggregation
are far larger than those of the node vj with a smaller degree.Therefore, before the node
updates itself, it is necessary to normalize the information transmitted by neighboring
nodes to eliminate the problem. However, normalization only considers the degree of
the node itself, but does not consider the degree of the neighbor nodes. This will make
the neighbor node with the larger degree obtain the smaller weight value, which may
lead to the vanishing gradient or the exploding gradient in the network-training process.
Finally, we use the symmetrically normalized Laplace operator D̂−

1
2 L̂D̂−

1
2 to replace D̂−1 L̂.

Consequently, Equation (2) is equivalent to D̂−
1
2 ÂD̂−

1
2 X. In Figure 1, the updated nodes

are normalized by symmetric normalized Laplace transformation, and then undergo a layer
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of GCN transform in Equation (3), where W ∈ Rd×d
′
. Therefore, the essence of GCN is

Laplacian smoothing over the network. The feature matrix X̂ contains not only the topology
information of the graph G, but also the node feature information. Experiments show that
the classification effect of symmetric normalized Laplacian operator is better than that of
the normalized Laplacian operator in [12].

X̂ = σ(D̂−
1
2 ÂD̂−

1
2 XW) (3)

We take the adjacency matrix A ∈ Rn×n and the feature matrix X ∈ Rn×d as the inputs
of the network, where n is the number of nodes and d is denoted the feature dimension
of nodes.

3.3. Node Feature-Structured Enhanced Block

The node feature-structured enhanced block is divided into two parts: the bicubic
structured interpolation (BI) and feature-enhanced (FE) modules.

3.3.1. Bicubic Structured Interpolation

The interpolation method we use in this paper is bicubic structured interpolation. This
method uses the gray values of 9 points to be sampled for cubic interpolation, which takes
into account not only the gray values of four directly adjacent points, but also the change
rate of gray values between adjacent points. Assume that the size of the original image
A and the scaled target image B are, respectively, m× n and M× N. If the pixel value at

B(X, Y) is required, we can first obtain the corresponding position (x, y) = (X× m
M

, Y× N
n
)

of B(X, Y) in the image A. At this time, there are decimal parts in x and y, so we can find
the nearest 9 pixels by this decimal coordinate and use the selected basis function to find
the corresponding weight of each pixel; finally, we receive the pixel value at B(X, Y).

By constructing a bicubic structured (BS) function (see Equation (4)), we obtain the
nine weights Wj(j = 1, 2, 3, . . . , 9) corresponding to the three dimensions of the three
target nodes by obtaining the parameter x in the BS function, where x represents the i-th
dimension of the target node v and a = −0.5. In Figure 1, the value corresponding to the
i-th dimension of the target node v6 is BS(vi) (see Equation (5)).

W(x) =


(a + 2)|x|3 − (a + 3)|x|2 + 1 |x| ≤ 1
a|x|3 − 5a|x|2 + 8a|x| − 4a 1 < |x| < 2

0 otherwise
(4)

BS(vi) =
9

∑
j=1

ajWj (5)

In Figure 1, we use X̂i ∈ R1×d(i = 1, 2, . . . , n) to represent the feature of the i-th node.
The values corresponding to the j− 1, j, j + 1 dimensions of node v5 are a1, a2, and a3, and
the corresponding weights are W1, W2, and W3. The values of i− 1, i, and i + 1 dimensions
corresponding to node v6 are a4, a5 ,and a6, and the corresponding weights are W4, W5, and
W6. The values corresponding to the l − 1, l, l + 1 dimensions of node v7 are a7, a8, and
a9, and the corresponding weights are W7, W8, and W9. After BI operation, the feature of

the i-th node becomes
¬
Xi ∈ R1×g(i = 1, 2, . . . , n). Among them, g and d are both integers

and g is greater than d. We convert
¬
Xi ∈ R1×g into X̃i ∈ Rm×m by linear operation, where

m =
⌊√

g
⌋
.

We perform a bicubic structured interpolation on each node to work out the feature of
each node.By the bicubic structured interpolation method, the feature dimension of nodes
is extended, thus providing rich unstructured information to enhance the performance of
graph embedding, and then graph embedding is further used to obtain more typical and
indistinguishable node features through the feature-enhanced module.
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3.3.2. Feature-Enhanced Module

FE adaptively recalibrates the characteristics of channels by explicitly modelling the
interdependencies among the channels. Its core idea is tantamount to learn feature weights
through the network in order to achieve better results in the manner of an active feature
map with significant weight, or an invalid or ineffective feature map with a low weight. In
Figure 2, the FE module is mainly composed of three parts: the feature squeeze operation
Fsq(·), feature excitation operation Fex(·), and feature scale operation Fscale(·, ·).

iX

m m m m

( )sqF

( )exF

( , )scaleF

iX
1 m 1 m

Figure 2. The workflow of FE module. Using the feature X̃i ∈ Rm×m of the i-th node for input,
and the feature dimensions as channels. By the feature squeeze operation Fsq(·) and the feature
excitation operation Fex(·), a vector T of 1×m is obtained and multiplied by X̃i ∈ Rm×m by Fscale(·, ·)
manipulation. the new feature of the i-th node Xi is obtained and is put into the discriminator.

Feature squeeze operation. In order to solve the problem of global information embed-
ding utilizing channel correlation, we first consider the signal of each channel of the output
characteristics. Each feature dimension of a node is regarded as a channel and the feature
of each node is obtained by using global average pooling. Let X̃j ∈ Rm×m be the feature of
the j-th node. After feature squeeze operation (see Equation (6)), the feature of the j-th node
is transformed into Zj ∈ R1×m. We compress the m×m dimension to the 1×m dimension,
thus obtaining the global receiving field information, where m is the dimensionality of the
properties of the j-th node and n is the number of total nodes.

Zj = Fsq(X̃j) =
1
n

n

∑
i=1

X̃i (6)

Feature excitation operation. To take advantage of the information gathered in the
compression operation, we trace it using the feature excitation operation, which is designed
to capture the channel dependencies completely. It is similar to the gated mechanism in
the recurrent neural network, giving every part a relative weight, which is analogous to
the attention mechanism. The feature excitation operation is first performed after a full
connection operation on the node embedding generated by the feature squeeze operation,
then non-linear mapping (ReLU function) is performed. After that, a full connection
operation and a sigmoid are performed to obtain the weight of each feature dimension of
the node in Equation (7), where W1 ∈ Rm×m, W2 ∈ R1×m, Zj ∈ R1×m is the node embedding
of the j-th node, Sj ∈ R1×m is the feature of the j-th node obtained.

Sj = Fex(Zj, W) = σ(g(Zj, W)) = σ(W2δ(W1Zj)) (7)

Feature scale operation. We use the weight of the feature exciting manipulation output
as the significance of different features selected, and then multiply every feature dimension
by the embedding X̃j of the previous feature to assign a value to achieve the re-scaling
of the initial feature dimension. Figure 2 illustrates the importance of the export weight
of feature excitation operating as the feature dimension when the feature is selected, and
then the former feature is weighted by multiplication. Finally, the primary features are
recalibrated in size. See Equation (8) for the detailed procedures, where Xj ∈ Rm×m.

Fscale(X̃j, Sj) = SjX̃j = Xj (8)
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3.4. Deep Convolutional Generative Adversarial Networks
3.4.1. Generator

The traditional GAN model is composed of two parts of the network: namely, the
discriminator network that performs authenticity identification and the generator network
that generates false samples. The generator generated some negative samples with pseudo-
labels, thus expanding the number of samples.

Under unsupervised learning, the DCGAN actually performs the binary classification
tasks of authenticity identification. Its purpose is to discern between the true samples and
fake samples generated by the generator network. The proposed model constructs a classi-
fication network model based on the discriminator network. The classification network
performs supervised learning on labeled data and constitutes a semi-supervised classifica-
tion model together with unsupervised learning (see Figure 3 for details). Assuming that
there are K categories of the data samples for network training, the semi-supervised classi-
fication network performs a K + 1 category-classification task and the K + 1-th category is
the false sample category generated by the generator network. In the deep convolutional
graph convolutional generative adversarial network (DGCGAN), the generator G consists
of four layers of deconvolutions. The generator network receives a random noise z and
continuously optimizes the distribution of authentic samples through a penalty term of the
discriminator network. See Figure 3 for DCGAN; a 256 dimensional uniform distribution z
is projected to a small spatial extent convolutional representation with many feature maps.
Then, the upsampling is performed through the upsampling mechanism to generate a
node feature map, and finally, all layers except for the output use ReLU activation function,
which uses Tanh function. The batch norm is used in all layers.

Discriminator

GeneratorGenerator

K + 1 

dimensional 

vector R

Real 

samples

conv2d1

conv2d2 conv2d3 conv2d4

F C

positive

negativeGenerative 

samples

generatesdeconv2d1

deconv2d2 deconv2d3 deconv2d4

node features

(z)zz p

Figure 3. The flow chart of deep convolutional generative adversarial networks. The generator
includes four deconvolutional layers and the discriminator includes four convolutional layers.

3.4.2. Discriminator

The discriminator D(v) is no longer a simple true or false classifier. Assuming that
the input data have K classes, D is currently a classifier of K + 1 classes; the extra class is
to determine whether the input is an image generated by generator G(z). The discrimi-
nator D(v) consists of four convolutional layers and uses two-dimensional convolution
to downsample the feature map of each node, then pass it to the fully connected layer for
classification. LeakyReLU activation is used after all layers of discriminator. The positive
and negative samples are judged first, then the positive samples are classified as shown in
Figure 3.
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The generator G(z) and discriminator D(v) act as two opponents: the generator G(z)
would tries to fit Xtrue(vi) (real nodes’ feature map) perfectly and generate feature maps
similar to real nodes to deceive the discriminator, while the discriminator D(v) tries to
detect whether the feature map of these nodes are real feature maps of nodes or the ones
generated by its counterpart generator G(z).

3.5. Loss Function

If the input data is a positive sample, the target function that is would be maximized
logP(y ∈ {1, 2, . . . , K}|v). The loss function designing of the discriminator D(v) includes
two components in which one is the supervision learning loss function and the another is
the unsupervised learning loss function, as described in Equation (9).

L = Ldis + Lc (9)

The supervised part of the loss functions is defined as Equation (10); for the unsu-
pervised part of the task, the only thing that needs to be done is to distinguish whether a
sample is positive or negative. The unsupervised part of the loss functions is expressed by
the Equation (12), where P represents the probability of discriminating negative samples.

Lc =− Ev,y∼ptrue(v,y) log P

(y|v, y < K + 1)
(10)

D(v) = 1− P(y = K + 1
∣∣v) (11)

The unsupervised loss function part is expressed as Equation (12).

Ldis =−
{

Ev∼ptrue(v)logD(v)+

Ez∼noiselog(1− D(G(z)))}
(12)

The final target function that needs to be optimized for the DGCGAN can be expressed
as Equation (13).

min
G

max
D

Ev∼Ptrue(v)[logD(v)] + Ez∼noise

[log(1− D(G(z)))]
(13)

3.6. Complexity Analysis

The time complexity of DGCGAN is O(|E|dd
′
+ |V|m), where d is denoted as the

feature dimension of nodes and d
′

is denoted as the dimension of output features. m is
the output dimension of the node feature-structured enhanced block. |E| and |V| are the
numbers of nodes and edges in the graph, respectively. The complexity is comparable to
that of other GNN methods such as GCN and GAT. The time complexity of DGCGAN is
mainly determined by the following two parts, which is O(|E|dd

′
) for GCN and O(|V|m)

for the node feature-structured enhanced block.

4. Experiments and Analysis
4.1. Datasets

In order to fully demonstrate the validity of model DGCGAN in semi-supervised
node classification, we conduct an evaluation on various semi-supervised classification
benchmarks. According to the experimental settings [12,47], we evaluate it on Cora, Citeseer,
Pubmed, and ogbn-arxiv datasets [47]. The detailed information of these datasets and their
applications in our research are described below. The dataset attributes are summarized in
Table 1.
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Table 1. Details of the datasets utilized in our experiments.

Datasets Nodes Edges Classes Features Labeling
Rate

Cora 2708 5429 7 1433 0.052
Citeseer 3327 4732 6 3703 0.036
Pubmed 19,717 44,338 3 500 0.003

ogbn-arxiv 169,343 1,166,243 40 128 0.537

Cora. This dataset consists of 2708 nodes and 5429 edges. All nodes have 1433-
dimensional feature descriptions, and all nodes are divided into seven categories.

Citeseer. This dataset contains 3327 nodes and 4732 edges. All nodes belong to six
categories. Every node has a dimensional feature description of 1433.

Pubmed. This dataset is a biomedical paper search and abstract data set. The data
contains 19, 717 nodes and 44,338 edges. All nodes are divided into three categories and
each node has a 500-dimensional feature descriptor.

Ogbn-arxiv. The dataset includes 169, 343 nodes and 1, 166, 243 edges. All nodes are
split into forty categories. Each node obtains a dimension feature descriptor of 128.

4.2. Baselines

To evaluate the model DGCGAN, we compare it with the following baselines: LP [48],
DeepWalk [49], GCN [12], G-GCN [50], GPNN [51], GAT [20], SGCN [33], ConfGCN [36],
APPNP [32], HGCN [52], HGNN [53], GSNN-M [54], IDGL [55], GraphSAINT [56], and
HAT [57].The commonly used evaluation indexes of classification algorithms include
accuracy, precision, recall, and F1 score. We use accuracy in this experiment, which is a
commonly used evaluation index. The precision of specific classification is indicated in
Table 2.

Table 2. Performance comparison of different methods for semi-supervised node classification
accuracy (percentage of standard deviation) on multi-benchmark datasets. DGCGAN is consistently
better on all datasets. OOM indicates that the memory is exceeded.

Method Cora Citeseer Pubmed Ogbn-Arxiv

LP 67.9 ± 0.1 45.1 ± 0.2 62.7 ± 0.3 OOM
MLP 56.1 ± 1.6 56.7 ± 1.7 71.4 ± 0.0 54.7 ± 0.1

GRCN 67.4 ± 0.3 67.3 ± 0.8 67.3 ± 0.3 OOM
DeepWalk 67.0± 1.0 47.8± 1.6 73.9 ± 0.8 55.6 ± 0.3

GCN 81.4 ± 0.1 70.1 ± 0.2 78.7 ± 0.3 69.9 ± 0.1
G-GCN 81.2 ± 0.4 69.6± 0.5 77.0 ± 0.3 68.2 ± 0.3
GPNN 79.0 ± 1.7 68.1 ± 1.8 73.6 ± 0.5 63.5 ± 0.4
GAT 83.0 ± 0.7 72.5 ± 0.7 78.8 ± 0.2 OOM

SGCN 81.0 ± 0.0 71.9 ± 0.1 78.9 ± 0.0 68.3 ± 0.6
ConfGCN 82.0 ± 0.3 72.7 ± 0.8 79.5 ± 0.5 68.9 ± 0.2
GSNN-M 83.9 ± 0.4 72.2 ± 0.4 79.1 ± 0.3 69.8 ± 0.2

IDGL 70.9 ± 0. 6 68.2 ± 0.6 72.3 ± 0.4 OOM
HGCN 80.5 ± 0.6 71.9 ± 0.4 79.3± 0.5 55.6 ± 0.2
HAT 83.6 ± 0.5 72.2 ± 0.6 79.6 ± 0.5 OOM

APPNP 81.2 ± 0.2 70.5 ± 0.1 79.8 ± 0.1 69.1± 0.0

DGCGAN 84.5 ± 0.1 73.3 ± 0.1 82.2 ± 0.2 71.2 ± 0.1

LP [48] is an recursive label propagating algorithm which distributes a node’s label to
its neighboring unlabeled nodes based on their proximity. DeepWalk [49] treats random
walks in the graph as equivalent sentences to learn node features. GCN [12] is a variable
of the convolutional neural network which is applied to the semi-supervised learning of
graphic data structure. G-GCN [50] proposes a GCN-based semantic role labeling (SRL)
model which can fuse syntax information in the sequence model.GPNN [51] can be run
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on a super-large graph. The core idea is to use a modified multi-seed flood fill to quickly
divide the large graph, thereby spreading local information between nodes of the subgraph
and spreading global information between subgraph alternatives. GAT [20] is a method
based on graph attention, which provides different weights for different nodes by allowing
nodes to pay attention to their neighborhoods. SGCN [33] transforms the nonlinear GCN
into a simple linear model SGCN and reduces the extra complexity of GCNs by repeatedly
eliminating the nonlinearity between the GCN layers and folds the resulting function into
a linear transformation. ConfGCN [36] aims to predict the marking scores of the remaining
nodes in the graph by marking a few nodes as seeds and then using the graph structure.
APPNP [32] combines the graph convolution neural network with personalized page
ranking, and constructs a simple model with PageRank propagation to better propagate
neighborhood node information. HGCN [52] aggregates the expressive ability of GCN and
hyperbolic geometry to learn the node representation in scale-free graphs or hierarchies.
HGNN [53] consists of an encoder based on a heterogeneous graph and an emotional
personality perception decoder. GSNN-M [54] uses confidence estimation in the context
of GCN to estimate label scores. The model adopts these estimated confidence levels
to confirm the effect of a node on another during neighbor aggregation, thus obtaining
anisotropic capabilities. IDGL [55] proposes an end-to-end graph-learning framework for
combining the iterative learning graph structure and graph embedding. GraphSAINT [56]
designs a lightweight sampling algorithm to reduce sampling variance by quantifying the
influence of node neighbors. HAT [57] exploits the graph attention network to learn the
robust node representation of graphs in hyperbolic spaces.

4.3. Performance Comparison
4.3.1. Node Classification

Node classification is a fundamental task extensively used to evaluate the effect of
embedding. Table 2 shows the classification accuracy of DGCGAN and other baselines
in semi-supervised scenarios. LP, GCN, GPNN, GAT, ConfGCN, GSNN-M, and HAT are
semi-supervised models that can be used directly to classify nodes.For DeepWalk, GGNN,
and IDGL, etc., we adopt the KNN classifier with k = 5 to perform node classification. The
results are summarized in Table 2. It is clear that DGCGAN performs best in most cases.
In addition, we can realize that GNN-based methods generally perform better than other
baselines (i.e., LP, MLP, DeepWalk, and GRCN) since graph topology and node features
are combined in their models. Compared with GCN and HGCN, GAT and HAT have
achieved better results in most cases, which is due to the multi-head attention mechanism of
GAT and HAT. Furthermore, the results on ogbn-arxiv illustrates the scalable performance
of DGCGAN.

4.3.2. Node Clustering

As for the node-clustering task, we estimate the property of the method by analyzing
the quality of the learned representation. Specifically, for the GNN-based method, we train
our framework to represent the test nodes of the hidden layer by obtaining features. In
order to make a fair comparison, we set the dimension of features to 16, use K-means to
execute node clustering, and the number of clusters is set to the number of labels. NMI
(normalized mutual information) is often utilized in clustering algorithms to measure
the similarity between two clustering results (usually we compare the similarity between
clustering results and real labels). The difference between NMI and another clustering
index ACC is that the value of NMI will not be affected by the arrangement of family
labels. We use the average results of normalized mutual information (NMI) of 10 runs with
random weight initialization. In Table 3, we show the results of node clustering. As shown
in Table 3, we can see that the performance of DGCGAN is superior to all baselines all the
time, which shows that the performance improvement of DGCGAN is really conducive to
clustering tasks.
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Table 3. The results of the node-clustering task in the structural optimization scenario (NMI metric
in percentage).

Method Cora Citeseer Pubmed

DeepWalk 40.4 17.9 23.1
GCN 51.7 42.4 30.5

GraphSAINT 50.1 38.7 32.5
GAT 56.7 42.7 35.9

Node2vec 41.5 20.9 28.6
HGCN 57.2 42.1 37.2
HGNN 55.3 41.3 38.7

DGCGAN 59.2 44.1 40.2

4.3.3. Remote Sensing Scene Classification

In addition to the citation network dataset, we also classified it on NWPU-RESISC45
(NWPU) dataset. It is made up of 45 scene class, with a total of 31,500 remote sensing
scenes images. Each scene class contains 700 scene images with 256× 256 pixels. This
dataset is one of the largest in the number of scene categories and the total number of scene
images. During the experiment, 10% and 20% are randomly selected images of each scene
category as the training group, and the rest are divided into test groups (20/80 NWPU).
Firstly, we construct an adjacency matrix with topological structure through the dataset
NWPU. The specific operation is to regard each picture as a node and the label of the node
as a criterion for judging whether there is an edge with other nodes. Then, the pixel matrix
of the picture is taken as the feature matrix of the graph. Finally, they are jointly transported
to DGCGAN.

The comparison results between the proposed method and the prior state-of-the-
art method are listed in Table 4. As can be seen from Table 4, the OA of the proposed
method is only moderately lower than that of the best method, DGCGAN. For the training
test ratio of 2:8, the average OA of the proposed method is 2.43% and 4.15% lower than
that of the optimal method DGCGAN. In this paper, most comparison methods with
high classification performance employ pretraining methods. Compared with the CNN
model trained from scratch, the pretrained CNN model can achieve significantly better
classification performance. To visualize the final convolution output of DGCGAN, we select
representative images from NWPU dataset and input them into the network, respectively.
As shown in Figure 4, the gradient-weighted class activation mapping (Grad-CAM) method
is used for visualization. The proposed method DGCGAN utilizes the node feature-
structured enhanced block to extract richer and more representative feature information,
which is helpful to solve the problems of intra-class differences and inter-class similarities
in remote sensing scene image classification, thus contributing to correct classification.

Table 4. Comparison results of OA on the NWPU test set.

Basic Network Methods OA (20/80) (%)

AlexNet MSCP 85.58 ± 0.16
VGG16 MSCP 88.93 ± 0.14
AlexNet SCCov 87.30 ± 0.23

GCN DGCGAN 89.73 ± 0.17
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Airplane Church Bridge Lake

Airplane Church Bridge Lake

Figure 4. The visualization results of DGCGAN on the NWPU dataset.

4.4. Ablation Study

In order to verify the effectiveness of the proposed DGCGAN model, we conduct an
ablation study in this section.

4.4.1. The Effectiveness of Symmetric Normalized Laplace Transform

The Laplace matrix is a matrix representation of a graph. The Laplacian mapping di-
rectly decreases the dimension to a low-dimensional space while maintaining the similarity
of the original manifold data. The spatial significance of normalizing Laplace transform
is that each node sends the same amount of information through the edge, and the more
edges there are, the less information each edge sends. In other words, the greater the degree
of neighboring nodes, the smaller the weight assigned. In order to avoid this situation, we
normalize the Laplace matrix. In Table 5, we compare three variants of the propagation
model on the the citation network datasets. Specifically, we compare the performance of
MLP, Laplace transform (LP), and symmetric normalized Laplace transform (SNLP) on the
datasets Cora, Citeseer, and Pubmed. Generally speaking, we find that SNLP has the best
performance among all propagation models.

Table 5. The comparison results of propagation models.

Description Propagation
Model Cora Citeseer Pubmed

MLP XW 55.1 46.5 71.4
LT (D-A)XW 80.5 68.7 77.8

SNLT D̂−
1
2 ÂD̂−

1
2 XW 81.5 70.3 79.0

4.4.2. The Effectiveness of BI and SE

First, we combine DCGAN and GCN to expand the sample size. Secondly, the addition
of bicubic structured interpolation converts the node features into regular graph data, where
SE stands for FE. Finally, the addition of the feature squeeze and feature excitation module
strengthens the typicality and discriminability of node features so that the robustness of
the model is enhanced. The results are shown in Figure 5.

The Figure 5 presents that the classification accuracy of GCN in the three benchmark
graph datasets (Cora,Citeseer, and Pubmed), respectively, are 81.5%, 70.3%, and 79%. First,
we fuse DCGAN and GCN to expand the number of samples and enhance the robustness
of the model. We can obtain the classifying accuracy of three benchmark datasets: 84.1%,
72.8%, and 81.4%. Second, we add the bicubic structured interpolation to the model
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above and acquire the precision as follows: 84.3%, 73.0%, and 81.8%, respectively. Third,
combining feature squeezing and feature excitation operating into the above model, the
classifying accuracy is obtained, which are 84.5%, 73.3%, and 82.3%, respectively.

In addition, in the bicubic structured interpolation operation, we find that the feature
dimension affects the classification result. We take Cora and Citeseer as examples. In Cora,
the feature dimension is d = 1433. We take the parameter g as 1369, 1444, and 1521 and
the classification accuracy results are 84.1%, 84.5%, and 78.6%, respectively. In Citeseer,
feature dimension is d = 3703; we take g as 3600, 3721, and 3844, respectively, and the
corresponding classification results are 72.9%, 73.3%, and 72.8% (Figure 6). We find that the
closer the parameter g and the feature dimension d are, the better the classification results
will be. The corresponding classification accuracy is shown in Table 6.
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Figure 5. The accuracy results of model GCN, combining GCN and DCGAN, adding BI operation to
the model, adding SE (FE) module to the model on node-classification task.

Figure 6. Compare the performance of different sample augment on the diverse datasets Cora,
Citeseer, and Pubmed.

4.4.3. Sample Augment Analysis

We find that the number of samples of the generator will affect the classification results.
To verify the idea, we input 1500, 2000, 2500, and 3000 samples to the generator, respectively.
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Table 6. The influence of parameters in bicubic structured interpolation on classification accuracy of Cora.

Parameter Cora Parameter Citeseer

g = 1369 84.1 g = 3600 72.9
g = 1444 84.5 g = 3721 73.3
g = 1521 78.6 g = 3844 72.8

In Figure 6, we obtain the classification accuracy on Planetoid citation networks and
the Cora, Citeseer, and Pubmed datasets. Specifically, as shown in Table 7, we compare the
classification accuracy of Cora, Citeseer, and Pubmed datasets in different samples. The
number of samples s is 4208, 4708, 5208, 5708, 5906, 6200, 6800, 7200,7800, 8200, 8800, 21,200,
22,500, and 23,200, respectively, and the corresponding classification accuracy on the dataset
Cora is 78.6%, 82.3%, 84.5%, 84.1%, 83.8%, 82.8%, 81.6%, 81.1%, 79.8%, 78.8%, 76.5%, 75.8%,
76.8%, 75.2%; the corresponding classification accuracy on the dataset Citeseer is 70.6%,
72.1%, 72.6%, 72.9%, 71.3%, 70.2%, 68.8%, 67.9%, 73.3%, 64.5%, 62.8%, 60.9%, 59.8%, 57.8%;
and the corresponding classification accuracy on the dataset Pubmed is 80.9%, 81.7%, 80.7%,
81.8%, 80.8%, 82.3%, 78.8%, 76.5%, 74.8%, 71.5%, 69.5%, 68.7%, 67.5%, 66.9%, respectively.

Table 7. Compare the performance of different sample sizes on different datasets Cora, Citeseer,
and Pubmed.

Parameter Cora Citeseer Pubmed

s = 4208 78.6 70.6 80.9
s = 4708 82.3 72.1 81.7
s = 5208 84.5 72.6 80.7
s = 5708 84.1 72.9 81.8
s = 5906 83.8 71.3 80.8
s = 6200 82.8 70.2 82.3
s = 6800 81.6 68.8 78.8
s = 7200 81.1 67.9 76.5
s = 7800 79.8 73.3 74.8
s = 8200 78.8 64.5 71.5
s = 8800 76.5 62.8 69.5

s = 21,200 75.8 60.9 68.7
s = 22,500 76.8 59.8 67.5
s = 23,200 75.2 57.8 66.9

We find that the Cora dataset has the highest classification accuracy when s = 5208,
the Citeser dataset has the highest classification accuracy when s = 7800, and the Pubmed
dataset has the highest classification accuracy when s = 6200. With the increase of the
number of samples, the classification accuracy of the three datasets increases, but when the
number of samples reaches a certain value, the accuracy value begins to decrease.

4.4.4. Robustness Analysis

We investigate the robustness of DGCGAN by constructing a disturbance graph
against attack. Random attacks disturb the graphic structure by randomly adding false
edges. Figure 7b,d,f show the classification accuracy of the random attack method for
perturbation rate on the Cora, Citeseer, and Pubmed datasets, respectively. We have
observed that DGCGAN consistently outperforms GCN, GAT, and IDGL. As shown in
Figure 7b, when adding 15% stochastic edges to Cora, we discover that the classification
accuracy of DGCGAN only decreased by 8.7%, while it decreased 11.9% for GCN, 39.9%
for GAT, and 31.9% for IDGL.

In addition, as shown in Figure 7a,c,e, we study the robustness of DGCGAN by
generating a disturbance graph against the attack on datasets Cora, Citeseer, and Pubmed.
Metattack attacks the graph via deleting or adding edges on the basis of meta learning.
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Under Metattack, the gap between DGCGAN and GCN/GAT/IDGL also increases with
the perturbation rate.

(a) Met attack (b) Random attack (c) Meta attack

(d) Random attack (e) Meta attack (f) Random attack

Figure 7. The robustness analysis on different datasets Cora, Citeseer, and Pubmed, in which (a,b)
are robustness analysis on tbe Cora dataset, (c,d) are robustness analysis on the Citeseer dataset, and
(e,f) are robustness analysis on the Pubmed dataset.

5. Conclusions

To solve the problem that the classification accuracy of GCN cannot be improved when
the number of samples is small and the models lack robustness, In this paper, we develop
a novel GCN model, the DGCGAN model, for semi-supervised classification of graphic
structure data.The DGCGAN model is proposed to expand the number of samples and also
enhances the robustness of the model due to the fusion of DCGAN. The node features will
be obtained by symmetric normalized Laplace transformation on the feature matrix and
adjacency matrix of the graph. In addition, the node features are extended to the regularly
structured data (such as images) via the bicubic structured interpolation method. Then,
after the feature-enhanced module, the new richer and more representative node features
are obtained, which will be sent to the discriminator as positive samples along with the
negative samples produced by the generator. Finally, these positive and negative samples
are classified. The effectiveness of the proposed DGCGAN mode is demonstrated in
several state-of-the-art methods for the semi-supervised node-classification task. Especially
when the labeled data is extremely scarce, the proposed method can also obtain more
significant results.
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