
Citation: Chen, J.; Sang, J.; Li, Z.; Liu,

C. A Case Study on the Effect of

Atmospheric Density Calibration on

Orbit Predictions with Sparse

Angular Data. Remote Sens. 2023, 15,

3128. https://doi.org/rs15123128

Academic Editors: Yang Yang, Sanat

K. Biswas and Xiaofeng Wu

Received: 6 May 2023

Revised: 12 June 2023

Accepted: 14 June 2023

Published: 15 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

A Case Study on the Effect of Atmospheric Density Calibration
on Orbit Predictions with Sparse Angular Data
Junyu Chen 1,* , Jizhang Sang 2, Zhenwei Li 3 and Chengzhi Liu 3

1 Faculty of Land Resources Engineering, Kunming University of Science and Technology,
Kunming 650093, China

2 School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China; jzhsang@sgg.whu.edu.cn
3 Changchun Observatory, National Astronomical Observatories, Chinese Academy of Sciences,

Jilin 130017, China
* Correspondence: jychen@kust.edu.cn

Abstract: Accurately modeling the density of atmospheric mass is critical for orbit determination and
prediction of space objects. Existing atmospheric mass density models (ADMs) have an accuracy of
about 15%. Developing high-precision ADMs is a long-term goal that requires a better understanding
of atmospheric density characteristics, more accurate modeling methods, and improved spatiotem-
poral data. This study proposes a method for calibrating ADMs using sparse angular data of space
objects in low-Earth orbit over a certain period of time. Applying the corrected ADM not only im-
proves the accuracy of orbit determination, but also enhances the accuracy of orbit prediction beyond
the correction period. The study compares the impact of two calibration methods: atmospheric mass
density model coefficient (ADMC) calibration and high precision satellite drag model (HASDM)
calibration on the accuracy of orbit prediction of space objects. One month of ground-based telescope
array angular data is used to validate the results. Space objects are classified as calibration objects,
participating in ADM calibration, and verification objects, inside and outside the calibration orbit
region, respectively. The results show that applying the calibrated ADM can significantly increase the
accuracy of orbit prediction. For objects within the calibration orbit region, the calibration object’s
orbit prediction error was reduced by about 55%, while that of verification objects was reduced by
about 45%. The reduction in orbit prediction error outside this region was about 30%. This proposed
method contributes significantly to the development of more reliable ADMs for orbit prediction of
space objects with sparse angular data and can provide significant academic value in the field of
space situational awareness.

Keywords: space objects; space situational awareness; low-Earth orbit; atmospheric mass density
model; orbit determination

1. Introduction

Advanced computer technology has combined satellite orbit theory with precise
numerical integration, enabling the consideration of very complex mechanical models and
achieving precise satellite OD [1]. Modern space tracking technologies, such as GNSS and
SLR [2], provide widespread and dense satellite observation data with millimeter-level
accuracy, realizing centimeter-level and normalized OD precision for many satellites used
for Earth observations and navigation [3]. However, in contrast to the progress in satellite
OD research for scientific purposes, Earth observations and navigation, progress in space
debris OD and particularly OP has been slow. One reason for this is that less precision is
required for space debris orbit information, and for a long time, orbits calculated using the
SGP4 algorithm and TLEs have met many application requirements. Another reason is that
precise determination of space debris orbits faces several key difficulties, such as sparse
and low-precision observation data, unknown physical and geometric parameters specific
to space debris, and inaccurate ADMs. With the rapid growth in the amount of space debris
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and the increasing hazard to space applications from space debris—especially after the
2009 collision between Iridium 33 and Kosmos 2251 [4]—it is necessary to provide reliable
space situational awareness services by acquiring precise space debris orbit information.
Therefore, research on space debris OD and OP has received a great deal of attention.

When determining the orbit of space debris, if there is a scarcity of tracking observation
data and the data is concentrated at individual stations, achieving convergence in OD
computation may be difficult or even with convergence, the results may have little practical
value. Previous research has indicated that using two observations from a single station
separated by 24 h based on direction (azimuth/elevation) can lead to non-convergence in
OD due to the unknown ballistic coefficient being solved as an additional parameter [5,6].
One method to resolve divergence is to include TLE-derived orbits as observations with
small weights during the OD process [7,8]. Although this approach can solve the divergence
problem, the resulting OD may have limited practical value due to large errors. Another
method involves using long-term historical TLE data to estimate the ballistic coefficient
of debris objects, which is then fixed during the OD process. While this method enables
precise OD and OP for debris objects above 600 km altitude, for objects below this altitude,
errors in the ADM can result in OP errors reaching up to kilometers magnitudes for several
days [9–12].

Over the past half-century, numerous ADMs have been developed to reproduce the
primary variables of the thermosphere, such as density. These ADMs are categorized
into empirical and physical ADMs, with the latter focusing on analyzing the physical
properties of the atmosphere, while empirical ADMs are commonly utilized for space
object orbit calculations. Popular empirical ADMs include the Jacchia series, JB2006, JB2008,
MSIS series, DTM series. The earliest ADM is the Jacchia 1960 model, which calculates
atmospheric density based on satellite altitude, solar F20 radiation flux at 20 cm wavelength,
and solar hour angle as input parameters. As data became more abundant, this model
was updated to Jacchia1971 [13] and Jacchia1977. Furthermore, Bowman et al. used the
Jacchia model as a basis to develop the JB2006 model [14]. This model incorporates data
from multiple satellites between 1978 and 2004 that have perigee heights ranging from
175 to 1100 km. The main differences between the JB2006 and Jacchia models are the
introduction of new solar radiation flux indices, as well as corrections for semi-annual
and local time variations in atmospheric density. Solar radiation flux in the JB2006 model
consists of three components based on SOHO spacecraft EUV sensor data (S10), FUV MgII
sensor data (Mg10), and 10.7 cm wavelength microwave radiation flux (F10.7). In 2008,
Bowman et al. introduced the Dst index to describe changes in atmospheric density during
magnetic storms and developed the JB2008 model based on the JB2006 model. Another
widely used ADM is the MSIS model, which was released in 1977 as MSIS77. This model
utilizes not only satellite data but also non-coherent scatter radar data from the ground.
With updates to the model methodology and data sources, subsequent models like MSIS86
and MSIS90 were developed. In 2002, Picone et al. developed the NRLMSISE-00, which is
an extension of the MSIS90 based on accelerometer and density data inversion from satellite
orbits, oxygen molecular density data from solar UV occultation observations using the
SMM instrument, and temperature data from noncoherent scatter radar [15]. The recently
released NRLMSISE-2.0 optimizes density from 0–400 km altitude and provides more
reliable basic density information for space object re-entry [16]. The DTM, another common
ADM, utilizes a long-term space object monitoring dataset spanning two solar cycles
(22 years). The DTM78 model has clear modeling principles and easy-to-achieve model
calibration. There are numerous upgraded versions like DTM94, DTM2000, DTM2009, and
DTM2013, with the latest version being DTM2020 [17].

However, due to the use of decades-old data and the complexity of environmental
changes, it remains difficult to accurately describe all factors affecting atmospheric den-
sity change with existing knowledge. Thus, the precision of atmospheric mass density
modeling still struggles to break through the accuracy bottleneck (15% RMS average over
decades) [18–20]. Consequently, it remains the largest uncertain factor for low-Earth-orbit
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space object calculations, particularly for space debris OPs. Precise construction of ADMs
will be a lengthy process until atmospheric density changes’ characteristics are fully under-
stood. The importance of correcting atmospheric density for improving navigation accuracy
is further supported by the references [21]. The ADM calibration methods utilize orbital
and density measurement data to correct the density, temperature, or certain coefficients
of the ADM to improve its short-term accuracy and reliability. Marcos et al. proposed the
concept of model density correction numbers and corrected J71 models using LDEF satel-
lite’s orbital data. Subsequently [22], the CHAMP and GRACE satellite missions have been
instrumental in advancing our understanding of the Earth’s atmosphere and its interactions
with the space environment. In particular, these missions have been used to evaluate and
improve ADMs through data assimilation and other calibration techniques [23]. However,
the application of satellite data for modifying ADMs for space debris needs further study
since CHAMP and GRACE missions are no longer operational. In contrast, Doornbos et al.
utilized TLE data and parameterized adjustment methods to reduce corrected model errors
by up to 12% [24]. Nonetheless, the applicability of their corrected model requires extensive
verification due to the low precision of TLE data usually measured at the hundred-meter
level. The United States Air Force Space Command’s development of HASDM was a mile-
stone for ADM correction. It used the precise tracking data from up to 75 non-operating
satellites globally to dynamically correct two temperature coefficients in Jacchia1971 ADM.
The corrected model improved accuracy by 6–8% in an orbit height range of 200 to 800 km.
Moreover, when applied to OPs, it enhanced one-day forecast accuracy by approximately
25% [25]. One key factor contributing to HASDM’s effectiveness was utilizing global data
from monitoring stations, although this observation dataset is not publicly available. The
density dataset obtained from HASDM is a valuable resource for studying the atmospheric
density variations [26,27]. Sang et al. demonstrated methods for revising certain coefficients
of ADMs and used measurements to verify that their approach improves space debris
OP accuracy [28]. Their method’s advantage was utilizing limited space object data to
accomplish the modeling correction, which can replace original coefficients directly. In
addition, Sutton et al. generated atmospheric density using TIEGCM physical models and
methods similar to those of HASDM to revise Jacchia1971 models [29]. Furthermore, Perez
et al. modified ADMs using neural network-based methods, which reduced density error
compared with the DTM2013, NRLMSISE-00, and JB2008 models [30]. Nevertheless, the
impact of these methods on OP accuracy with respect to space objects, especially space
debris, remains largely unknown.

Ground-based optical telescope sites usually detect data from several hundred space
objects daily [31]. Despite being sparsely distributed, these monitoring data contain orbital
change information caused by density changes because they are acquired without any
smoothing or processing. Thus, correcting the ADM using monitored data from a single
station has significant potential, despite being an understudied area. This paper proposes a
method for calibrating ADMs using sparse angular data of space objects in LEO, which
significantly improves OP accuracy beyond the correction period. This study compares two
calibration methods and validates the results using angular data from the ground-based
telescope array. The proposed method contributes to the development of more reliable
ADMs for OP of space objects with sparse angular data and can provide academic value in
the field of space situational awareness.

In the following section, we introduce the basic principles of two ADM calibration
methods, HASDM and ADMC. Section 3 presents the results, including the ADM calibra-
tion and evaluation procedure, and examples of calibrated ADM to OP using angle data
of space objects observed by a ground-based optical telescope for one month. Section 4
discusses the main factors that affect ADM calibration. Finally, conclusions are drawn.

2. Method: ADM Calibration

The inaccurate density calculation of ADMs is the most important source of uncer-
tainty in low-Earth-orbit target OD and OP. The existing commonly used models have
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density errors of generally 15% [32], and cannot meet the requirements of many space
applications. Some space missions demand higher accuracy for ADMs, such as the United
States Air Force Space Command requiring model errors to be within 5% for orbits ranging
from 90 to 500 km [25]. Therefore, it is necessary to develop more precise new mod-
els or improve the accuracy of existing models through correction methods to satisfy
practical application needs. Although new models based on more monitoring data are
constantly being introduced, the overall average accuracy of these models still does not
meet application needs, and precise construction of models is unlikely until a more accurate
and comprehensive understanding of atmospheric density variations is achieved, which
is a lengthy process. Currently, the primary effective method for improving ADMs is
through calibration.

The basic idea of ADM correction is to use monitoring data of a group of space objects
over several days (usually 3–7 days) to determine the orbit and correct a certain ADM
simultaneously. Therefore, within a short period of time (e.g., 10 days), the corrected ADM
corresponds with the actual monitoring data of space objects (i.e., orbit of space objects).
Using the corrected model, the accuracy of OD and OP of space objects is expected to
improve. Common correction methods include ADMC and HASDM.

The ADMC method assumes that ADM errors are mainly caused by coefficient errors
and thus need correction. The correction process is carried out during OD by simultane-
ously solving these coefficients and the desired unknown orbit parameters to obtain the
correction values of the model coefficients and the corrected model.

The atmospheric density is expressed as:

ρ = ρ(t, r, b, c) (1)

here, t denotes time, r is the position vector of the space object, b includes solar position,
solar and geomagnetic activity indices, and c represents the model coefficients that need
correction. The partial derivative of the acceleration

..
r with respect to a model coefficient

(such as c0) in the model is expressed as:

∂
..
r

∂c0
= −1

2
CD

A
m

v2
r ev

∂ρ

∂c0
(2)

here, CD is the drag coefficient, A
m is the area-to-mass ratio, v is the velocity vector of the

space object relative to the atmosphere, and vr is the magnitude of this velocity vector. ∂ρ
∂c0

is obtained analytically or numerically. By substituting these equations into the orbital
dynamics equation and using the least squares method, the correction values of these
coefficients can be calculated. Using the DTM78 model as an example, the formula for
calculating the temperature in the outer atmosphere is:

T∞ = A1G(L) (3)

here, A1 is a coefficient used in the model to calculate temperature, with A1 = 999.8.
G(L) is a function of solar and geomagnetic indices, local time, year-day, and latitude
and longitude. Thus, the partial derivative of density with respect to the A1 coefficient

∂ρ
∂A1

= G(L), and the other 186 coefficients follow suit.
The HASDM is a correction method developed by the US Air Force Space Command

based on the J71. This method assumes that there are errors in the outer atmosphere
temperature (T∞) and atmospheric inflection point temperature (Tx) in the J71 model,
which need to be corrected. In the J71 model, atmospheric density is obtained through the
temperature profile function T(z) and interpolation in the density table. The density table
is divided into two parts based on altitude. The first part ranges from 90 to 105 km, and
the density is obtained by integrating the fluid static equation. The second part is above
105 km, and the density is obtained by integrating the diffusion equation. T(z) is a function
of altitude and is determined by T∞ and Tx, both of, which are indirectly calculated based
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on a global parameter Tc describing the nighttime minimum temperature of the outer
atmosphere in the J71. Tc is a key parameter in the J71 model, which describes the effect of
solar ultraviolet radiation on the entire thermosphere and has the following formula:

Tc = 383 + 3.32F10.7 + 1.8(F10.7 −
−
F10.7) (4)

Introducing the parameter ∆Tc into the J71 model yields an improved T′c, which can
be expressed as follows:

T′c = Tc + ∆Tc (5)

The outer atmosphere temperature T′∞ is calculated based on T′c, using the same
method as in the standard J71 model for calculating T∞ with Tc. Specifically, it can be
expressed as follows:

T′∞ = T′cD(δ, φ, λ) + ∆TG
(
ap
)
+ ∆TS(t,

−
F10.7) (6)

here, D(δ, φ, λ) is the diurnal variation factor, which is a function of the solar right ascension
δ, declination angle φ and local time λ. ∆TG represents the contribution of the geomagnetic
activity index ap to the outer atmospheric temperature. ∆TS represents the semiannual
variation of the outer atmospheric temperature.

The atmospheric inflection point temperature:

T′x = 444.3807 + 0.02385T′∞ − 392.8292× exp
(
−0.0021357T′∞

)
(7)

Introducing the correction term ∆Tx to T′x yields an improved T′′x , which can be
expressed as follows:

T′′x = T′x + ∆Tx (8)

The symbol ′′ represents the atmospheric inflection point temperature after two cor-
rections, one through ∆Tc and the other through ∆Tx. These two correction terms are
expanded independently in latitude and local time using spherical harmonics. The outer
atmospheric temperature is obtained through the correction term ∆Tc.

The expressions for the two temperature parameters are:{
T′x = T′x + ∆Tx ∆Tx = f1(h, ϕ, λ)

T∞ = T∞ + ∆T∞ ∆T∞ = f2(h, ϕ, λ)
(9)

here, f1 and f2 denote the spherical harmonics of orbital altitude h, local solar hour angle λ,
and latitude ϕ.

fs = C00 +
2

∑
n=1

n

∑
m=0

Pnm(sin(ϕ))[Cnmcos(mλ) + Snmsin(mλ)] (10)

here, Cnm and Snm represent the coefficients to be solved for, while Pnm is the associated
Legendre function of degree n and order m. Specifically, f1 corresponds to n = 1 and
f2 corresponds to n = 2. Since f2 has nine parameters and f1 has four parameters, the
partial derivative of acceleration

..
r with respect to the spherical harmonic coefficients c is

expressed as Equation (11). In the equation, CD represents the damping coefficient; A
m is the

area-to-mass ratio. vr is the vector of the relative motion of the spatial object with respect
to the atmosphere, and vr is the magnitude of this velocity vector. T′′x and T′∞ correspond
to the bending temperature term of the atmospheric layer and the external atmospheric
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temperature, respectively. Pnm are parameters to be estimated and needs to be calculated
in OD.

∂
..
r

∂c
=

1
2

CD
A
m

vrvr



T′′x
T′′x P10(sin(ϕ))

T′′x P11(sin(ϕ)) cos(λ)
T′′x P11(sin(ϕ)) sin(λ)

T′∞
T′∞P10(sin(ϕ))

T′∞P11(sin(ϕ)) cos(λ)
T′∞P11(sin(ϕ)) sin(λ)

T′∞P20(sin(ϕ))
T′∞P21(sin(ϕ)) cos(λ)
T′∞P21(sin(ϕ)) sin(λ)

T′∞P22(sin(ϕ)) cos(2λ)
T′∞P22(sin(ϕ)) sin(λ2)

(11)

A modified ADM can be solved for by using OD methods. The OD involves deter-
mining the three-dimensional position and velocity vector of an object in space using a
set of observations, including right ascension, declination, altitude and azimuth angles,
range, and radial velocity. Simultaneously, an ADM can be corrected. The least squares
estimation method is commonly used to estimate the parameters of both the trajectory and
the correction function that minimize the sum of the squares of the differences between
theoretical and observed values.

The state variable x is defined as:

x = {r, v, p}T (12)

where r and v represent the position and velocity vectors of the orbit, respectively, and p
represents the model parameters to be estimated. For example, when ADMC is used to
correct DTM78, there are 187 parameters to be estimated. If HASDM is used to correct
J71, there are 13 parameters representing the temperature correction functions. Assuming
that there is a function relationship between the prior state variable x0 and the measured
observables y, given by

y = f (x0) + v (13)

where v is the measurement error. The goal of OD is to estimate the weighted difference
between the measured data and the model prediction using mathematical models and
statistical properties of the noise.(

y− f (x0))
T P(y− f (x0)) = min (14)

x̂0 = x0 + ∆x̂0, (15)

∆x̂0 =
(

ATPA)−1ATP(y− f (x0)) (16)

The estimated state x̂0 can be obtained by iterating and solving for x̂0 until the change
in x̂0 is less than a given limit. The partial derivative matrix A =

(
∂ f
∂x ·
)∣∣∣

x=x0)
is necessary

to calculate for the determined weighted residuals from the observation and modeling
process. Common mathematical models include the Cowell numerical integration model
and the Gauss–Jackson model, with this work utilizing the former.

The HASDM approach requires a large and dense orbital data set for space objects
to achieve significant OP improvements. For example, Storz used more than 75 orbital
monitoring data for dynamically calibrated space objects every three hours. The ADMC
method achieves ADM calibration by modifying some ADM coefficients. The theoretical
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basis and modeling process for different ADMs may different, so it is essential to have a
clear understanding of the ADM modeling process that needs to be modified before using
ADMC, especially what coefficients are used to describe ADM and their sensitivity. Both
ADMC and HASDM achieve calibration through the OD process, which requires some
OD constraints to ensure successful calibration. The performance of both methods also
depends on the orbital characteristics, errors, and distribution of space objects participating
in ADM calibration. This paper only studies the performance of two methods obtained
from data collected by a ground-based optical telescope.

Figure 1 presents the ADM calibration process.
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• Data: The data used in the study include TLE and angular data.
• Preprocessing: TLE preprocessing involves generating a prior orbit using TLE. Angular

data preprocessing first requires outlier detection and removal. Then, the observa-
tion values are matched with TLE to identify, which space objects the observation
belongs to. Finally, space objects with high-precision, dense distribution, and long
duration of angular data are selected as calibration objects, and others are used as
validation objects.

• ADM calibration: We use two methods, ADMC and HASDM, respectively. The differ-
ence between the two methods is that ADMC requires setting sensitivity coefficients,
for example, for DTM78, all coefficients (187) can be selected, or some coefficients
can be selected. In our study, we chose non-zero coefficients among all coefficients as
sensitive coefficients. Using HASDM requires setting calibration parameters, which
refer to the parameters of spherical harmonic functions. Since our obtained angu-
lar data are sparse, we only set 13 calibration parameters, and calculate them every
three days.

• OD/OP: Orbit determination and prediction are carried out based on angular data of
calibration objects and validation objects, respectively, using the original ADM, ADM
corrected by HASDM, and ADM corrected by ADMC.
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• OP error calculation: The difference between the previous predicted orbit and the
reference orbit is calculated using future observation values or future orbits as the
reference orbit.

3. Results
3.1. ADM Calibration and Assessment Procedure

The ADM calibration is performed through the simultaneous ODs of multiple calibra-
tion objects. Given a 3-day OD time span, the calibration objects are selected first. Although
the number of possible calibration objects is 75, only less than 30 objects are qualified as
calibration ones for any 3-day time span in September 2017. In addition, the calibration
objects in one 3-day time span will be different from those in another 3-day time span.

Before the tracking data is subjected to the OD process, it is examined for possible
gross errors. The gross errors may be caused by the mistakes in the image processing,
astronomical positioning, or data transmission. For an observed orbital arc, the differences
between the observed and TLE-computed right ascension and declination are computed
first, and then, they are fitted by two 2-order polynomials. The fitting residuals are judged
whether the corresponding observation contains a gross error. In the examination, when a
residual is larger than 20 arc seconds, the corresponding observation is marked, and will
not be used in the OD computation.

The ADM calibration is performed using both the HASDM and ADMC methods.
The calibration effect will be assessed based on the OP errors of both the calibration and
non-calibration objects. For the non-calibration objects, the calibrated model is used to
compute the density in their OD and OP. The standard OP time span is 7 days. Forces
considered in the OD and OP include: the Earth gravity (JGM-3, 60 × 60), the third body
gravity, solar radiation, and atmospheric drag. The OP errors are used as the measure in the
assessment. In computing the OP errors, the tracking data is regarded as the “truth”. That
is, if the tracking data of an object is available on a day within the OP time span, the orbit is
propagated to the tracking time, and the right ascension and declination at the tracking
time are first computed and then compared to the observed right ascension and declination
to obtain the angular OP error. The angular OP error is then converted to position error.
Obviously, the smaller the OP error, the better the ADM calibration.

The main results are presented below.

3.2. Example OP Errors without ADM Calibration

Figure 2 shows the 9-day OP errors of Object 33323 without the ADM calibration.
The object has perigee height 578 km and a BC value of 0.0258, which is fixed in the OD
computation. One arc is observed on each of 3 days from 19 to 21 September 2017. The
tracking data over the three arcs is used in the OD computation where DTM78 is used to
compute the atmospheric mass density. After the OD process, the orbit is propagated for
9 days to compute the OP errors on 23, 24, 25, 27, 28, 29 and 30 September 2017 on, which
the tracking data is available. It is seen that the OP errors increase rapidly from 859 m on
the second OP day to 10591 m on the 9th OP day. The blank on a day means there is no
tracking data available for the object.
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3.3. Example OP Errors with ADM Calibration

For the 3-day time span from 19 to 21 September 2017, 14 objects are selected as the
calibration ones and their information are listed in Table 1. The perigee altitude of these
space objects varies between 380 and 600 km, with an inclination angle of 50 to 100 degrees.
The numbers in the title row of the table represent the days in September, with 19 indicating
19 September. A value of 1 in the table indicates that there is one observation for the
corresponding spatial object on the given date, while a value of 0 indicates no angular data.
Spatial objects with IDs 1–16 are involved in the ADM calibration, while those with other
IDs are not included in the calibration.

Table 1. Information of space objects from September 19 to 30.

Object No. NORAD ID INC PA AA 19 20 21 22 23 24 25 26 27 28 29 30

1 4814 81 448 485 1 0 1 1 0 0 1 1 0 0 1 0
2 13153 81 455 459 0 1 1 0 1 1 1 0 1 0 1 0
3 14819 82 477 499 1 1 1 0 1 1 1 0 1 1 1 0
4 16326 83 518 534 1 0 1 0 1 1 1 0 0 0 0 0
5 16881 83 524 547 1 1 1 0 1 1 1 0 0 0 0 0
6 19046 98 533 587 1 1 1 0 1 1 1 1 1 1 1 0
7 26034 98 537 553 1 0 1 0 1 1 1 0 1 1 1 0
8 28738 97 523 542 1 0 1 0 1 1 1 0 1 1 1 1
9 33323 98 587 622 1 1 1 0 1 1 1 0 1 1 1 1
10 34839 97 468 509 1 1 1 0 1 0 0 0 0 0 0 0
11 36119 97 478 483 1 1 0 0 1 1 0 0 1 0 1 0
12 38997 97 442 460 1 1 0 0 1 0 1 0 1 1 1 1
13 40925 97 461 478 1 1 1 0 1 1 0 0 1 0 1 0
14 41461 98 434 684 1 1 1 0 1 1 1 1 1 1 1 1

15 6350 51 496 516 1 1 1 0 0 0 0 0 0 0 0 0
16 10095 76 565 620 1 1 1 0 1 1 1 1 0 0 1 1
17 11267 83 591 612 0 1 1 0 1 1 1 0 1 1 1 1
18 13068 81 530 561 1 0 1 0 1 1 0 0 0 0 0 0
19 13154 81 544 600 1 0 1 0 1 1 0 0 0 0 0 0
20 22286 83 591 619 1 1 1 0 1 1 1 0 0 0 1 0
21 37182 97 471 477 1 1 1 0 1 1 1 0 1 1 0 0
22 39227 98 552 554 1 2 1 1 1 1 1 0 1 1 1 1
23 39771 98 577 600 0 1 1 1 1 1 0 1 0 0 0 0

The HASDM and ADMC methods are applied to make the ADM calibrations. Figure 3
shows the OP errors of Object 33323 (which is a calibration object). The OP errors after using
the calibrated ADMs are significantly less than those resulting from using the uncalibrated
DTM78 model. On those days when tracking data within the OP time span are available,
the OP errors are reduced by 74%, 78%, 79%, 84%, 88%, 95% and 96%, respectively, using
the ADMC calibration, and 94%, 98%, 98%, 95%, 91%, 89%, and 87%, respectively, using
the HASDM calibration. On the 9th OP day, the OP error is reduced to less than 2 km from
10.6 km. In this case, the HASDM method outperforms the ADMC method except on the
8th and 9th OP days.
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3.4. Example OP Errors of Non-Calibration Object

The excellent results in Figure 3 maybe expected because Object 33323 is a calibration
object. In further demonstrating the effect of the ADM calibrations on the OP errors, a
non-calibration object whose perigee height is within the calibration region (380~600 km),
Object 10095, is selected to see the variations of the OP errors before and after the calibration.
This object has 1 observed arc on each of the 3-day time period of 19 to 21 September 2017.
Following the OD using the tracking data of the 3 observed arcs, the orbit is propagated
and the OP errors are computed. These are shown in Figure 4.
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From Figure 4, it can be seen that the OP errors without the ADM calibration are 154 m,
277 m, 505 m, 907 m, 1464 m, and 2602 m, respectively, on the days when tracking data are
available. The OP errors are reduced by 55%, 54%, 56%, 59%, 61%, and 65%, respectively,
with the use of the ADMC method; and 62%, 64%, 67%, 68%, 67%, and 68%, respectively,
with the HASDM method. The reduction rates are not as large as those of the calibration
object but still quite significant. The OP errors on the 9th OP day are less than 1 km, while
it is 2.6 km originally. In this case, the HASDM still slightly outperforms the ADMC.

3.5. Detailed Analysis on the OP Error Reductions on the Calibration and Non-Calibration Objects

The above results are obtained from the ADM calibrations for the 3-day time span
from 19 to 21 September 2017, in, which there are 14 calibration objects. Objects 33323 is a
calibration object, and Object 10095 is one of the nine non-calibration objects. A full picture
of the OP error reductions after the ADM calibrations is shown in Figure 5. In the figure,
the first 14 objects (Object No from 1 to 14) are the calibration ones, and the last nine objects
(Object No from 15 to 23) are the non-calibration ones. The perigee heights of these objects
are shown on the right vertical axis.

From Figure 5, it can be seen that the OP errors after the ADM calibration are much
smaller than those using the un-calibrated DTM78 model for most of the calibration and
non-calibration objects. The OP error reductions of calibration objects are obviously larger
than those of the non-calibration objects. The effectiveness of the two ADM calibration
methods for the OP error reductions are close to each other.

In addition to the ADM calibration within the 3-day time span from 19 to 21 September
2017, another five ADM calibration experiments were performed. Table 2 gives the basic
information of all six experiments.

Figures 6–10 show examples of OP errors from another five ADM calibrations. Figure 6
shows the 2-day OP errors of objects in Experiment 1. The OP errors with the ADM
calibrations are much smaller than those with the original ADM. The average 2-day OP
errors of the 21 calibration objects are 1406 m, 474 m and 661 m, respectively with the
un-calibrated, ADMC and HASDM method. The average values of the 13 non-calibration
objects are 1694 m, 621 m and 805 m, respectively. In this experiment, the ADMC method is
better than the HASDM method. It is noted that Object No 34 has much larger OP errors,
because its perigee height is only 443 km, and the ballistic coefficient is 0.043, which is
larger than those of many other objects.
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Table 2. Basic information of all 6 ADM calibration experiments.

Experiment Number Calibration Date
(in September 2017)

Number of Calibration
Objects

Number of
Non-Calibration Objects

1 1–3 21 13
2 4–6 17 6
3 13–15 18 11
4 19–21 14 9
5 22–24 23 13
6 25–27 17 9
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Figure 6. 2-day OP errors in ADM Calibration Experiment 1.
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Figure 8. 6-day OP errors in ADM Calibration Experiment 3.
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Figure 9. 1-day OP errors in ADM Calibration Experiment 5.
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Figure 7 shows the 3-day OP errors of objects in Experiment 2. The average 3-day
OP errors of the 17 calibration objects are 1847 m, 907 m and 979 m, respectively with the
un-calibrated, ADMC and HASDM method. The average values of the 6 non-calibration
objects are 2269 m, 1499 m and 1659 m, respectively. In this figure, the ADMC method is
slightly better than the HASDM method.

Figure 8 shows the 6-day OP errors of objects in Experiment 3. The average 6-day OP
errors of the 18 calibration objects are 9706 m, 2609 m, and 2021 m, respectively, with the
un-calibrated, ADMC and HASDM methods. The average values of the 12 non-calibration
objects are 7735 m, 3441 m and 3072 m, respectively. In this figure, the ADMC method is
slightly worse than the HASDM method.

Figure 9 shows the 1-day OP errors of objects in Experiment 5. The average 1-day
OP errors of the 23 calibration objects are 402 m, 161 m, and 114 m, respectively, with the
un-calibrated, ADMC and HASDM methods. The average values of the 13 non-calibration
objects are 172 m, 90 m and 69 m, respectively. In this figure, the ADMC method is worse
than the HASDM method.

Figure 10 shows the 1-day OP errors of objects in Experiment 6. The average 1-day
OP errors of the 17 calibration objects are 864 m, 331 m, and 318 m, respectively, with the
un-calibrated, ADMC and HASDM method. The average values of the nine non-calibration
objects are 431 m, 287 m and 276 m, respectively. In this figure, the ADMC method is
slightly worse than the HASDM method. It is noted that, the OP times in Figures 9 and 10
are both 1 day, but the OP errors in Figure 9 are much smaller than those in Figure 10.
This may be due to more and better distribution of the tracking data provided by the
23 calibration objects in Experiment 5.

The average OP error reduction rates of the calibration and non-calibration objects in
the 6 experiments are given in Tables 3 and 4, respectively. The symbol “-” means that no
“true” data were available to compute the error in the specified OP time span. It can be seen
from Table 3 that all the reduction rates are positive, which means the ADM calibration
methods do reduce the OP errors.
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Table 3. Average OP error reduction rates (%) of calibration objects with the ADM calibration.

OP Time
(Days)

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6

ADMC HASDM ADMC HASDM ADMC HASDM ADMC HASDM ADMC HASDM ADMC HASDM

1 - - 41 53 - - 35 39 60 72 62 63
2 66 53 - - 59 68 51 61 54 60 65 46
3 70 40 51 47 57 75 47 51 62 74 44 32
4 68 33 - - 59 68 46 51 64 70 - -
5 88 27 - - 55 66 47 45 66 62 - -
6 76 27 45 43 73 79 60 73 74 67 - -
7 93 17 61 52 49 57 54 58 - - - -

Table 4. Average OP error reduction rates (%) of non-calibration objects with the ADM calibration.

OP Time
(Days)

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6

ADMC HASDM ADMC HASDM ADMC HASDM ADMC HASDM ADMC HASDM ADMC HASDM

1 - - 9 8 - - 37 51 48 60 33 36
2 63 52 - - 41 43 23 29 49 49 43 31
3 61 31 34 27 - - 21 28 44 51 45 28
4 51 34 - - 38 40 74 76 55 54 - -
5 53 30 - - 72 68 67 79 37 48 - -
6 30 0 76 58 56 60 87 91 35 43 - -
7 54 24 43 34 85 99 88 90 - - - -

From Table 4, in general, it can be seen that the rates are smaller than those in Table 3.
All results of the six experiments show that the OP errors with the calibrated models

are significantly reduced compared with the un-calibrated model. The HSDAM method
and ADMC method has similar effectiveness in reducing the OP errors. For the 7-day OP,
the OP errors of the calibration objects are reduced by 55%, and those of the non-calibration
objects by 45%. If the tracking data have better spatial and temporal distribution, and more
calibration objects are available, the ADMC method or HASDM method would have better
calibration effectiveness.

3.6. OP Errors for Objects outside the Calibration Region

The perigee heights of objects in the above result presentations are between 380 km
and 600 km. It is reasonable to expect their OP error reductions since they are in the ADM
calibration region. In this section, the OP errors of the objects outside the calibration region
are presented. The perigee heights of these 20 objects are either below 380 km or above
600 km, that is, they are outside the calibration region. Figure 11 shows an example of the
3-day OP errors of these 20 objects using methods of Experiment 1. The Object No is in the
order of ascending perigee height, with Object 1 has a perigee height of 329 km, and Object
No 20 has a perigee height of 953 km.
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In Figure 11 the first five objects whose perigee heights are below 750 km have their
3-day OP errors reduced by about 25~30% with the ADM calibrations, the last six objects,
except Object No 13, have the equivalent OP errors with or without the ADM calibration.
Object No 13 has its OP errors increased from 40 m to about 130 m after the ADM calibration.
Generally, the ADMC method outperforms the HASDM method.

A complete OP error reduction rates of these objects in the six experiments are
listed in Table 5. It can be clearly seen that the reduction rates are smaller than those in
Tables 3 and 4. Some negative values occur, mainly because the OP errors from the un-
calibrated model are already very small, and it is difficult to reduce them further through the
ADM calibration.

Table 5. Average OP error reduction rates (%) of objects outside the calibration region.

OP Time
Span (Days)

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6

ADMC HASDM ADMC HASDM ADMC HASDM ADMC HASDM ADMC HASDM ADMC HASDM

1 - - −3 −7 - - 9 −4 14 15 51 36
2 28 26 - - 26 30 32 24 28 25 52 22
3 27 17 21 21 44 33 37 28 28 26 38 39
4 91 23 - - 60 51 43 35 32 32 - -
5 63 46 - - 47 38 43 37 39 31 - -
6 46 25 23 16 50 41 50 35 22 24 - -
7 13 6 26 23 36 28 44 31 - - - -

Generally, the OP errors of the objects outside the calibration region can be reduced by
the ADM calibration. For the 7-day OP, the error reduction rate is 36% for the ADMC and
27% for the HASDM.

3.7. Example OP Errors of Objects with Small and Large Ballistic Coefficients

The magnitude of the ballistic coefficient of an object has a strong effect on the OD
and OP performance. The smaller the magnitude, the weaker the effect. It would be
interesting to see what the effect of the ADM calibration on the OP performance for objects
with different magnitudes of the ballistic coefficients. Object 19046 has a perigee height of
533 km and BC value of 0.0146, and Object 26141 has a perigee height of 596 km and BC
value of 0.1364. These two objects are both the calibration objects of Experiment 5. The OP
errors of these two objects are shown in Figure 12.
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From Figure 12, it can be seen that the OP error reductions for Object 26141 with large
BC value are much higher than those of Object 19046 with small BC value. For example,
the 5-day OP error reduction rates for Object 19046 with the ADMC and HASDM methods
are 55% and 62%, respectively. For Object 26141, the 5-day OP error reduction rates are 87%
and 67%, respectively. This could suggest a more positive effect on the OP performance of
objects with larger BC values.

Figure 13 shows the OP error reduction rates of the objects on the 5th day and their
BC values in Experiment 5. The linear fittings of the two rate series are also shown.
Generally, the rates are large when the BC values are large, meaning there is a positive
correlation between the error reduction rate and the magnitude of ballistic coefficient. The
OP error reduction with the ADMC method appears more significant than that with the
HASDM method.
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4. Discussion

In order to measure OP errors, commonly used error indices in traditional methods
include the RMSE and mean absolute error. However, for precision-based and stable
fields such as OP, the median error is a more suitable error index. Firstly, the root mean
square error metric is sensitive to outliers and can be easily disturbed by “gross errors”. In
observational data, various errors caused by environmental factors, observation equipment,
and human factors can lead to some outlier observations that deviate significantly from the
true value, commonly known as gross errors. If we conduct error analysis using metrics
such as root mean square error, these gross error points may interfere with the results,
leading to decreased prediction accuracy. The median is robust and can effectively avoid
the influence of gross errors on the results, making evaluation results more stable and
reliable. Secondly, it is crucial to use the same calculation method for predicting errors in
OP. A reasonable OP model typically models and corrects various error factors based on
historical observation data. However, these correction methods may sometimes introduce
new errors, and different error measurement indices may lead to different correction
methods. Therefore, it is particularly important to use the same error measurement index
to evaluate the correction effect in OP, ensuring the continuity and reliability of the entire
prediction process. For OP, the median, as an error measurement indicator, is more suitable
due to its robustness and adaptability to resist gross errors, maintain the continuity of error
calculation, and other demands in OP’s application scenario. In summary, the measurement
of OP errors is essential in providing correct and stable guidance for space activities. The
median, as an error measurement indicator, brings significant advantages in ensuring
prediction accuracy, readability, continuity, and facilitating comparisons and statistical
analyses between different tasks.

The ADM correction method is mainly used to improve the accuracy of space object
OD and OP. In terms of space debris OP, the accuracy of the ADM is crucial for accurate
predictions. This article explores the characteristics, usage conditions, limitations, and
impact on space debris OP of correction methods from three aspects.

I. Characteristics:
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(1) Accuracy: The ADM correction can effectively improve the accuracy of space object
OD and OP. Before correction, the OP error of the ADM may be significant. Correction
can provide more accurate OP results.

(2) Near Real-Time: Using monitoring data within a few days (usually 3–7 days) for
ADM correction can ensure near real-time corrections.

(3) Feasibility: The ADM correction method has relatively low cost and does not require
complex engineering design. Additionally, the method has been previously applied
and can meet practical application demands.

(4) Science: The ADM correction method is based on physical principles and calibrated
by real measurement data; thus, it boasts a degree of scientific foundation.

II. Usage conditions and limitations:

(1) Monitoring Data: The ADM correction method requires a certain amount of high-
quality monitoring data. Insufficient or poor-quality monitoring data may hinder the
correction effect.

(2) OD Accuracy: Establishing an accurate orbit model is necessary for the ADM cor-
rection process. Low OD accuracy could lead to error accumulation and affect
correction outcomes.

(3) Correction Window: Many factors affect the variation of the ADM, including solar
activity and the Earth’s magnetic field. Thus, selecting an appropriate time frame for
correction that avoids these interferences is crucial.

(4) Time Length: As the ADM often undergoes annual changes, when selecting a few
days (usually 3–7 days) of monitoring data for the correction, historical performance
and future variations must be considered simultaneously.

III. Impact on space debris OP: The correction of the ADM plays a vital role in space
debris OP:

(1) Model accuracy: By correcting the ADM, the accuracy of space debris OP can be
improved, enhancing people’s understanding of space debris motion.

(2) Prediction time: The corrected ADM can increase the effectiveness of space debris OP
and make it more lasting or transient, thus effectively reducing adverse effects such
as misjudgment or missed-events.

(3) Adaptability: In future space activities, with the continuous promotion of new tech-
nology, more types and more complex space debris may appear. Therefore, correcting
the ADM will help better adapt to future space debris OP requirements.

In summary, the ADM correction method has real-time, scientific, and accurate char-
acteristics. It plays an important role in space debris OP. However, when using the ADM
for corrections, its usage conditions and limitations should be noted to achieve better
correction results.

5. Conclusions

Accurate orbital information on space objects is critical for space users and is a fun-
damental component of space situational awareness, particularly for reliable warning of
space collisions. When sparse tracking data are available, improving the accuracy of atmo-
spheric mass density models becomes a critical task to enhance the OD and OP accuracy of
LEO objects.

To address this need for improved accuracy, the ADMC and HASDM methods are
evaluated in this study using one-month tracking data collected by a small telescope array.
Although tracking data are typically sparse, with less than 30 calibration objects in a 3-day
time span, significant reductions in OP error are achieved. Calibrated objects show an
average reduction rate of about 55% in 7-day OP error, while non-calibrated objects in the
calibration area yield a reduction rate of about 45%. For objects outside the calibration area,
the average 7-day OP error reduction rate is approximately 30%. In addition, the study
demonstrates that AMD calibration can lead to better OP performance for objects with
large ballistic coefficients.
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Compared to previous work, the ADMC and HASDM methods used in this study
show higher accuracy in reducing OP errors. In addition, these methods have the advantage
of being able to use limited observation data obtained from small telescope arrays and
can be applied to various types of objects, including objects with large ballistic coefficients.
However, a potential disadvantage of these methods is that they require a relatively high
computational cost due to joint OD using multiple space objects.
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BC Ballistic coefficient
CHAMP Challenging mini-satellite payload
DTM Drag temperature model
EUV Extreme ultraviolet.
Exp Experiment
FUV Far ultraviolet.
LDEF Long Duration Exposure Facility
GNSS Global navigation satellite system
GRACE Gravity recovery and climate experiment
HASDM High accuracy satellite drag model
INC Inclination
J71 Jacchia 1971
JB Jacchia Bowman
LEO Low-Earth orbit
MSIS Mass spectrometer incoherent scatter radar
NORAD North American Aerospace Defense Command
NRLMSISE Naval research laboratory mass spectrometer and incoherent scatter radar extended
OD Orbit determination
OP Orbit prediction
PA Perigee altitude
RMS Root mean square
RMSE Root mean square error
SGP4 Simple general perturbation 4
SLR Satellite laser ranging
SMM Solar maximum mission
SOHO Solar and heliospheric observatory
TIEGCM The thermosphere–ionosphere–electrodynamics general circulation model
TLE Two-line element
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