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Abstract: Despite the rapid development of deep learning in hyperspectral image classification
(HSIC), most models require a large amount of labeled data, which are both time-consuming and
laborious to obtain. However, contrastive learning can extract spatial–spectral features from samples
without labels, which helps to solve the above problem. Our focus is on optimizing the contrastive
learning process and improving feature extraction from all samples. In this study, we propose the
Unlocking-the-Potential-of-Data-Augmentation (UPDA) strategy, which involves adding superior
data augmentation methods to enhance the representation of features extracted by contrastive
learning. Specifically, we introduce three augmentation methods—band erasure, gradient mask,
and random occlusion—to the Bootstrap-Your-Own-Latent (BYOL) structure. Our experimental
results demonstrate that our method can effectively improve feature representation and thus improve
classification accuracy. Additionally, we conduct ablation experiments to explore the effectiveness of
different data augmentation methods.

Keywords: data augmentation; band erasure; gradient mask; random occlusion; Bootstrap-Your-
Own-Latent; hyperspectral image; spatial–spectral feature

1. Introduction

Hyperspectral images (HSI) have gained widespread use due to their ability to provide
extensive spectral and spatial information [1]. With hundreds of bands, HSIs can distinguish
surface materials based on their unique spectral characteristics with exceptional spectral
resolution. This feature makes them highly valuable for various applications, including
vegetation surveys, atmospheric research, military detection, environmental monitoring [2]
and landcover classification [3]. HSIC is a key research area within the hyperspectral field
and involves the classification of individual pixels based on the rich spectral information
they contain. As hardware technology continues to improve, the spatial resolution of
hyperspectral sensors also increases, allowing for the incorporation of spatial information
from surrounding pixels in classification efforts. Currently, the combination of spectral and
spatial features is the primary approach in the HSIC field [4].

The abundance of bands in HSI presents a significant challenge in classification.
Processing such large amounts of data directly without reduction would require a network
of immense scale and huge computational memory. Furthermore, high spectral resolution
creates spectral redundancy, which can be addressed through dimensionality reduction
techniques that preserve critical information while reducing data size. Feature extraction
is a widely used method for reducing data dimensions in HSI by extracting or sorting
effective features for subsequent use. Common methods for feature extraction include
principal component analysis (PCA) [5], independent component analysis (ICA) [6], linear
discriminant analysis (LDA) [7], multidimensional scaling (MDS) [8], etc. These algorithms
are still widely used as preprocessing methods due to their simplicity and effectiveness.
With the increasing maturity of deep learning algorithms, more sophisticated algorithms are
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being developed to extract features from HSIs. Presently, the prevalent classification method
involves using supervised or unsupervised feature extraction algorithms to extract spectral
or spatial–spectral features, followed by classifier training using the extracted features.

The earlier developed feature extraction algorithms were based on supervised deep
learning. In supervised learning, convolutional neural networks (CNNs) play an cru-
cial role, evolving from one-dimensional CNNs [9] that only extract spectral features to
two-dimensional and three-dimensional CNNs [10] that extract both spatial and spectral
information. Roy et al. proposed the HybridSN network, which combines 2D and 3D con-
volutions to further enhance classification accuracy [11]. Zhong et al. introduced the classic
residual network into the hyperspectral domain and designed the SSRN network [12].
Zhong et al. combined attention mechanism and CNNs [13]. Apart from CNNs, deep
recurrent neural networks (DRNN) [14], deep feed-forward networks (DFFN), and other
networks have also achieved promising results in HSIC.

However, supervised learning often heavily relies on labeled data, necessitating a
sufficient number of labeled samples to achieve optimal training results. In the case of
HSIs, both data collection and labeling involve significant human and time costs. Conse-
quently, in recent years, the focus of feature extraction algorithms has gradually shifted
towards unsupervised deep learning. The fundamental difference between unsupervised
learning and supervised learning lies in the fact that the training data of unsupervised
learning are unlabeled, and samples are classified based on their similarities, reducing
the distance between data of the same class and increasing the distance between data of
different classes. Without the constraints of labels, unsupervised learning can unleash
the potential of models, enabling them to autonomously discover and explore data, learn
more latent features, and ultimately result in models with better robustness and generaliza-
tion. Unsupervised learning can be divided into generative learning and discriminative
learning. Generative models learn to model the underlying probability distribution of
input data. They are trained on large amounts of data and leverage this information to
synthesize new samples that resemble the original data. The most basic generative deep
learning algorithms include autoencoders (AE) [15] and generative adversarial networks
(GAN) [16]. Variants of AEs, such as the adversarial autoencoder (AAE) [17], variational
autoencoder (VAE) [18], and masked autoencoder (MAE) [19], have been widely used for
feature extraction in hyperspectral image analysis. GANs optimized with algorithms such
as deep convolutional GAN (DCGAN) [20], information maximizing GAN (InfoGAN) [21],
and multitask GAN [22] have also achieved remarkable results in HSIC.

Discriminative learning models the conditional probability and learns the optimal
boundary between different classes. Contrastive learning is a typical discriminative learning
algorithm in deep learning, which aims to acquire representations by contrasting positive
and negative pairs in the latent space. Positive pairs are spatially close but spectrally similar
patches, whereas negative pairs are either spectrally dissimilar or spatially distant patches.
By minimizing the distance between positive pairs and maximizing the distance between
negative pairs, the model learns to encode both spatial and spectral information in the
latent space.

Contrastive learning has made rapid progress in recent years, and many variants such
as Moco [23], SimCLR [24], BYOL [25], SwAV [26], and SimSiam [27] have been proposed
and gradually applied in the field of hyperspectral data analysis [28]. These methods differ
in their choice of contrastive loss, encoder architecture, and training strategy. However,
they share a common goal of learning representations that capture the underlying structure
of hyperspectral data. Furthermore, the key to contrastive learning is to prevent model
collapse, which means that all data converge to the same constant solution after feature
representation.

For contrastive learning, we can integrate additional optimization techniques to en-
courage the model to learn more representative features while ensuring that it does not
collapse. In handling the spatial–spectral features of HSIs, spatial and spectral information
are often combined into the same sample. Although this approach is simple and compen-



Remote Sens. 2023, 15, 3123 3 of 19

sates for the lack of spectral information, directly inputting the entire sample cube into the
model results in a significant amount of redundant information interfering with feature
extraction. Some studies have separated spatial and spectral information into different
samples and used cross-domain contrastive learning to extract them separately [28–30].
This approach can reduce a lot of redundant information but may also lead to the loss of
valuable sub-key information. Coordinating the extraction of spatial and spectral infor-
mation, preserving useful information as much as possible, reducing the interference of
useless information, and increasing the model’s attention to key information are essential
for improving the efficiency of contrastive learning.

In this study, we incorporated multiple optimization strategies into contrastive learn-
ing to improve feature extraction. These strategies include band erasure (BE), random
occlusion (RO) [31], and gradient mask (GM). The motivation of our study is to greatly
improve the feature extraction effect and unlock the potential of the model by adding new
data augmentation methods while the model remains unchanged. Experimental results
have shown that each of these strategies can significantly improve feature performance
and classification accuracy. Furthermore, when combined, they can lead to unexpected
improvements.

In the following sections, we will first introduce the relevant algorithms’ background
knowledge (Section 2). Then, we will provide a detailed description of our proposed
method’s overall framework and each module (Section 3). Next, we will describe and
analyze our comparative and ablation experiments (Section 4). Finally, we will present our
conclusions (Section 5). The main contributions of this study are as follows:

(1) We propose the band erasure strategy to improve spectral features extracted by
contrastive learning.

(2) We propose the gradient masking strategy to enhance the model’s attention to key
areas, reduce attention to edge positions, and minimize the interference of useless
information on features.

(3) We propose the Unlocking-the-Potential-of-Data-Augmentation (UPDA) strategy,
which involves adding superior data augmentation methods to improve the features
extracted by contrastive learning. We used UPDA in the BYOL structure and improved
the classification accuracy to a new level.

2. Related Work
2.1. Contrastive Learning

Contrastive learning is a type of self-supervised learning that involves constructing
pairs of similar and dissimilar examples to learn a representation learning model. The goal
is to learn a model that projects similar samples close together in a projection space, whereas
dissimilar samples are projected far apart. Essential factors in contrastive learning include
how to construct similar and dissimilar samples, how to design a representation learning
model that adheres to the above principles, and how to prevent model collapse, which
occurs when all data converge to a single constant solution after feature representation.
Currently, there are many contrastive learning methods available, and they can be roughly
categorized into those based on negative samples [24], contrastive clustering [26], asym-
metric network structures [25,27], and redundancy elimination loss functions, depending
on the approach used to prevent model collapse.

Bootstrap-Your-Own-Latent (BYOL) is a typical asymmetric structure-based approach,
where the online network has an extra predictor compared to the target network. Further-
more, the two branches are connected by an asymmetric similarity loss. BYOL extracts
features of samples by training the ability of online network to predict the output of target
network, thereby learning the potential connections between positive sample pairs. Unlike
other contrastive learning methods, BYOL only requires positive sample pairs, not negative
ones, which makes the BYOL model more robust and generalizable.

He et al. proposed Simsiam [27] and analyzed the necessary factors to make the
network not collapse. Its structure is similar to BYOL, retaining the predictor of the online
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network, but without EMA (exponential moving average). Simsiam proves that EMA is
not necessary to prevent collapse but removing it will sacrifice part of the accuracy [32].

In this work, in order to achieve better classification accuracy, we continue to use the
BYOL structure.

2.2. Data Augmentation
2.2.1. Normal Data Augmentation

Data augmentation is a widely used technique in contrastive learning that increases the
diversity of the training data by creating new samples that are variations of the original data.
This technique helps to reduce overfitting and improve the model’s ability to generalize. In
contrastive learning, data augmentation is typically applied to both the anchor and positive
samples to create new pairs of samples for training.

Normal augmentation methods, such as random cropping, flipping, rotation, color
jittering, and Gaussian noise injection, are often used in contrastive learning [33]. The aug-
mented samples are paired with their corresponding original samples to form positive pairs
for training, thereby increasing the number of positive pairs and enhancing the diversity of
the training data. This can improve the performance of the contrastive learning model.

Although they can be used to process hyperspectral data, these normal augmentation
methods were originally designed for RGB or grayscale images and do not take into account
the unique characteristics of HSIs.

In [34], the author pointed out that in the existing contrastive learning, it is not ideal
to use various data augmentation methods to map the original data to the same space
and then perform various downstream tasks. Blindly using data augmentation methods
may be harmful to the learned features. We believe that the choice of data augmentation
method should be based on the specific downstream tasks and the shape of the data. To
fully leverage the potential of contrastive learning in HSIC, it is necessary to develop new
data augmentation techniques that are tailored to hyperspectral data.

2.2.2. Random Occlusion

The random occlusion (RO) technique is a data augmentation method that involves
randomly masking or occluding a portion of the input data during training. This technique
simulates missing or incomplete information in the input data and forces the model to
learn robust features that can still accurately classify the data, even when certain regions
are missing. Random occlusion can be applied to various types of input data, such as
images, text, and audio. In image classification tasks, random occlusion can be applied by
randomly masking a portion of the image with a black rectangle or by replacing a portion
of the image with random noise. The size and location of the occluded region can also be
randomized to increase the diversity of the training data. By using random occlusion as
a data augmentation technique, the model can learn to be more robust to incomplete or
missing data, which can improve its performance on real-world situations where the input
data may be noisy or incomplete.

When we were thinking about how to extract more representative features, we tried
to explain why traditional augmentation methods make sense in feature extraction. We
suspected that when using color distortion, we can encourage models to pay more attention
to features except color, and when using Gaussian noise, we can tell our models to not
be obsessed with small, discrete morphological features. We guessed that if we occlude
an uncritical area, the model will pay more attention to the rest. So, as long as we do not
occlude the features at key positions, the model can extract better space features.

RO was first used in HSIC in [31], where Haut et al. applied this technique to a
CNN network and demonstrated its effectiveness. In our previous work [35], we integrated
random occlusion into the BYOL structure for HSIC and achieved significant improvements
in classification accuracy across various datasets.
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Based on previous experiments, we have proved that proper occlusion strategies can
improve results effectively when applied to HSIC. For our experiments, when the occlusion
value is set to 1, and the area set to 10% of the patch area, the network works best.

3. Method

In this section, we provide a detailed introduction to the UPDA method and its ap-
plication in the BYOL structure. Specifically, we first present the overall framework of the
proposed method, followed by a detailed explanation of the newly proposed data augmen-
tation methods, band erasure and gradient mask. Finally, we describe in detail the process
of contrastive learning training and training of a classifier using the extracted features.

3.1. Framework of the Method

Figure 1 illustrates the framework of the proposed method, which mainly consists of
the UPDA process and the contrastive learning feature extraction process, with the former
including data preprocessing.
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Figure 1. The framework of our method (UPDA + BYOL). The original dataset is band erased to
obtain the data of the two branches. After PCA and sliding window segmentation, two series of
patch groups are obtained. A pair of patches is used as an example in the figure. Gradient mask is
applied to the patch of upper branch, and two views are obtained. Two views are regarded as a pair
of positive samples and put into the backbone network of BYOL. SG denotes the stop gradient. After
training, the features are saved to train the SVM classifier.

Let X ∈ Rh×w×c be the original input hyperspectral image, where h and w are the
height and width of the image, and c is the number of bands. First, the data are subjected
to band erasure, where odd and even layers are erased separately to obtain two parts, X0
and X1, forming two branches.

PCA is then performed on each branch to reduce dimensionality, and the resulting
samples are segmented into patches: P0 and P1. The patches in the upper branch are
weighted using a gradient mask, whereas the patches in the lower branch are not processed.
Then, both of them are randomly masked to obtain the views V0 and V1, which are input
into the BYOL structure.

The upper branch of the BYOL structure is an online network, while the lower branch
is a target network. The former has an additional linear layer, i.e., the predictor. The loss
value is calculated based on the outputs of the upper and lower branches and used to
update the network parameters.

After pretraining, the results of the projector are saved as features and input into the
SVM classifier for training to complete classification or other downstream tasks. In this way,
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features are easily migrated between different machines, so that we can extract features on
machines with high configuration and complete downstream tasks on any machine. For
more detailed information, please refer to the following two subsections.

3.2. Unlocking the Potential of Data Augmentation
3.2.1. Band Erasure

The essence of band erasure is to divide the original HSI into two datasets with
non-overlapping bands. In this process, odd and even layers are extracted at intervals,
resulting in two datasets that are obtained by erasing half of the bands from the original
data and have non-overlapping bands. Band erasure can improve the representativeness
of subsequent feature extraction. On the one hand, because hyperspectral data have high
spectral resolution and spectral information has a large redundancy, removing half of
the bands will not lose critical spectral information and can reduce the interference of
redundant information in each branch on feature extraction. On the other hand, the data
in the two branches after band erasure are complementary. During the training process
of contrastive learning, in order to make the loss function converge, the model tends to
focus on shared information and reduce attention to unimportant details. This shared
information is often the essential features. We have tried different erasing strategies, such
as removing a string of continuous bands or leaving only 1/4 or 1/3 of the total number of
bands; however, they are not as effective as the current erasure strategy.

The c spectral bands are divided into c0 and c1 bands, where c = c0 + c1, resulting
in X0 ∈ Rh×w×c0 and X1 ∈ Rh×w×c1 . PCA is then performed on each branch, and the
first d principal component maps are selected. The value of d varies depending on the
dataset, with 30 for the IP dataset and 15 for the PU and SA datasets. The principal
component maps are then segmented into patches using a sliding window of size s× s
with a stride of 1, resulting in s × s × d cubes. Here, s is set to 25, and the edges are
padded with zeros. Two sets of patches, P0 = {p0,0, p0,1, · · · , p0,N}(p0,i ∈ Rs×s×d) and
P1 = {p1,0, p1,1, · · · , p1,N}(p1,i ∈ Rs×s×d), are obtained, where N is the number of valid
pixels, and the corresponding labels are Y = {y0, y1, · · · , yN}(yi ∈ N). The patches contain
both spectral and spatial information, with the spectral information compressed by PCA.
The class of the center pixel represents the class of the entire patch, so it can be said that the
spatial and spectral information closer to the center pixel is more important.

3.2.2. Gradient Mask

The essence of a gradient mask is a weight matrix with the highest value at the center
and decreasing values as they move away from the center. The size of the matrix is s× s,
which is the same as the patch size. The label of the patch is determined by the label of
the center pixel, so we can infer that the closer to the center of the patch, the more critical
the information. The purpose of setting a gradient mask is to reduce the model’s attention
to spatial and spectral information at the patch edges and to increase its attention to the
key information at the center. It can be said that this is a forced attention transfer method.
Specifically, we set the weight of the center to 1 and the weight of the four vertices to 0 and
interpolate the other values linearly based on their distance from the center. The weight
calculation formula is as Equation (1).

maski,j = 1−

√
(i− center)2 + (j− center)2

2center2 (1)

where (i, j) is the location of element in the gradient mask, (center, center) is the location of
central element, and center = (s + 1)/2. mask is the resulting gradient mask.

The resulting mask is displayed as a grayscale image in Figure 2. The gradient mask is
multiplied element-wise with patches P0 to obtain P0

′, whereas P1 is not processed with
the gradient mask. The specific processing process is multiplication of the mask with the
corresponding position element of each layer of the patch to obtain a weighted new patch.
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This ensures that the input samples of the upper and lower branches have small differences
at the center and large differences at the edges. During the training process of contrastive
learning, in order to achieve the goal of reducing the loss function of the upper and lower
branches, the model gradually reduces its attention to the edges of the patch and focuses
more on the key information at the center.

Figure 2. Visualization of the Gradient Mask.

3.3. Contrastive Learning

We put (vi, vi
′) into the BYOL structure, where vi is input to the online network,

which is then encoded to obtain the representation ui = fonline(vi). The representation
zi = gonline(ui) is then obtained through a projector, and the predicted result ki = qonline(zi)
is obtained through a predictor. On the other hand, vi

′ is input to the target network, which
is then encoded to obtain ui

′ = ftarget(vi
′), and the representation zi

′ = gtarget(ui
′) is

obtained through a projector. Specifically, the encoder consists of three 3D convolutional
layers, a convolutional layer, and a fully connected layer. After convolution, the output
is flattened and then input to the fully connected layer. Each layer is followed by batch
normalization and a ReLU activation function. The projector consists of a fully connected
layer, batch normalization, and a ReLU activation function. The predictor is a narrower
fully connected layer, also followed by batch normalization and a ReLU activation function.

The computation process of the online and target networks can be represented by
Equations (2) and (3). For BYOL, its optimization objective is for the positive examples
of the online network to approach the positive examples of the target network in the
representation space. Therefore, we update the parameters of the online network using a
loss function and update the parameters of the target network using an exponential moving
average based on the parameters of the online network, with the update step controlled by
the hyperparameter τ. The loss L is calculated based on the outputs of the two branches.
First, we perform L2 normalization on ki and zi

′, ki = ki/‖ki‖2, z′ = zi
′/‖zi

′‖2 and then
take the L2-normalization of their difference, as shown in Equation (4).

ki = qonline(gonline( fonline(vi))) (2)

zi = gtarget( ftarget(vi
′)) (3)

L =
∥∥∥ki − z′

∥∥∥2

2
= 2− 2 · 〈ki, z′〉

‖ki‖ · ‖z′‖
(4)

As the BYOL structure is asymmetric, in order to fully utilize the data, we exchange
the input patches of the two branches, i.e., inputting vi to the target network and vi

′ to the
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online network, and calculate the loss function L′. It can also greatly increase the efficiency
of optimization. The loss function of BYOL is shown as Equation (5):

LBYOL = L+ L′ (5)

LBYOL is the symmetric loss and we update the parameters according to it. The process
of parameter update can be represented as Equations (6) and (7):

Wonline ← optimizer(Wonline,∇WonlineL
BYOL, η) (6)

Wtarget ← τWtarget + (1− τ)Wonline (7)

where Wonline is the parameter of the online network, while Wtarget is the parameter of
the target network. η is the learning rate and τ is the weight of parameter update. ←
means assignment.

After reaching the specified number of iterations during training, we save the parame-
ters of the encoder and projector and use the output of the projector as features inputted
into the downstream task. In order to evaluate the ability of the contrastive learning model
to extract features after introducing UPDA, we use the classical SVM classifier as the down-
stream task, with classification accuracy as the indicator to evaluate the performance of
the features.

We split the sample patches into training and testing sets and use the features of
the training set to train the classifier. The features of the test set are input to the trained
classifier to obtain the classification result Ŷ = {ŷ0, ŷ1, · · · , ŷN}(ŷi ∈ N). According to Ŷ
and Y, we calculate the accuracy of every class, the overall accuracy (OA), and the average
accuracy (AA).

4. Experiments and Results

In this section, we report some classification experiments based on our method, and
provide a detailed analysis of the experimental results.

4.1. Datasets

In the classification experiments, three publicly available datasets are used to show
the superior performance of our method UPDA, including the Indian Pines (IP), Pavia
University (PU), and Salina (SA) datasets.

The IP dataset was gathered by the AVIRIS sensor over the Indian Pines test site in
northwestern Indiana. It includes 145 × 145 pixels and 224 spectral reflectance bands
within the wavelength range of 0.4 ∼ 2.5× 10−6 m. After eliminating bands covering
water absorption regions, 200 bands remained, and the ground truth was composed of 16
classes. However, the dataset suffers from an uneven sample size issue, with the largest
class having over 2000 samples and the smallest class having only 20 samples. Additionally,
the dataset has a relatively low spatial resolution, which poses a challenge for classification.
For more information on the IP dataset, please refer to Figure 3 and Table 1.

The PU dataset comprises of 610 × 340 pixels and 103 spectral bands within the
wavelength range of 0.43 ∼ 0.86× 10−6 m. The ground truth is composed of nine classes.
This dataset is characterized by complex background pixels, small connected regions, and
numerous discontinuous pixels. Moreover, its wavelength range is smaller than the other
two datasets, resulting in less spectral information. For more information on the PU dataset,
please refer to Figure 4 and Table 2.
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Figure 3. Groundtruth of the IP dataset.

Table 1. Details of the IP dataset.

IP Dataset

Class Name No. Number Training

Alfalfa 1 46 5
Corn-notill 2 1428 143

Corn-mintill 3 830 83
Corn 4 237 24

Grass-pasture 5 483 48
Grass-trees 6 730 2

Grass-pasture-
mowed 7 28 3

Hay-windrowed 8 478 48
Oats 9 20 2

Soybean-notill 10 972 97
Soybean-mintill 11 2455 246
Soybean-clean 12 593 59

Wheat 13 205 21
Woods 14 1265 127

Buildings-Grass-
Trees-Drives 15 386 39

Stone-Steel-Towers 16 93 9

Total 10,249

Figure 4. Groundtruth of the PU dataset.
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Table 2. Details of the PU dataset.

PU Dataset

Class Name No. Number Training

Asphalt 1 6631 663
Meadows 2 18,649 1865

Gravel 3 2099 210
Trees 4 3064 306

Painted metal sheets 5 1345 135
Bare Soil 6 5029 503
Bitumen 7 1330 133

Self-Blocking Bricks 8 3682 368
Shadows 9 947 95

Total 42,776

The SA dataset is an image with 512 × 217 pixels and 224 spectral bands within the
wavelength range of 0.36 ∼ 2.5× 10−6 m. After removing 20 water-absorbing bands,
204 spectral bands remain, and the ground truth is composed of 16 landcover classes.
Compared to the other two datasets, the SA dataset is easier to classify due to its fewer
obvious flaws such as uneven samples, low resolution, or complex background. For more
information on the SA dataset, refer to Figure 5 and Table 3.

Figure 5. Groundtruth of the SA dataset.

4.2. Experimental Settings

We designed the backbone network for contrastive learning based on structure of
HybridSN, which consists of 3D convolutional layers, and 2D convolutional layers, and the
specific network shape of online network and target network are shown in Table 4.

We set the batch size to 128 and the size of the input patch s, to 25× 25. Considering
the low spatial resolution and uneven samples of the IP dataset, the principal component
maps were taken as the first 30 for the IP dataset and the first 15 for the PU and SA datasets.
In training the classifier, all available labeled pixels were divided into training and testing
sets, 10% were randomly selected as training sets for the IP and PU datasets, and 5% for
the SA dataset. The number of contrastive learning epochs was set to 50. The coefficient of
EMA, τ, was set to 0.99. The selection of the above parameters is partly based on [11,25]
and partly verified by experiments.

In order to verify whether the patch size s and the number of principal component
graphs d are appropriate, we conducted some verification experiments on the IP and PU
dataset. Indeed, when s = 25 and d = 30, the features extracted by BYOL make the
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classifier to achieve the highest classification accuracy on the IP dataset, while d = 15 on
the PU dataset. The results are shown in Tables 5–7.

Table 3. Details of the SA dataset.

SA Dataset

Class Name No. Number Training

Brocoli_green_weeds_1 1 2009 100
Brocoli_green_weeds_2 2 3726 186

Fallow 3 1976 99
Fallow_rough_plow 4 1394 70

Fallow_smooth 5 2678 134
Stubble 6 3959 198
Celery 7 3579 179

Grapes_untrained 8 11,271 564
Soil_vinyard_develop 9 6203 310
Corn_senesced_green_weeds 10 3278 164
Lettuce_romaine_4wk 11 1068 53
Lettuce_romaine_5wk 12 1927 96
Lettuce_romaine_6wk 13 916 46
Lettuce_romaine_7wk 14 1070 54

Vinyard_untrained 15 7268 363
Vinyard_vertical_trellis 16 1807 90

Total 54,129

Table 4. Structure of backbone network. The output shape of each layer is defined in PyTorch style.
Batch size in the shape array is denoted by −1.

Layer Type Online Network Target Network

input [−1,1,15/30,25,25] [−1,1,15/30,25,25]
Conv3d [−1,8,7,23,23] [−1,8,7,23,23]

BatchNorm3d [−1,8,7,23,23] [−1,8,7,23,23]
ReLU [−1,8,7,23,23] [−1,8,7,23,23]

Conv3d [−1,16,5,21,21] [−1,16,5,21,21]
BatchNorm3d [−1,16,5,21,21] [−1,16,5,21,21]

ReLU [−1,16,5,21,21] [−1,16,5,21,21]
Conv3d [−1,32,3,19,19] [−1,32,3,19,19]

BatchNorm3d [−1,32,3,19,19] [−1,32,3,19,19]
ReLU [−1,32,3,19,19] [−1,32,3,19,19]

Conv2d [−1,64,17,17] [−1,64,17,17]
BatchNorm2d [−1,64,17,17] [−1,64,17,17]

ReLU [−1,64,17,17] [−1,64,17,17]
Linear [−1,1024] [−1,1024]
ReLU [−1,1024] [−1,1024]
Linear [−1,128] [−1,128]
ReLU [−1,16] /
Linear [−1,16] /

Table 5. Comparison of different patch sizes s in the IP dataset, setting d as 30, introducing only RO.

s 21 23 25 27

OA (%) 93.86 95.03 96.61 96.21

Table 6. Comparison of different number of principal component graphs d in the IP dataset, setting s
as 25, introducing only RO.

d 15 20 25 30

OA (%) 95.11 96.00 95.94 96.61
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Table 7. Comparison of different number of principal component graphs d in the PU dataset, setting
s as 25, introducing only RO.

d 13 15 17 20

OA (%) 97.98 98.40 97.46 97.35

As for the SVM classifier, we chose “rbf” kernels, the penalty coefficient was set to 10
or 100, and the gamma was set to 0.01 or 0.001. They were obtained through experimen-
tal traversal.

The hardware configuration for the experiment was as follows: NVIDIA GeForce GTX
1660 SUPER GPU, Intel Core i7-10700 CPU, and 16 GB DRAM. The software configuration
included Windows 10, Python 3.8, Pytorch 1.8.0, and Scikit-learn 0.24.2.

Two well-known metrics were used to evaluate the performance of different methods:
accuracy (OA) and average accuracy (AA). All experiments were repeated three times, and
the mean values of the results were recorded.

4.3. Classification Performance

To prove the superiority of our method, seven other unsupervised feature extraction
methods were adopted as a baseline for comparison: PCA, tensor principal component
analysis (TPCA) [36], stacked sparse autoencoder (SSAE) [37], unsupervised deep feature
extraction (EPLS) [38], 3D convolutional autoencoder (3DCAE) [39], ContrastNet [40], and
basic BYOL [25].

The classification results in the IP dataset are shown in Table 8. Our method obtains
the best OA and AA values, and performs the best in 10 classes, particularly in classes
3, 4, 10, 11, 14, and 15. In classes with very few samples such as Alfalfa, Oats and Stone-
Steel-Towers, our method leaves some room for improvement, and in classes with small
inter-class gaps, “UPDA + BYOL” is good at distinguishing them, such as class Corn-nottill,
Corn-mintill, Corn, Grass-pasture, Grass-trees, Grass-pasture-mowed, Soybean-nottill,
Soybean-mintill, and Soybean-clean, which belong to different stages of the same crop. The
introduction of UPDA increases the OA of BYOL by 2.29%, and increases the AA by 2.84%,
which is a giant leap.

The classification results in the PU dataset are shown in Table 9. The OA and AA of our
method are the highest and it obtains the best accuracy in six of nine classes. Particularly in
classes 1, 2, 3, 6, 7, and 8, “UPDA + BYOL” performs much better than the other methods.
Regrettably, in the class shadows “UPDA + BYOL” is not as good as the baselines. We guess
that the ground cover of the class shadows is not single and our method tends to divide
different material in the same class. In addition, our method outperforms the original
BYOL in every class, OA, and AA, which demonstrates the effect of introducing UPDA.
Furthermore, the introduction of UPDA increases the OA of BYOL by 1.51% and increases
the AA by 3.46%.

The classification results in the SA dataset are shown in Table 10. “UPDA + BYOL”
performs the best in OA, AA, and all classes except classes 1, 6, 11, and 12. After introducing
UPDA, the OA, AA, and accuracy values in each class are all close to 100%, and the
introduction of UPDA increases the OA of BYOL by 0.47% and increases the AA by 0.46%,
which demonstrates that our method has excellent performance on ideal datasets.

The time consumption of our method and ContrastNet on three datasets are shown in
Table 11. Time consumption of our method is significantly shorter than ContrastNet.

Overall, our method achieves the best results on the three datasets and greatly outper-
forms other comparative methods.
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Table 8. Comparison in the Indian Pines dataset. 10% labeled samples were used for training, and
the rest were used for testing. The highest accuracy values in every row are in bold. Some of the data
in the table are quoted from [39].

No. Class PCA TPCA SSAE EPLS 3DCAE ContrastNet BYOL UPDA + BYOL

1 Alfalfa 39.02 60.97 56.25 58.72 90.48 85.37 92.68 90.24
2 Corn-notill 72.30 87.00 69.58 59.91 92.49 97.15 94.42 95.33
3 Corn-mintill 72.02 94.51 75.36 71.34 90.37 97.95 94.42 98.26
4 Corn 55.87 79.34 64.58 74.31 86.90 95.62 92.64 97.34
5 Grass-pasture 93.09 93.08 88.81 97.95 94.25 96.09 97.01 98.85
6 Grass-trees 94.67 96.34 87.00 96.44 97.07 96.80 98.22 98.78
7 Grass-pasture-mowed 80.00 76.00 90.00 54.02 91.26 70.67 98.67 100.00
8 Hay-windrowed 98.37 99.76 89.72 88.99 97.79 98.68 99.53 99.30
9 Oats 88.89 100.00 100.00 58.89 75.91 70.37 75.93 83.33

10 Soybean-nottill 74.49 79.51 77.19 73.10 87.34 97.45 94.36 98.06
11 Soybean-mintill 69.58 85.42 77.58 70.78 90.24 98.40 97.47 99.17
12 Soybean-clean 65.29 84.24 72.00 57.51 95.76 93.57 88.01 96.25
13 Wheat 98.37 98.91 87.80 99.25 97.49 95.32 97.30 96.22
14 Woods 91.39 98.06 93.48 95.07 96.03 98.51 98.39 99.71
15 Buildings-Grass-Trees-Drives 48.99 87.31 72.36 91.26 90.48 96.73 94.52 98.66
16 Stone-Steel-Towers 87.95 96.38 97.22 91.27 98.82 79.76 75.40 84.92

AA (%) 76.89 89.31 81.18 77.43 92.04 91.78 93.06 95.90
OA (%) 76.88 88.55 79.78 77.18 92.35 97.08 95.71 98.00

Table 9. Comparison in the University of Pavia dataset. A total of 10% labeled samples were used for
training, and the rest were used for testing. The highest accuracy in every row are in bold. Some of
the data in the table are quoted from [39].

No. Class PCA TPCA SSAE EPLS 3DCAE ContrastNet BYOL UPDA + BYOL

1 Asphalt 90.89 96.17 95.72 95.95 95.21 99.49 98.21 99.94
2 Meadows 93.27 97.95 94.13 95.91 96.06 99.98 99.62 99.99
3 Gravel 82.60 86.50 87.47 94.33 91.32 99.06 95.15 99.17
4 Trees 92.41 94.84 96.91 99.28 98.28 97.75 96.41 99.27
5 Painted metal sheets 98.98 100.00 99.76 99.92 95.55 99.81 98.27 99.78
6 Bare Soil 92.00 94.76 95.76 93.57 95.30 99.90 99.98 100.00
7 Bitumen 85.83 91.89 91.18 98.17 95.14 99.83 96.18 99.89
8 Self-Blocking Bricks 82.96 89.04 82.47 91.23 91.38 98.79 95.12 98.75
9 Shadows 100.00 98.94 100.00 99.78 99.96 94.84 80.79 94.09

AA (%) 90.99 95.64 93.71 96.33 95.36 98.83 95.53 98.99
OA (%) 91.37 94.45 93.51 95.13 95.39 99.46 98.04 99.65

4.4. Feature Visualization

To further assess the effectiveness of UPDA, we utilized the t-distributed stochastic
neighbor embedding (t-SNE) [41] method to visualize the learned representation of spatial–
spectral features. For comparison, we also visualized the feature extracted by the BYOL
without UPDA. The results are presented in Figures 6–8.

In the IP dataset, subfigure (b) displays a more concentrated distribution of color
blocks belonging to the same class, with fewer fine points, and the shape is more towards
blocks than bars. Classes with few samples such as classes 1, 7, and 9 become easier to
separate from other classes.

In the PU dataset, the classes 1, 4, 7, 8, and 9 are partly mixed in subfigure (a), but
there are fewer overlapping parts of the color blocks in (b), which means that there exists a
larger gap between classes. Furthermore, it is obvious that blocks of class 2 and 6 become
more tightly connected after introducing UPDA.



Remote Sens. 2023, 15, 3123 14 of 19

Table 10. Comparison in the Salinas dataset. Five percent of the labeled samples were used for
training, and the rest were used for testing. The highest accuracy value in every row is in bold. Some
of the data in the table are quoted from [39].

No. Class PCA TPCA SSAE EPLS 3DCAE ContrastNet BYOL UPDA + BYOL

0 Brocoli_green_weeds_1 97.48 99.88 100.00 99.99 100.00 99.93 98.36 99.95
1 Brocoli_green_weeds_2 99.52 99.49 99.52 99.92 99.29 99.80 99.99 100.00
2 Fallow 99.41 99.04 94.24 98.75 97.13 99.95 99.95 100.00
3 Fallow_rough_plow 99.77 99.84 99.17 98.52 97.91 98.01 99.19 99.82
4 Fallow_smooth 98.70 98.96 98.82 98.33 98.26 99.48 98.99 99.92
5 Stubble 99.65 99.80 100.00 99.92 99.98 99.94 99.99 99.97
6 Celery 99.94 99.84 99.94 97.69 99.64 99.79 99.61 99.99
7 Grapes_untrained 83.90 84.11 80.73 78.86 91.58 99.53 99.32 99.93
8 Soil_vinyard_develop 99.97 99.60 99.47 99.54 99.28 99.71 99.85 100.00
9 Corn_senesced_green_weeds 96.89 95.76 92.12 95.98 96.65 99.80 99.95 100.00
10 Lettuce_romaine_4wk 96.84 96.14 96.62 98.60 97.74 99.80 99.15 99.67
11 Lettuce_romaine_5wk 99.95 99.07 97.75 99.44 98.84 99.98 99.53 99.95
12 Lettuce_romaine_6w 99.54 100.00 95.81 98.85 99.26 98.20 100.00 100.00
13 Lettuce_romaine_7wk 97.24 95.74 96.65 98.56 97.49 98.62 98.72 99.74
14 Vinyard_untrained 76.68 79.54 79.73 83.13 87.85 99.53 98.98 99.90
15 Vinyard_vertical_trellis 97.90 98.40 99.12 99.50 98.34 99.57 100.00 100.00

AA (%) 96.46 93.24 95.61 96.55 97.45 99.48 99.47 99.93
OA (%) 92.87 96.57 92.11 92.35 95.81 99.60 99.48 99.95

Table 11. Comparison of different methods’ time consumption.

Method
Time Consumption(s)

IP PU SA

ContrastNet 2048.92 3778.73 4651.70

UPDA + BYOL 1545.26 2544.02 3214.00

In the SA dataset, the pores in the color block of (b) are smaller, and the fine blocks
are almost gone. In addition, the contact points between different color blocks are reduced.
After introducing UPDA, the features of classes 13 and 14 are glued together, but the
features of classes 1, 10, and 15 are obviously more isolated.

By comparing the visualization of features, we can conclude that UPDA can help BYOL
to reduce the intra-class gap, increase the inter-class gap, and improve the representation
of features.

4.5. Analysis of Different Strategies

In order to investigate the impact of different data augmentation methods in UPDA
on classification performance, we conducted ablation experiments. In addition to the blank
group and the complete group, we created the “BE”, “RO”, “GM”, “BE + RO”, “BE + GM”,
and “RO + GM” groups, and conducted experiments on three datasets. We repeated each
experiment three times and recorded the average OA.

Table 12 shows the results. The “BE + GM + RO” group achieved the best OA in all
three datasets, which shows that the combination of the three strategies is most effective.
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(a) BYOL (b) UPDA + BYOL

Figure 6. Visualization of extracted features in the Indian Pines dataset.

(a) BYOL (b) UPDA + BYOL

Figure 7. Visualization of extracted features in the University of Pavia dataset.

The “BE + GM” group achieved second place in the IP and SA dataset and third place
in the PU dataset. The “GM + RO” group achieved second place in the PU dataset and
third place in the SA dataset. In general, when the strategies are grouped in pairs, the effect
varies according to different datasets.

When each strategy is joined individually, RO performs better than GM and BE, and BE
performs the worst overall. There is no doubt that the introduction of each strategy improves
the results, and they achieve the best classification performance when working together.
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(a) BYOL (b) UPDA + BYOL

Figure 8. Visualization of extracted features in the Salinas dataset.

Table 12. The results of the ablation study. Ten percent of the labeled samples were used for training
in the IP and PU datasets, and 5% were used in the SA dataset. In every dataset, the three highest
OAs are in bold and marked by rank in the lower-right corner.

Group Strategy OA(%)

- BE RO GM IP PU SA

(a) 95.71 98.04 99.48
(b) 3 96.81 98.77 99.50
(c) 3 97.09 99.29 99.86
(d) 3 96.14 98.91 99.64
(e) 3 3 97.952 99.603 99.902
(f) 3 3 96.96 98.90 99.69
(g) 3 3 97.383 99.642 99.873
(h) 3 3 3 98.001 99.651 99.951

When considering the characteristics of the dataset, we can also analyze the strengths
and weaknesses of each strategy. For the PU datasets with a small wavelength range
and complex background, the effect of RO is the most significant and the effect of BE is
the weakest when compared with other datasets. We can infer that RO can help to more
effectively extract spatial features from environments where spatial features are not obvious,
and BE can work better in datasets rich in spectral information. The performances of GM
in different datasets are quite varied, and it is less pronounced when combined with other
strategies.

5. Conclusions

This letter introduces a novel and efficacious approach, UPDA, which aims to bolster
the performance of contrastive learning in HSIC. The approach is designed to enhance the
representation of spatial–spectral features through a series of predominant data augmenta-
tion strategies designed for HSIs. By utilizing our method to extract features from a vast
amount of data in an unsupervised manner and subsequently training a classifier with a
small number of labels, exceptional classification accuracy can be achieved. The experimen-
tal results evidence the superiority of our method, and the ablation study underscores the
effectiveness and distinctions of each strategy. Our method is highly adaptable, allowing
for the incorporation of new strategies, and has tremendous potential to enhance the ability
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of contrastive learning, leading to better results with fewer labels. Furthermore, UPDA is
not only applicable to BYOL but can also unlock the potential of other contrastive learning
methods. We anticipate that our work will inspire novel ideas in fellow researchers and
facilitate the more effective application of contrastive learning in the field of HSI.
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HSI Hyperspectral image
HSIC Hyperspectral image classification
UPDA Unlock the potential of data augmentation
BYOL Bootstrap your own latent
PCA Principal component analysis
ICA Independent component analysis
LDA Linear discriminant analysis
MDS Multidimensional scaling
CNN Convolutional neural network
DRNN Deep recurrent neural network
DFFN Deep feed-forward networks
AE Autoencoder
GAN Generative adversarial network
AAE Adversarial autoencoder
VAE Variational autoencoder
MAE Masked autoencoder
DCGAN Deep convolutional generative adversarial network
InfoGAN Information-maximizing generative adversarial network
Moco Momentum contrast
SimCLR A simple framework for contrastive learning of visual representations
SimSiam Simple Siamese
BE Band erasure
RO Random occlusion
GM Gradient mask
OA Overall accuracy
AA Average accuracy
IP Indian pines
PU University of Pavia
SA Salina
EMA Exponential moving average
TPCA Tensor principal component analysis
SSAE Stacked sparse autoencoder
EPLS Unsupervised deep feature extraction
3DCAE 3 dimensional convolutional autoencoder
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